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The neutral amplitudes for neutrino-quark scattering are calculated in the one-loop approximation of the standard
Weinberg-Salam model of weak and electromagnetic interactions. A careful analysis of renormalization procedure in
the ’t Hooft-Feynman gauge is presented. Apart from the photonic corrections which are subject to the ordinary
QED analysis, purely weak corrections are of the order of one per cent in the amplitudes expressed in terms of the

Fermi coupling constant.

1. INTRODUCTION

Since their discovery in 1973, neutral currents
have played an important role in the development
of particle physics. Numerous investigations of
neutral-current interactions established that their
structure is remarkably close to the SU(2) X U(1)
structure of weak and electromagnetic interac-
tions. In such analyses the neutral-current ampli-
tudes are written in the form of current-current
interactions with some coupling parameters that
characterize the Lorentz and isospin structure of
the currents.! The neutral-current parameters
are in general arbitrary, but in models of electro-
weak interactions they are related to each other.
In particular, in the sequential Weinberg-Salam
model? they are functions of only one free parame-
ter sin®6, with 6 the Weinberg angle. Various ex-
periments determine the neutral-current parame-
ters or some combinations of them from which
sin?6 may be determined. Independent sets of ex-
periments have determined practically the same
value sin?g= 0.23, thus giving a firm support for
the SU(2) X U(1) structure.®

The precise determination of the neutral-current
parameters and sin’@ requires careful analysis of
radiative corrections which become important as
the accuracy of the data improves. Radiative cor-
rections may even provide us with a support for
the dynamical aspects of the Weinberg-Salam mod-
el in which renormalizability plays an important
role. In this paper I calculate radiative correc-
tions to the neutral-current interactions in the
standard Weinberg-Salam model with one Higgs
doublet. In the tree approximation the neutrino-
quark scattering vq = vq is described by the Z-ex-
change diagram in Fig. 1, and the amplitude is
given by
1
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where T; and @ are the weak isospin and electric
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charge of the quark. The amplitude (1.1) is valid
for |¢*| «<M,?, where g is the momentum transfer
from the neutrino to the quark. The amplitude
(1.1) will receive propagator effects for finite q°
and radiative corrections from the one-loop dia-
grams shown in Fig. 2, and the corrected ampli-
tude is represented as

.2
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X ((aT3+ b)}-%”i —(cQ -d) sin29>q , (1.2)

where a—d are functions of ¢ which are to be com-
puted. Corrections are calculated up to the order
a and terms of order osz/MW2 in a—d are neg-
lected, where m; is the fermion mass. The so-
called spin terms that have Lorentz structures
different from those of (1.2) are also neglected,;
these terms may contain, for instance, Ea,,Bqu,
where p is an external momentum, and they are
smaller than the order « corrections by the factor
s/My* (or t/My?) in the cross section.

1t is conventional to express the amplitude (1.1)
in terms of the Fermi coupling constant Gy using
the relation G»/v2=g%/8M,% cos’6. However,
since this relation also receives order-a correc-
tions which depend on the renormalization method
used, such a replacement in the corrected ampli-
tude (1.2) is in general not allowed. I discuss the
corrections to this relation in this paper and ex-
press (1.2) in terms of Gz.

v q

FIG. 1. Born diagram for vg —1g.
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FIG. 2. One-loop corrections to the 1y scattering
amplitude involving vertex corrections (a)—(c), gauge-
meson self-energies (d)—(e) and box diagrams (f)—(g).

The shaded blobs represent the sum of all one-loop dia-
grams.

Calculation of the order-a corrections in the
Weinberg-Salam model is not a straightforward
task. To extract finite terms from one-loop dia-
grams, one must distinguish two classes of dia-
grams: those that are ultraviolet convergent, and
those that require the subtraction of appropriate
counterterms. In the latter case, it does not suf-
fice to simply throw away divergent terms, since
such a procedure is incompatible with the gauge
invariance of the theory. In other words, the
counterterms correctly determined contain finite
terms as well as divergent terms, and the finite
terms could give rise to sizable effects. For this
reason a large portion of the paper is devoted to a
detailed discussion of the subtractions which are
consistent with gauge invariance.

The physical picture of the theory is clearest in
the so-called U gauge in which the contributions of
unphysical fields can be trivially eliminated. In
this gauge, however, Green’s functions are not
well defined since they contain extra divergences
that cannot be removed by the renormalization
counterterms.* Although such extra divergences
vanish in the sum of diagrams for an S-matrix
element,’ it is not easy to separate the contribu-
tion of each type of the diagrams such as shown in
Fig. 2. Inthe class of R, gauges,® all Green’s
functions are finite after renormalization. Com-

plications in this class of gauges are due to un-
physical fields which render the Feynman rules
complicated. One may therefore feel that these
gauges are not suitable for practical purposes.
Fortunately, however, in most cases the contribu-
tions of unphysical fields may be neglected. This
is because they [the Faddeev-Popov (FP) ghosts]
do not couple to fermions or they (the would-be
Goldstone bosons) couple to fermions with strength
gmy/ My, thus contributing only to terms of order
ozm,z/MW2 which are neglected. The only place
where the unphysical fields play an important role
is in the gauge-meson self-energies, which is
discussed in detail.

Since the full amplitude (1.2) is computed with
all the external lines on shell, the results are in-
dependent of gauge. I work in the 't Hooft—Feyn-
man gauge' in which the symmetry properties of
the theory are simplest. In fact in this gauge the
vector propagators have the simplest form and,
more importantly, all the unphysical propagators
have poles at the same locations as the corre-
sponding physical propagators. This enables one
to avoid the use of complicated Ward identities;
one must simply require that the locations of poles
be unchanged by renormalization.

The parameters that characterize the theory are
chosen to be

(eye,MW1MZ )MH,mf) )

the electric charge, the Weinberg angle, W mass,
Z mass, Higgs-boson mass, and fermion masses.
The Weinberg angle is defined as the mixing angle
of the renormalized isovector and U(1) gauge
fields to form the renormalized photon and Z -
meson fields [see (2.2)]. Then the renormalized
gauge coupling constant g is defined by g=¢/sin8.
This definition of g does not contain any ambigui-
ties such as infrared divergences present in other
methods.®? I employ the renormalization proce-
dure of Ross and Taylor!”'!! with some modifica-
tions; I make the number of parameters minimum
so that, for example, I do not introduce the unve -
normalized Weinberg angle.

The renormalization of the Weinberg-Salam mod-
el has been studied by many authors in various
gauges.® !* One may in principle obtain the neces-
sary counterterms by appropriate redefinitions
of the coupling constants and masses in the pre-
vious works in Refs. 8—-12. However, because of
the complexity due to the differences in gauge as
well as the subtraction procedure, a direct com-
parison of the parameters (coupling constants and
masses) in the present work and those in Refs.
8-12 is not easy. Therefore, for completeness,
all the necessary expressions are presented in
this paper.



The plan of the paper is as follows. In Sec. II
the Lagrangian is exhibited and the renormaliza-
tion counterterms are generated. In Secs. III-VI
the relevant counterterms and renormalized
Green’s functions are computed. In particular,
in Sec. III the lepton self-energies and the neutrino
vertex corrections are computed. The corre-
sponding functions for the quark sector are con-
sidered in Sec. IV. Then I proceed in Sec. V to the
FP-ghost self-energies which determine the
gauge-boson mass counterterms. In Sec. VI the
self-energies of the gauge mesons are computed,
including the Z -y transition diagram. In Sec. VII
J
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the box diagrams are calculated and the results
are presented. In particular, the radiative cor-
rections to the mass ratio My/M, are discussed.
With this result and the radiative corrections to
the muon decay amplitude calculated by Ross RE
the neutral-current amplitudes (1.2) are expressed
in terms of the Fermi coupling constant Gyp. Ap-
pendices A and B contain some of the lengthy ex-
pressions. In Appendix C some general features
of the radiative corrections in the Weinberg-
Salam model are discussed and some aspects that
arise in different renormalization procedures are
clarified.

II. THE LAGRANGIAN AND THE COUNTERTERMS

The Weinberg-Salam (WS) Lagrangian is written in the manifestly invariant form

L LTy 0 & - .,
£ws=ZzL,y“ (a,, —1g?“A‘; —z%—Bu)L,+2'LR,y“(au -ig'B,)R, - :F% F**

Ta

- 4(8,B, - 3, B,)* +' (au - g%

where F%,=0,A% - 0,A% +g¢°™A% AS. The quark
terms £, are considered separately in Sec. IV.
As usual, the following are defined:

1 .
wi =7 (AL #iAY),
Z,=A3 cosé + B, siné ,

A, =-A}sing + B, cosb ,

1 1 ! (2.2)
vy 14}
1+
R,=lp= 2 l,
_ ¢*
 ETRGTN
-—ﬁ(v +y +ix)
with
gsinf=g"cosf=e (2.3)
and
v
MW=%’
__8v
Z72cos6 ’
e (2.4)
v j
Mt =T
G
v
my=7g

The field y is the Higgs scalar of mass M. Then
(2.1) can be rewritten as

, 2
Al +i%— Bu><1>\

2\2
(@'@ -”7) -EG,(E,@R,+E,@'L,)+£,,, (2.1)
1

r ‘
£ws=2£‘t+£11+£111+£w+£q’ (2.5)
i
where the explicit expressions are given in Appen-
dix A.

The gauge-fixing terms are chosen in the
form® 110

£:= "%(auAu)z - IauW; "'idef |2 - %(a“Zu "IMZX)2 ’
(2.6)

which gives the Goldstone bosons ¢*,x (associated
with W*,Z) masses My ,M,, respectively. Follow-
ing the usual procedure,'® the Lagrangian £p for
the Faddeev-Popov ghosts is obtained (see Appen-
dix A), and we have the effective Lagrangian

£et(=£ws+£‘g+£FP . (2.7

The Feynman rules can be read off from this
Lagrangian, and are listed in Fig. 3 and 4.

So far all the quantities are the bare quantities.
The gauge-invariant counterterms are generated
by the following transformations:

AL ~z,' %A%,
B, "ZB“zBu ’
L~z
R-Zp'’R, _ (2.8)
-2,
g-2Zy V¥ g+0g),
g~z g +0g)),
applied to the Lagrangian (2.1). Here the fields
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FIG. 3. A partial list of the Feynman rules.

and coupling constants on the right-hand side are
the renormalized ones. After these rescalings
are performed the resultant Lagrangian is written
using (2.2) as the relations among the renormal -
ized fields. As for the mass terms, these are
written as

L nass = (Z o My2+ SM YW W #+ 5(Z M 2 +6M ;1) Z 2"
+3(Z Myt + M 2 =T (m, + 6m,)l (2.9)
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FIG. 4. The complete list of the Feynman rules in-
volving the FP ghosts.

and take My, My, My, m, as physical masses mea-
sured in experiments. The gauge-meson mass
terms are discussed further in Sec. VII. Note that
the relations (2.4) are no longer valid after re-
normalization; they receive one-loop corrections.
The resultant Lagrangian is'then written as the
sum of £y [(2.5), now as the renormalized La-
grangian] and the counterterm Lagrangian £gs.
Some relevant terms in £y are given in Appendix
A. The gauge-fixing terms £, given by (2.6) need
not be renormalized. However, the gauge trans-
formation for the renormalized fields involves re-
normalized parameters. Consequently, the FP
ghost Lagrangian develops the following counter-
terms:

Lo ==0ZyC (8% +My*)c’ - MyoMyc®
—0Z,C7(* + Mz )c, —CoMz0M ey +° 2+,
(2.10)

where Zy, ,=1+06Z,, , are the wave-function re-
normalization constants for the ghost fields ¢* and
Cz.

The counterterms involve ultraviolet diver-
gences. To deal with such divergences, the di-
mensional regulariza.tion‘4 is used together with
the notation

lnAz=42 —y +lndm,

-n



24 RADIATIVE CORRECTIONS TO

where y is the Euler constant. I assume the se-
quential model in which the axial-vector anomaly
cancels out, and treat y; as anticommuting with
all other y matrices inn dimensions.!” To deal
with the infrared divergences the photon mass 6
is introduced. This can be achieved, without de-
stroying gauge invariance, by a spontaneous sym-
metry breaking, the effects of which vanish as

8 -0 except for the normal logd in the infrared-
divergent terms.!®

III. THE LEPTON SELF-ENERGIES
AND THE NEUTRINO VERTEX FUNCTIONS

The counterterms 6g and 8g’ are determined by
requiring that the photon vertex function of the
lepton defines the physical (renormalized) charge.
The charge thus defined must be the same for the
electron and muon. This means that 6g and og’
must be independent of the lepton mass m; other-
wise the renormalized charge would be different
for the electron and muon, and our renormaliza-
tion procedure would fail. For this consistency
check, all terms involving powers of m?/M,*? are
kept in this section.

Let us first consider the lepton self-energy to
determine the lepton wave-function renormalization
constants Z; and Z;. To determine Z, we choose
to make a subtraction on the neutrino mass shell.
Let —iv(p?)f(1 —y,)/2 be the contribution from the
one-loop diagrams of Fig. 5(a) and 5(b) to the v
self-energy. The counterterm [Fig. 5(c)] gives,
from (A6), the contribution i 6Z#(1 —v;)/2, and
hence the renormalized v self-energy is'’

B (PR = =i Y -2, S @)
The subtractmn on the v mass shell means

"'[V(P )-GZL]IJ—‘E“_EO
which yields

8Z, =1(0). (8.2)

Before the symmetry breaking, /I, and I are

W, Z
V—&_U YV —iey vy
2,V 2

(@) (b)

YV —>—H—>— V

(<)
FIG. 5. Diagrams contributing to the neutrino self-
energy. ) .
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two different particles. This is why they carry
different renormalization constants Z; and Zj.
The spontaneous symmetry breaking generates the
mass term which mixes /; and l;, and we want to
treat the mass term as a part of the propagator.
Then the propagators for I, andil; cannot be sep-
arately defined, but one has a single propagator
which is a mixture of I, piece and l; piece. The

1 self-energy, coming from the one-loop diagrams
|six diagrams similar to Fig. 5(a) and 5(b)], has
the structure

~iZ(f)=- i(n(ﬁ)ﬁ%u + OR(in)iflizZi + p(ﬁ)ﬂt) .
(3.3)

Adding the counterterm contribution [Fig. 5(c),
with v —1] obtained from (A6), the renormalized
self-energy is

-zi(;ﬁ):_-i(}:(ﬁ) -észfl—;—Vi -ozRﬁll;lﬁ +6m> .
(3.4)

The mass counterterm 6 is discussed in Ref. 9,
and we do not consider it here. For the wave-
function renormalization constant, we require

E(l’)“"’fL (35)

ﬁ -m
which means that the I component is subtracted
on shell. Since 6Z; has already been determined
by (3.2), the number f; cannot be zero, but is
finite. The condition (3.5) fixes 6Z; and f; as

8Zp=0gy+ 2051 +2p1 (3.6)
fo=0p9+ 20,4 +2p =-0Z; , (3.7

where o;,p; are the coefficients of the expansion of

a(p?), p(p*) about p?=

mz

?
Og, (PP =0g,L +0r,L1 o +

) (3.8)

p(p2)=po+px£—,—;zm— +eee

The f; is a constant remaining after renormaliza-
tion, and a factor 3 f.(1 —y5/2) is to be associated
to each (renormalized) external ! line. (3f L, be-
cause the renormalization constant for an external
line is Z,'/?~1+%6Z, but not Z).

Calculation of each diagram in Figs. 5(a) and
5(b) gives

2

A 1
———7_‘.—_

V(pZWL_l1 MW 3

+11(MW9m’p) ’

(P2 = -1 [11 Al
wp =2 cosol2 Mi 2

—1,(M,,0, p)] o

2 2
o | ST TR e) B

LM, m,p)—j dx(1 - x)ln[ —x+xM2 x(1 - x)—-g].
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Here and below, the symbol = means that the 670 = m? [1 n A2 ll( m 0)]
right-hand side must be multiplied by the common "Ml T Mz ’
factor g%/167%. From (3.2), we obtain
b 1. A% 1 82 ,=0Z%+62%+0Z%.
GZL = - m_—f +—+ Il(Mwy m, O) ’
2 3Tt

The quantities p and o can be calculated from the
one-loop diagrams [Figs. 5(a) and 5(), with v

522 .__:l_(ll _éi l)
L=9cos?6\2 "M,E &) —1], from which and from (3.6) we find

(3.10)
1
2sin*d[ 1 G | m? (! x(1=x)2
R [ In M +3 +1,(M,,m,m) - 2———5 fo dxl-x+x2(m2/Mzz)]
4 sin%0 cos20 m? fd x(1=x)
T cos®® 1-x+x%(m3/M %)’
ozt e aize [ 102 52
Z% = —sin%0 lnm+4+21nm—§ (3.11)

I,(M,m,p)= ’{;ldx(l -x) ln[(l —x)<1 —x%)wc;}%:]

All other contributions, 0Z%, 6z%, 06Z%,
stant f;, defined in (3.7), in groups as

can be obtained similarly. It is convenient to deal with the con-

1, A% 1 fl x(1 —x)
W
f¥+ozY _—21nM z+5 + L0, 0,m)- 2 A X T /AR M7 (3.12)

fI+fi+0f

cos?26 A m? (! x(1 ~x)?
e [ I,(M e
T cos?0 [ lnM—'—g +1+2 2( Z’m,m) 4Mzz-[) dxl_x+x2(m2/M22)]

4 sin%0 cos26 m f
- dx
cos?0

- AZ 52
1= xfp(cl xz)/M ) - sin 9(1n——2-+4+21n———5>

and similarly for f% + f%+0Z%. Then from (3.10) we see that the divergences cancel in each group and f,
becomes finite,

ez MZ2 9 62 mz
fL:ET_z(—ln po- —E—Zlnm—g +0<a}w—wg)’ (3.13)

where only the leading terms are exhibited.
The lepton-photon vertex corrections depicted by the diagrams in Figs. 6(a)-6(f) are now calculated.
In the limit of g2~ 0 (¢ is the photon momentum), the contribution from these diagrams can be written as

._‘)/5

ierr LYo p yieyr L ‘;75 Ag, (3.14)
where AL' r are constants which we are to compute. Let us begin with the Z-exchange diagram in Fig.

6(d). With some algebra we find

gez—ciis.L::[% lnMj}—SE -1- lexx ln(l -x +x2M@;§)+MZ—2 j; dx 7 -z(:x:(ifzm;)]
4sin% cos20 m? (* x(1 -x)
T cos®® M, ) xl-—x+x2(m2/Mzz) : (3.15)
r
Quite remarkably, at least from the appearance of 0Zp+Ap=0, (3.16)

the expressions, one can verify with some mani-

pulations that the sum 8ZZ%+A% vanishes. We have
checked such cancellations for other contrikutions,
and have found that 8Z4+A4=0, A=(Z,7,¢,X,¥).
Collecting all these, we find

which is valid to all orders in m?/M 2,

Let us now compute the W-exchange diagram. It
is convenient to group three diagrams in Figs.
6(a)-6(c) together, whose contribution is given by
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FIG. 6. One-particle irreducible diagrams contribu-
ting to the lepton-photon vertex.

. A2
AY= %lnM 7 —% -I,(M,, 0,m)
x(1=x)
Tox 2 /i7) (3.17)

It is obvious from (3.12) and (3.17) that /% +62%
A¥=1n(A%/M?). For the contributions from other
diagrams in Fig. 6(d)-6(f), I have checked that f%
+f14+0ZZ4AZ4 A7 =0 and fX+ 8 +0Z3+ A% +AY
=0. Summing all these terms yields
2 AZ
L~ 16 2 MWZ .
I emphasize again that this equation is valid to all
orders in m?/M 2.
Finally the contribution from the counterterms,
Fig. 6(g) is considered. Using the same notation
as in (3.14), from (A.6) it is found that

4

fL+0Z  +Ap = (3.18)

Y
Ae=0Zp+ f cost,

(3.19)
Ag = 6ZL+% +62gg cotb .

We now have all the terms necessary to deter-
mine 0g and 8g’. Consider all the contributions to
the photon vertex up to the order g3, with the lep-
ton on shell. They are the diagrams shown in Fig.
7, where each shaded blob represents the sum of
all one-loop diagrams and the counterterms (.e.,
the renormalized two- and three-point functions of
order g%). We impose the usual renormalization
condition; the sum of these diagrams approaches
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FIG. 7. Diagrams contributing to the lepton-photon
vertex. The shaded blobs represent renormalized two-~
and three-point functions of order «.

iey” as ¢~ 0, which is already given by the tree
diagram Fig. 7(a). Therefore, the sum of all the
corrections must vanish. As shall be discusged

in later sections, the photon self-energy is sub-
tracted on shell of the photon. Thus the diagram
of Fig. 7(b) vanishes as ¢®~ 0 [see (6.2)]. It will
also be seen later that the Z-y transition diagram
in Fig. 7(c) vanishes as ¢®~ 0 [see (6.24)]. Ac-
cording to the rule for external lines, the dia-
grams of Figs. 7(d) and 7(e) give 3 fder* (1 —v,/2).
For the diagram of Fig. 7(f), the sum of (3.14) and"
(3.19) is obtained. Thus our renormalization con-
dition requires

6 ’
AR+GZR+eicos9=0,
(3.20)
og”
furhy +GZ"+2g 2

Then, together with (3.16) and (3.18), we find
ag, =0 ’

3 A2
0g = -2 26572 ln—"i

(3.21)

This result is valid to all orders in m3/M 2. If dg
and/or dg’ had depended on the lepton mass, then
the renormalized charge of the electron and muon
would be different, since the same 8g and 0g’ are
subtracted at the eey vertex as well as at the puy
vertex.

Once the counterterms (3.21) are found, the
coupling of the neutrino to the photon, which is in-
duced by the diagrams in Fig. 8, can be computed.
The counterterm Fig. 8(e) is given from (A.6) by

—i —sinb y* (3.22)

og . 175
2 2

with dg given by (3.21), which cancels the diver-
gence arising from Figs. 8(a)—8(d), leaving the
finite result
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. 1-y, g% -
P 1 3.23
iey! — 1(.mzA,,(qz), (3.23)
where
1 1-x 2 2
A (g2)= -1 e m_ q
Afg®)= -} j;dxj; qyln(1 %=y +(543) 3 xyM__wz)
1 ! i (1 -x)(1 —p)g? +m?
+ d
My*? fo ax fo YT x =y +(x +9)(m*/M D) — xy(@*/M ;%)
1 1= m? q2
+ dxf d ln(x+ +(1=x—-y) -x __._>
L o y y y MWZ ysz
1 1-x (x+y)(q2/MW2) 1 ( 7
- - . 3.24
*fod"fo dyx+y+(l—x—y)(mz/sz)—xy(qz/sz)'+fo dxin (1 -x(1 ")sz) 5:24)

For small | —¢%| compared withM %, one can expand (3.24) in powers of ¢%/M ,%. Keeping terms involving

the ratio ¢2/m?,

- — a2 2 1 2 E
A ==d ["1'+llnMLn",,_2 +2 j; dxx(l—x)ln(l-—x(l-x);i—z-)] . (3.25)

v 31,2 7373

For very small | —g%| < m?,

- =g 1 1. m? 1-¢°

AU,N_I—VI—WE <_§+§lnM—W—2- +i—sw-) . (3268)
Thus for very small —¢® the lepton mass gives the
dominant effect; In(M,?/m,?)=~ 24 and In(M,%/m,?)
~ 14, Consequently, for very small |-¢?| A, is
considerably different for v, and v,. This differ-
ence gives rise to the apparent v -v, universality
violation in neutral-current interactions.'® For
m?<< —q? << M2

~ - 8 1. —¢?
Aula)=3rs (‘zs*squ,,z)’

which is a good approximation already for —q?/m?
=~ 100.' Thus the fermion mass effects rapidly
disappear as —¢Z increases. In other words, the
fermion mass simply serves as an infrared cutoff.
The contribution of this term to the amplitude
(1.2) corresponding to Fig. 2(a), which is denoted
with subscript 2(a), is

(3.26b)

M2 -
cxn=~Tor 2 L A,(0") (3.27)

and a =b =d =0.

The corrections to the vvZ vertex arise from
the diagrams in Figs. 8(a), 8(d), and 8(e) with
the replacement y—Z. There is also a diagram
of the type Fig. 8(d) with the exchange of Z in
place of W. Subtracting the counterterms

; 1 1-
(2_2%55 GZL+1—2~g—rcose) y"—z—yi, (3.28)
Y
w
2 Y Y
w
v
@) (b) (c)
y v
2
w Y Y
1
v v

) (e)

FIG. 8. One-particle irreducible diagrams contribu-
ting to the induced neutrino-photon vertex.
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where $Z, and &g are given by (3.10) and (3.21),
we find for the vvZ vertex correction

ig ul ~Ys & gz
Teoss? 3 16 M40, (3.29)
where
A= 200s26 I(g, M ;) +(1 -2 sin®9),(q, M)

—-2cos?*91,(q, M ?)
0, My, . (3.302)

1 1-x 2
LgM=[ 4 dyn 1--—-’fy———-‘1—)
a(a, M) j; xl; y ( 1-x—-yM?)’
1
I4(q,M)=f dxln(l—x(l—x) )
o

+£ldx£l_ yln( i xyyf;)

'id 1”‘ X +y
v f f V% +y — x9(q2/ M)
(3.30b)

The contribution of (3.29) to the amplitude (1.2)
corresponding to Fig. 2(b) is

2 A 2
aoo(@) =Ca(a®) =Tz T‘f‘fq_(g/f)d?) (3.31)

and b =d =0. Here we have neglected terms of
order am?®/M 2.

IV. THE QUARK CONTRIBUTIONS

For simplicity only the » and d quarks are con-
sidered. The Lagrangian £ for the quarks can be
written down in the same way as for the leptons®
and we do not bother to exhibit it here. The left-
handed quarks form a doublet (x;,d;) while the
right-handed quarks are two singlets, uy and dg.
Correspondingly, there are three independent
wave-function renormalization constants Z Z
and Z In terms of these constants, the counter-
term Lagrangian involving the Z meson and photon

becomes
J

£g=z[(az £ (7, - @ sin®0) + B¢ T, cose>z

q

- (8Z,Qg sind + 8¢ T, sinB)Au] 974 q,

- Z 6Z Qg sind(Z, tand +A, )77 q5 . (4.1)

The subtraction for the u-quark self-energy is
made on shell. Thus we find 6Z, =0Z¥ +62Z+62",,

—_ 2
52{5_;1n1‘2\ 2+‘11,

—ze. 1 (1 2 A? l)
ze_ (2 _Sgip?
62L_cos"’9<2 3 sin 9) ( lnM 33 4.2)

— . A2 2
5Z‘2=_% Sinze (1n————2+4+21n 0 2) .
m, m,

The Higgs-boson cdntribution is negligible. Since
the d-quark self-energy is not subtracted on shell,
a finite constant f; remains on shell of d as

- - 1=
Ty (p)—F 22 (4.3)
By the similar procedure as in Sec. III [Egs.
(3.5)-(3.13)], we find

6Z¥ =0,

77 2 02Sin’0 X ( A2 1)

02 29" o578 1MZZ’+2 ’

4.4)

7 2 q3n2 A? 2
8Z% =~ Q*sin% (lnm 2+4+21nm—«2,)

e

- .1 . Mz? 9 52
f =+ sin% (lnm S +—2'+21n';l'-§) .

[ [

The one-loop diagrams contributing to the gqZ
vertex are essentially the same as those for the
vwZ vertex. The only difference is the presence
of the photon-exchange diagram as well as the
factor of %f_L for each external d line. Calculation
gives the result

L
o T Mar@”) 4.5)

where, excluding the contribution of the photon-
exchange diagram,

- 1-
A =[T-(@-3) sinaB]v“———izy Iy(q, My)
L — —
- 326%2?6 ((T,, -9 sin29)31~—23@ -@ sinze)s—l;*‘z—’ii)zs(q, Mz)-2 coszersyul—zﬁ14(q,Mw) 4.6)

with I; ,defined in (3.30b). Itisconvenient to write
the photon-exchange contribution separately as

-2
Q2s1n29[2 1n——— (1n 1) —1n? qu] * Tireer (4.7)
(I

q

where T,., Stands for the tree amplitude (1.1), and
I have assumed that — g®>>m 2
of (4.5) to the amplitude (1.2) corresponding to

. The contribution

Fig. 2(c), @y)~ds > can be read off from (4.6).
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V. THE SELF-ENERGIES FOR THE
FADDEEV-POPOV GHOSTS

We now proceed to the gauge-meson sector, and
determine 8M%, 6M%, Z,, and Z,. It appears at
first that one can do the usual subtraction, i.e.,
subtract on mass shell of W* and Z, thus deter-
mining the four constants. We note, however, that
the photon does not carry an independent wave-
function renormalization constant. Therefore, one
is then no longer allowed to subtract on shell of
the photon. A consequence of this would be that
the diagram of Fig. 7(b) does not vanish as ¢*—~ 0,
which drastically complicates the determination of
6g. Furthermore, the above subtraction is not a
priori gauge invariant, since various Green’s
functions are related by Ward identities, and such
subtractions would destroy these relations after
renormalization. Thus we require two conditions:
(1) subtract the photon self-energy on shell of the
photon, and (2) make subtraction in accordance
with Ward identities. To satisfy these conditions,
the calculation of the ghost self-energies becomes
necessary.

There exists one FP ghost field for each gauge
vector field. Thus there are four FP ghosts c*,
Czy Cy4, in the WS theory. Although in certain
gauges c, completely decouples, in our gauge de-
fined by (2.6) all of them are important entities.
However, in this section the self-energies of c*
and ¢, are calculated, but not that of ¢,, for this
is done only to calculate the gauge-boson mass
counterterms 6M,? and 6M ,%. The self-energy
functions themselves are not needed for our pur-
poses since they begin to appear at the two-loop
level. ‘

Let ie¥(g?) [ie?(g?)] be the sum of all one-loop
contributions to the c* [c,] self-energy, Figs. 9(a)
and 9(b) [similar diagrams for cz]._ The counter-
term contribution, Fig. 9(c), is i8Z,(q%-M,?)

—iM ,8M,, [i8Z ,(q% = M ;2) - iM ,6M ;] obtained from
(2.10). Thus the renormalized self-energies are
i2%(g?) and i2%(q?),

2¥(q®) =e"(q?) + 6Z,(q® = M,?) = M, 0M
: (5.1)
2%2(q?)=e%(q?) +0Z,(q? - M ) =M, oM ,.

Due to gauge invariance of the theory, 2%(q2) is
related to the self-energy of W* by Ward identity.
Therefore the renormalization condition for 2%(g?)
must be compatible with the Ward identity. This
is the point where the ’t Hooft—Feynman gauge
provides us an advantage. In this gauge, the FP
ghosts c* and c,, as well as the Goldstone fields
¢* and X, are nothing but the longitudinal compo-
nents of the corresponding gauge vector mesons

z,y,wt X, ¥, ¢
+ SN
ot ___['_.:\-.‘3___ ct FOp AP, W
NN ) ctg

(a) (b)

+
€ ——>—)->— cf

(©)

FIG. 9. Diagrams contributing to the FP ghost ¢*
self-energy.

W* and Z.?! This is why their propagators have
poles at the-same point as the vector-meson prop-
agators: at ¢*=M,? for c*, and at g>=M,? for c,.
These locations of poles have to be maintained
after renormalization. Thus we have the following
simple conditions:

3 W(MWZ)___O ,
éZWZ2)= 0 ,

which give e¥(M,?) =M ,06M,, etc. Since 2M,5M,,
=08M,?, we write

(6.2)

5M,2=2¢¥(M,2),

(6.3)
M ;% =2e%(M,2).

At this point, it may help to remark on some
peculiar features of the ghost Feynman rules in
Fig. 4. First of all, we note that the ghosts c* and
¢~ are two different fields. This means that the
c* loop and the ¢~ loop must be counted separately,
in contrast to a W* loop which is counted only
once. This is because W~ is the antiparticle of
W*, while the antiparticle of ¢* is not ¢~.** The
second remark is that the FP ghosts are fermions
and one must keep track of the arrows in their
propagators. In particular, ‘there is no vertex for
ct—=c,+¢*, although the vertex exists for c, +¢*
—c*. Therefore a diagram such as shown in Fig.
10 does not exist. Furthermore, there are ver-
tices for c;~c*+¢" and ¢*+ ¢~ —=c,, but they carry
different coupling strengths.

With these remarks, actual calculation of the
diagrams in Fig. 9 is straightforward. We merely
write down the results:
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5MW2 g2
M,? " 16n°

1 M 2
-1 f dxln(x"’+(1 -x)M:,Z)]’

()}

1 Il 2M22 MH2
~3c0s% dxln(x MW2+(1—x)MW2

VI. GAUGE-MESON SELF-ENERGIES

In this section, we compute the self-energies
for the gauge mesons, and determine the wave-
function renormalization constants Z, and Z .

To this end, we first compute the photon self-
energy coming from all the one-loop diagrams

in Figs. 11(a)—11(g), which we denote by

i (q®)(a’g,, —4,49,)- From (A6) the counterterm
contribution [Fig. 11(h)] is - i(6Z,, sin®6

+8Z 5 cos®0)(q’g,, —49,4,), so that the renormalized
photon self-energy is

i), (@%) =i (") a8 —9,a)) 6.1)
(g% =1"(¢%) - (6Z,,sin®6 +8Z , cos?6) .
As we have discussed in the previous section, we

treat the photon in the usual way, i.e., make sub-
traction on shell,

#(g?)—0." (6.2)
@0

Thus we find
82, sin®0 +8Z ; cos?0 =17(0) . (6.3)

Next we compute the Z and W* self-energies,
coming from all the one-loop diagrams (similar
to those in Fig. 11), which we write as

inB¥ (g% =ia% “'(qz)<gu,, —1‘;-3"‘)

‘ +ibz"'<q2)2;§l . (6.4)

From (A6) the counterterm contributions are
-10Z Z,W(ngu.u —quq,,) +i(6Z°Mz' Wz + GMZ, wz)g‘w with
the notation

8Z ,=0Zy cos?0 +86Z ,sin6 . ; (6.5)

FIG. 10. An example of diagrams which do not exist
in our Feynman rules.

1 2 5 A2 . 2 1 2 .2 1 2 M 52
(3 tan e—g)lnM———z—4sm 9 + (3 - 3 tan?0 +2sin%9) | dxIn{x2+(1 -x)
w .

g° c2p 1o gy sy AZ _-2‘[1 <_ _
7\/17—16172 [(4sm9+ztan9—2)1nMW2+(3 4 sin39) A dxln\1=x(1-x)

2
( MW

Mzz) (5-4)
sz

—

Then the renormalized Z and W * self-energies
are

iif;W(qz) =ig% W(qZ)gw +ib% W(qZ)izgg , (6.62)
d-z, W(qz) =az, W(qZ) "'GZZ, qu

+0Z M\ +8M 4 0 (6.6b)

Now in our gauge (2.6), the relevant Ward identity
reduces to the statement that the renormalized
propagators must maintain the poles at ¢* = z Wz.
It follows from (6.6) that

4% M, 57 =0, (6.7)
which in turn gives rise to the equations
aZV(Myo?) Mz, v _
—-M—”;-W—--ﬁzz',,wsazo +—M—2-0. (6.8)
Zy W Z, W
% w¥

£ w™
(&) (b)
ct ¢+.
\(Nw</ :)vw N YAM/\: :/)’VV\. Y
ct ¢
(c) (d)
ot W
¥ WUN ¥ Y VWQVW\ Y
w¥ '
4
¥ reaienn Y Y Ak Y
(9) (h)

FIG. 11. Diagrams contributing to the photon self-
energy.
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By eliminating 6Z, from (6.8), we obtain Once these constants are found, the renormalized
Y,y =02, —b8Z ,=(62Z, —0Z ;) sin?6 (6.9) Z and W self-energies are given by (6.6a) with
where we have defined

a¥"Mv’) _afM7) My M7
Yuz= M7 M7 M) Mg (6.10) (6.12)

Finally, from (6.3) and (6.9), we find
8Z,=1"(0) - Yy,

dz. W(q2) =az. W(qz) _az. W(MZ, Wz) —5Zz,w(‘12 —Mz. WZ) .

Straightforward calcﬁlation of seven one-loop

(6.11) diagrams in Fig. 11 for the photon self-energy,
8Zy=1"(0)+Y ;cot®6. together with (6.1) and (6.3), gives
' ]
62, sin%0 +56Z , cos?6 = 16"2(2+31n54’—%-%zf:Q21nﬁ‘4\;>, (6.13)
— _ e2 1 " qz
(&%) -I—G_F{ —J; dx[4 - 3(1 - 2x) ]ln( Mv/2>

+8 Z:szldxx(l - %) 1n<1 —x(1 7:22)} ) (6.14)
4} f

The last term due to fermion loops is the same as in QED.
There are eleven one-loop diagrams similar to those in Fig. 11 for the Z self-energy. To see how the
divergences cancel, we shall consider only the divergent terms for the moment. For aZ in (6.4) we find

a?(g?= Z[ ( ) +4m ? tan®6Q (T, — Q sin 9)] mA-

fre

2

+[(4cos®6 -2 —sec?0)M ;2 +(3cos?0 +3 — secze)qz]ln;; =

(6.15)

The first term is the fermion contribution; the summation is taken over flavor as well as color, and Z,
=2[(T, - Q sin®6)* +@* sin 9]/c0529 Calculation of 16 similar diagrams for W self-energy gives

2

W(qz) —'L q ln 5+[(2 —sec?0)M,? + 22 ¢° ln A = (6.16)
W
frc 6 M W
From (5.4) and (6.10) it follows that
. 2 2 2
vz = -1 [ tan®d(; - 4Q* sin29)(ln1(} 3 +-§—) %j"‘] +(3 sin6 + & tan®6) ln—MjL";+6sz , (6.17)
feC z

where (g%/167%)8Y,, is the remaining finite terms in Y, defined in (B3). The leading contributions of
the fermions to Y, are explicitly written in (6.17) so that the fermion contributions to 6Y,, are of order
m?/My’. Numerical calculation gives

0.79+0.22 (M, 10 GeV)
0Yy,=0.79+0.09 (M, 100 GeV)
0.79 —=0.15 (M =~ 500 GeV)

for sin®6= 0.23 and M= 80 GeV.
When the divergent terms in (6.17) are substituted in (6.11) and (6.5), all the divergent terms disappear
in the renormalized functions (6.12),

{(q —a ) sinve T (12 Z-3 )-o%ysteoto 1)) + &) - 1,00, )} (6.182)
frc
-W(qZ) = {(q 2) fz‘; [? smzan(ln _§)+9_c_>.t__96i ]_n%z_z] - (q2 —MWZ)GYWZ COt29 +£W(q2) - ‘EW(MWZ)}
' (6.18b)

\

The functions £, , are given in Appendix B. Since the contribution of the longitudinal parts b in (6.6a) to
the amplitude (1.2) is zero [note 74(1 —y,)v=0], we do not consider . The contribution of (6.18) to the
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amplitude (1.2) corresponding to Fig. 2(d) is

- - =adig
A(a) “Ca) T q)z ) (6.19)
M2 (1 -2 2)

b=d=0

We remark that, as in the case of the lepton line, the finite constants 3f »z and 3 fw remain for the Z and
W self-energies on an external line, where f, ; are defined by
(‘iz. W(qZ) f
qu -M,, W2 Pz, 2 av

which can be readily obtained from (6.18). .

The diagrams for the Z -y transition are exactly the same as those for the photon self-energy, Fig. 11,
in which one of the external lines is replaced by a Z line. The contribution from one-loop diagrams,
which we denote by irZ, contains divergent terms, and they are canceled by the counter terms which
have already been determined. To show how it works, we write the divergent terms explicitly,

. 2 2
irZ =i(g’g,, —-q“qv)[% tané Z (3 -4@? sinze)lnﬂﬁ} 5 —sing(3 cosf + & secﬂ)lnA—z]
frc z My

2

-ig“,,MWzZsinesecelnA—%'—v; Heee, (6.20)

The counterterms can be found from (A6) as
6,
-i(8Z , - 5Z,) cosh sinb(g’g,, —q,4d,) *i -;‘-’- M, tanfg,, . (6.21)

From (6.17), (6.9), and (3.21), we see that the counterterms (6.21) cancel all the divergences in (6.20).
Thus the renormalized Z-y transition amplitude is given by

7t} (q%)=ia®" (g*)g,, +ib*" (qz)q;§”

ig?
167‘[2 (ngu,v - ququ)

. 1. Mz% 5 L ( q° ] cotd  Mz?
X - 2 2 - s = - - - S, e s putadity
(;’c {tan9(2T3Q 4Q3%sin 9)[3 In T3 2 /(; dex(1-x)\ln 1 -x(1 -x) f2) 3 lnMW2

. 1 q2
+sinf cosé '/o‘ dx[4 - 3(1 - 2x)?] ln(l -x(1- x)MWZ)

1 2 .
+3 tand f dx(l - 2x)*1n (1 -x(1 —x)ﬁ—i) -2 sinf cosf +6Y,, cote)
o My,

ig? 2 t q° -
o382 My tanefo ax1n(1-x(1 =x)37 ). (6.22)

This term gives to the amplitude (1.2) the contribution, corresponding to Fig. 2(e),

cotfa?”
c2(°)_(—1—-q—2/7\4—z_2)q——2 (6.23)

and a=b=d=0. We note that (6.22) vanishes for ¢2=0.

VII. CORRECTIONS TO THE NEUTRAL-CURRENT AMPLITUDES

To complete the calculation box diagrams must be computed. There are four box diagrams contributing
to the amplitude (1.2) as shown in Figs. 2(f) and 2(g). They are finite without subtraction. A general meth-
od of evaluation of scalar one-loop diagrams discussed by ’t Hooft and Veltman®® is useful here. Assuming
—-q*>m,?, 1 find for the W-exchange box diagrams

- g _Jl-v [ : 1-v,
ZMg22 1;77.21}7“ 27 v[q’ra(gTs—%) D) q]B(quw)y (7.1)
w
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where
q2
- 1n<1—x(1-—x)1-w—2)—lnx ,
= —~1lasg?-0. 7.2

As was mentioned in the Introduction, the spin terms are neglected in (7.1). Similarly, for the Z-exchange

box diagrams,

-ig? g
2M,? cos®g 167°

V.yal—ysy— B(Q:Mz)

2 @ 2 cos?6

From (7.1) and (7.3) the box-diagram contributions
to a-d, which I denote by a, ,~d can readily
be read off.

Now we are ready to discuss the total contribu-
tions. Let us write the corrected amplitudes (1.2)
as '

Ttot=T +Twea.k+T

tree

box?

photon

where T, is the tree amplitude (1.1), T ... 1s
the photonic correction (4.7), and T, is the sum
of all the other corrections (pure weak correc-
tions). Since T ., involves infrared divergences,
one must take account of the photon bremmstrah-
lung corrections, the amplitude for which is de-
noted by T, ... Thus we consider the cross sec-
tion

do~ ’ Ttree + Tweak I 2 +2 ' TtreeTphoton l + f I Tbrems Iz

which is valid up to the order-« corrections. The
last term is integrated over the photon phase
space. The sum of the last two terms, which is
infrared finite, represents the photonic correc-
tions. Although in the Weinberg-Salam model
electromagnetic interactions are connected with
weak interactions in an essential way, the photonic
correction term T, .., may be separated out and
it has the same form as that encountered in QED.
Thus the photonic corrections may be dealt with .
within the framework of QED, such as the analysis
of the charged-current interactions considered

{[sinae (1 -2sin%0)T, - $(1 - 2 sin®6 + & sin*g)] 1_2—75 +sin%9(Q + %)} q-

(7.3)

by De Rijula, Petronzio, and Savoy-Navarro.?*
Once the data are modified for the photonic cor-
rections, they are to be compared with the ampli-
tude (T, e+ Tyea) Which includes only the pure
weak corrections. I now assume that the photonic
corrections have been performed to the data, and
discuss the weak corrections; henceforth I assume
that g—d do not contain the photonic corrections
(4.7).

The tree diagram and the one-loop corrections
(3.27), (3.31), (4.5), (6.19), (6.23), (7.1), and
(7.3) give the total contributions to a—d. Numeri-
cal calculations show that (3.31), (4.5), and (7.3)
are negligible so that

2 \*
a=(1"Mzz> T @) F Orox s

7\ (7.4)
c= (1 - M__z2> FC30a) ¥ Caa) TC20e)

and b=b,,,, d=d,,. Numerically, b~-0.0027
and d~0.0002 and they are practically constant
over the range —¢?/M,?=10"°-10°. These terms
are absent in the tree approximation, but they are
induced by loop diagrams. However, the results
imply that the induced effects are too small to be
observed, in accordance with the previous result
for ¢*=0.2%

For small values of the momentum transfer the
expressions can be written as

i
Cota = 151272 (' 199% 1“11_4[,1;) . (7.52)
Camr™ 1572 1- 1;:2)-1{; [3(%' 4Q* sin’o) lnA_/I—;:‘ ‘C‘O_:;g ln%]- 3— 2 cos?0+8Y cotze} , (7.5b)
@) = Coqa)™ lgjr"' (1 - Aj;)q ;z; $Q@?%sin® (mMmJ,; - g)

+1ég;2<1 ‘M%)-z[éywz(l - C°t29)—§z'(o—)‘;f4'§zz(—Mﬁ], (7.5¢)
“rox 217?%[3* sng?flcgs%es m29)] : (7.5d)
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In (7.5b) it is assumed that m,?< M,?; for heavy-
quark contributions one must refer to (6.22) and
(6.23) instead.

The largest corrections arise from the fermion
contributions in (7.5b) and (7.5¢), and the estimate
of the appropriate quark masses is important. The
effective quark masses are known to depend on the
energy, and the quark mass m  in (7.5b) may be
written as mq(qz). We note that in (7.5c) the fer-
mion contributions are the finite parts of the
counterterms which are subtracted at ¢%=M 2.
Therefore, in (7.5c), m, may be written as
m(Mz?). The values m (M,?) may be estimated
from the known experimental data in the e*e™ an-
nihilation which measures the photon self-energy
1i” given by (6.14). The up-to-date dispersion
calculation for II” has been performed by
Paschos.?® By identifying m, as m (g°) in (6.14)
and fitting the data, I find that the following values
of 11" in Ref. 26 with smallest errors: m,=m,
=0.02 Gev, m =2.0 GeV, m;=0.4 GeV, m,=15
GeV, and m,=5.0 GeV for (-¢®)*~M, , (80-90
GeV). Using these values and g#/167% = %/47 sin6
=3z, 1 obtain the corrections which are summar-
ized in Table I.

The smallness of the induced terms b and d al-
lows one to write the effective neutral-current
amplitude (1.2) as

-ig®  _ 1l-v,

— 1
o
2M2cos?e’ ] 2 qu"‘a<T3

(7.6)

Our next task is to rewrite it in terms of the
Fermi coupling constant G;. To this end I write
(7.6) as

—ig? M}
8M,% M,? cos®0

avy®*(1 - y)vgv,
x[T3(1 -5 — —2 2Q sinae] g (1.7)

TABLE I. Summary of the weak corrections in per-
centages. The corrections due to different values of
the Higgs-boson mass My are given in the lower part
of the table.

~gHV? -

(GeV) C2@m  C2e) %2@=Ca@ %box ¢/a—1 peor

4 -1.46 2.00 6.13 0.65 -0.11 0.34

6 -1.32 1.67 6.12 0.65 -0.30 0.09

10 -1.15 1.26 6.07 0.65 -0.54 -0.75

20 -0.92 0.71 5.86 0.65 —0.86 —4.44

My (GeV)

10 0.19 -0.38 0.19 0.04
100 0.08 -0.08 0.08 0

500 -0.13 0.19 -0.13 -0.10

——ZZ"‘—nginZ())q.

and consider the corrections in the following two
relations g

M 2
~——LMZZ coste ~ 1+ 0(a), (7.8a)
S - f [140()]. (7.8b)

V2 T 8M 2
To calculate the correction term in the gauge-
meson mass ratio (7.8a), let us investigate in de-
tail the gauge-meson mass terms (2.9). Since the
masses are proportional to gv, the counterterms
are generated by the shift (2.8) together with
v—=v+06v. Thus one must identify

_g%? dv Og
ZQMW2+5MW2—T(Z°+2—;+2'E y
Z. M 2+5M 2 - Lyz VA +2_§2+200529§g

ez Z 4cos?o\"° v g)’

which in turn give

MyE g 0Mg OMy '

Mg2cos®0  ~ M,® T M?

+2%g_ sin?9 .  (7.9)

The relevant counterterms are given in (3.22) and
(5.4). The last term involving &g in (7.9) just can-
cels the divergences in the first two mass counter-
terms, and the total contribution is finite. Nu-
merically the correction is small; I find

MZ

My -
M % cos®e 1+,

1.0011+0.0004 (M,=10 GeV)"
=¢1.0011-0.0001 (M,=100 GeV).
1.0011-0.0010 (M ,=500 GeV)

(7.10)
Note that fermions have no effect on this relation
[see Appendix C].

Next we consider the corrections in the relation
('7.8b) which is given by the muon decay amplitude.
The radiative corrections to the muon decay ampli-
tude in the Weinberg-Salam model have been cal-
culated in Refs. 8, 11, and 12, and we refer to the
work of Ross'* who has used the same renormali-
zation procedure as the one employed here. The
result may be summarized as in the following
form for the amplitude
~ig® -a*(0)

Wﬁwm(l—ys)uéya(l—ys)ue<1+ M +r;+R>.

(7.11)

The term -a%(0)/M,? represents the W self-energy
contribution, where @%(0) is given by (6.18b) with
g?=0. Note that 2% is infrared finite. The con-
stant n contains all the vertex corrections, and
box-diagram contributions that do not involve
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photon exchanges. Note that 7 is also infrared
finite. The box-diagram contributions to n are
negligible while the vertex corrections give n
~~0.005. The term R contains all the photonic
corrections arising from the photon exchange in
box diagrams and the factor f, given in (3.13). It
turns out that R is exactly the same as the photonic
]

_=W 2 2 24 _
a"0)_ g {Z [%stinze(lanz—é)+COta 1.
my 6

Mg 167\ f5 3

Using the effective values for m (M ?) ~m (M ;%)
given above, I find

-0.0037 (M ,=10 GeV)
6, =0.0635¢-0.0009 (M ,=100 GeV).
+0.0021 (M ,=500 GeV)

(7.14)

Using the results (7.10) and (7.14) the amplitudes
may be written as

-iGp — _ c .
TTEpuy“(l - Y)Y, [T3(1 -7 - p 2Q smze]q .

(7.15)

In the tree approximation with ¢ =0 we have p=1
and ¢/a=1. The corrections p,,.=p-1 and

(a/c - 1) are listed in Table I for various values

of (-g®)*/2. If the amplitudes (1.2) are parametrized
as?t

————E_i G vy*(1- 75)V{h—ya[u1}(1 - 75) +uR(1 * 7’5)]”

vz
+dvy[d (1= vy +dp(1+7,)]d},

(7.16)

the parameters u, ,and d, pare given by

TABLE II. The gauge-meson masses in GeV. The
corrections due to different Higgs-boson masses are
given in the lower part of the table.

sin%@ My My
0.220 82.03 92.78
0.225 81.12 92.04
0.230 80.23 91.32
0.235 79.37 90.64 -
0.240 78.54 89.99
My (GeV)
10 -0.15 -0.19
100 —-0.03 -0.04
500 +0.08 +0.15

M2

corrections encountered in the current-current
interaction theory.

1 Therefore one must identify

Gp__&° __ & ( -a%(0) )
= = . .
R 8MW2(1+5“) My 1+ M +7 (7.12)

The W self-energy contribution is given by

\

2 _ 2
L MZ—]—GYWZcotZO—g © EZ(M )}. (7.13)
MW
I
w,=5p-2p sin%g
L= 2P 3pa51n ’
dL=—§p\+%p—§Sin29,
(7.17)

c
= 2 .~ ain2
uR——gpasme,

c .
dp=- -la-p;smze .

In this parametrization the effect of the weak cor-
rections are small in the neutral-current in-
teractions. However, this is so if one uses the
definition of sin®0 as defined here, but the radia-
tive corrections can in principle be larger for
sin?g defined in some other way.

The smallness of the corrections is due to the
cancellation between similar contributions of the
Z and W self-energies in (7.5¢) and (7.11). There-
fore a large correction is expected where they
do not cancel. One such example is the prediction
of the gauge-meson masses. In fact, Marciano
has shown®’ by renormalization-group arguments
that the gauge-meson masses are modified from
the naive values by ~+3%. Subsequently, Sirlin
has shown?® that the mass correction in the one-
loop approximation is a 3.3% increase. Since our
definition of sin®¢ is slightly different from Sir-
lin’s, I calculate, for completeness, the mass
corrections using (7.10), (7.14), g%=4ra/sin%9,
and the value G,=1.166 X 10™° GeV™2.?° The 6.4%
correction in (7.14) implies the mass correction
of 3.2%, in agreement with Refs. 27 and 28. The
values of M, and M, for various values of sin?g
are listed in Table II. Similar calculations are
also performed by Veltman, and Antonelli, Con-
soli, and Corbd,* who found somewhat larger cor-
rections to the gauge-meson masses, 3.7-4.7%.
Their results are in apparent contradiction with
that of Refs. 27 and 28 and ours, but a direct com-
parison would be misleading because of the differ-
ent renormalization methods used. Their sin2%g
may involve also a large correction which cancels
a part of the mass corrections. In our treatment
it is clear how to extract sin?9 from neutral-cur-
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rent experiments, which then predicts the gauge- ACKNOWLEDGMENTS
meson masses-as in Table II. . ' .
Note added in proof. After this paper was sub- I w.1sh to thank L. M. Sehgal for numerous dis-
mitted, corrections to the work of Ref. 30 ap- cussions an.d encouragemeng and E. A. Paschos
peared [M. Green and M. Veltman, Nucl. Phys.: for discussions and suggestions.
B175, 547 (1980); F. Antonelli et al., Phys. Lett.
(to be published)]. Their results on the gauge-
boson mass shift are now consistent with those We give the expressions for the Lagrangian
of Refs. 27 and 28, and ours. (2.5),

APPENDIX A: LAGRANGIANS

=0, + T =m,y)l+ ely* 1A, +r(v,y“lLW‘+lL7 v, W, )+Zcose VYt Z,
_geos20 7y +g51 TP 1) Z, = o L (510 b+ Ty 67) ~& 0 (T Ty 1) (A1)
2cosg LV 2T cosg BT R)Cw T3 M, VR R% 2 M, sk
Ly==3|08,W; -0, W, —ie(W;AV -WiA,)+igcosd(WeZ, - W, Z,)|?
-il6,2,-8,Z, +igcoso(W,w: =W, W,)]? -1[0,4 —a,A“ —ie(W, Wt = WL W,)I?, (A2)
. c0s26 , .
&= 8“¢’—zgm2“¢*+zeA“¢‘—zMWW; 2gW”(z/)+zx)
+310 WYHix)~igWo0*+iM, Z, +2cos€ u(zl:+zx)| (A3)
My? 2M - . ‘
Lry =~ M ~Ex (90 7+ 5|9+ ix %) LM (prgma k| g ix| 7). (A4)
8M,,

The Faddeev—Popov ghost Lagrangian is

Lpp==C*(0%+ My>)c* +ig cosoC*d* (Z ,c*) —ieCc*d* (A, c*) —igE‘a“[W; (c, cosf —c 4 sing)]

_ S2 .
~My¢ *[gzizseecz(ﬁ* - ecA¢*+‘§c‘(z/)+ zx)]+ [e*~c™, w=w-, i~ -i]

—T,(82+ M,?)c, —ig COSOT,0" (c* W} —c W5)~M,C, (—‘%c'qb* —‘%c"¢'+ 5 fose czz,b)

—C 8% +ieC 0 (c* W, —Cc™W). (A5)

The relevant terms in the counterterm Lagrangian are

_ _ - - (& 5 _ 5 . .
L5 = 0L Filv + 02, T1iWly + 2l giblg — omIT+ ( T cosG) vz, - singrytvA,

_ 7. uf(gcos26 og )1—7’5 sin?g 1+7'5]
ly [( 2cos962L+ 2cose ) +gcoseézR 3 1z,

- . bg . 1~y 1+ o2\, -
—l)’“[(eGZL+-§s1n9+%cose) 3 24 (eGZR+ og’ cos9> 75] A+ = 75 (6ZL+ f)(uy“lLW;+ I Y vw;)
=202y |8, W, =8, Wy |2+ (8Z My + 8My )Wy W™ =5 (6Z Sin®6+ 6Z5 c0s?0)(8,A, 8, A, )2
~3(8Zy cos®0+ 0625 8in%0)(8,Z, =8,Z,, )+ 5(8Z \My2+ 8M,2)Z ,Z*

~3(0Z5 ~0Zy)cos6sing(8,Z, ~8,Z ) (9" A¥ —8¥A* )+ %szzﬁ%ZuA“ Heen, (A6)

APPENDIX B: THE FUNCTIONS &,y
The function &y is given by

2 2 ) 5 ! m,? 1 m_*
twlg’)=q Z [-5-+2'£ dxx(l—x)ln(xM—W§+( —x)sz

R .

Mw2>] +g¢*(=4 + cos’6)
2 2

- _%_Jo‘ldx[(x— Z)MWZT"(I—x)M”z—x(l _x)qZ]ln(x+(1 _ x)%%_x(l _ x)—A%‘F)

1 2 2
- cos?0 fo dx{q®[4 - 3(1 - 2%)%] - 4¢%(1 = 2%) + 6(M,,° = M,2)(1 - x)}ln(x +(1- x)%:a - x(1- x)ﬂ—‘;y)
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+(4 - cos?6) fol dx[q*(1 = 2x)% +g%(1 = 2x) - 2(M,, 2 - M A)(1 - x)]ln(x +(1- x)%—;: -x(1- x)zz—:)
w

- M2 20+2 -
v (cos 2= 0%

fldl +(1 )MZ2 (1 )qZ
)0 xn(x ,xng x xw)

1 2 9 .
-sinzé)f dx[5(1 = 2x + 2x%)g? + (8x = 1)M}*]In x+(1—x)-6—2—x(1—x)q—§ , (B1)
o My My

’
where the summation 20 is taken over fermion doublets and color, and m, is the mass of the T'; =tv}

fermion.
The function £, is given by
2

z

1
2 cos?0

- q?cos?6 fl dx[4 - 3(1 - 2x)?] ln(l -x(1-x%)

1
+,2(2 ans?o — )
z>] 7 (3 cos’0 12 cos?®6

1
Ez(q2)=¢12§ Z;["g""zj; dxx(l—x)ln(%—x(l—x)m
1 2 2
'{dx[(x—Z)Mz2+(1—x)M,,Z—x(l-x)qz]-ln(x*‘(l—x)—%—x(l—x)ﬁ?)

)

1 1 q2
2 _ Py (1D
q (4 cos%o 1) j(; dx(1 - 2x) ln(l x(1 x)ng)

2 . fl q2
-(4- M, dx1n l—x(l—x)——). B2)
( cosze) v ( My* (
0Yy, is given by
tan®0 | /1 My* 1 My?
— in%g +—=2= 2 4+ <__”_._ _ ) Yz
8Yyz =3 sin’6 4 4My* 3= 2 costo lnMW2
tw(Mw®)  Ez(Mz%) | 1677 (GMW2 5MZ2) 9. A% .
+ - + - + L.
My} M’ & \am,F " m,t )T Asimllng s, (B3)

Numerically we have
2 +0.729 (M,;=10 GeV)
M—%l@i“’—)z—z.mﬁ +0.047 (M, =100 GeV)

My -0.311 (M,=500 GeV)

9 +0.985 (M, =10 GeV)
(0) §M )=—1.453 +0.110 (M, =100 GeV)

Mgz -0.373 (M, =500 GeV)
(B4)

APPENDIX C: GENERAL FEATURES
OF THE RADIATIVE CORRECTIONS
As is mentioned in the Introduction, the advan-

tage of the calculations of loop diagrams in a re-
normalizable gauge is that the contribution of each
diagram such as the one in Fig. 2 may be sep-
arately considered, since all Green’s functions are
finite after renormalization in such a gauge. The
problem of gauge invariance is more subtle be-
cause the contribution of each diagram depends
on gauge reflecting the gauge dependence of the
corresponding Green’s function, although the
gauge invariance of the total contribution is of
course guaranteed. However, the difference in
gauge appears in the difference in the longitudinal

)
components of the gauge-meson propagators,
which in turn give rise to a difference of the order
GFa(mfz/sz) for each diagram in Fig. 2. Thus
the gauge dependence does not affect the contri-
bution of each diagram up to the order Gza, and
therefore the discussion of the general properties
of each diagram is meaningful. We now concen-
trate on the 't Hooft—Feynman gauge.

Let us first summarize the general properties
of the vertex corrections.

(1) The photonic corrections at the ffy vertex or
FfZ vertex are the same as those in QED; the tree-
diagram term times the infrared-divergent func-
tion which appears also in QED, as in (4.7).

(2) The W and/or Z contributions to the Ffy or
ffZ vertices are proportional to qz/sz for not too
large qz, after renormalization. Therefore, for

]qz |/MW2 <1 the contribution is very small. This
is in fact the content of the heavy-particle decoup-
ling of the Appelquist-Carazzone theorem. !

(3) The above remark does not apply to the vvy
vertex in Fig. 2(a). Although it is proportional to
7*/My?, the factor ¢° is just canceled by g% in the
photon propagator, so that the contribution does
not decouple for |g*| < My?2.

(4) The correction at the ffW (DIW) vertex does
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not vanish at g°=0, though numerically it is
small, 0.25%. The qz—dependent terms are again
proportional to g2/M,? for small ¢q°. An important
point is that this vertex function is infrared finite
except at q2=M Wz. Therefore its contribution to
the muon decay amplitude, for which q2 ~(, is in-
frared finite.

Next we consider the gauge-meson self-energy
corrections and the propagators.

(5) The photon self-energy has been subtracted on
shell of the photon. Therefore it has the form
(9°q wy = 9,9,)7(g%) with 770) =0. In particular, the
W-meson contribution to # is suppressed by the
factor ¢°/M,® for small ¢°. It is again justified by
the Appelquist-Carazzone theorem.

-(6) The W and Z self-energies are subtracted on
shell of the corresponding particles. This implies
that the renormalized W and Z propagators are
proportional, in the ¢ ~0 limit, to [1+ O(a)}/
My, 5, where the O(a) are given by -a"%(0)/My, ;.

Since these correction terms gave rise to the
largest effects, let us discuss them in some detail.
We simplify the argument by considering a case
of a neutral scalar with mass M, which is free
from complications due to the Lorentz and isospin
indices. Let (g% be the renormalized self-energy
which is obtained by subtracting counterterms
from the corresponding unrenormalized self-ener-
gy. Then the renormalized propagator AR(qz) is
proportional to [¢? ~ M? - (g?)]'. We discuss two
different choices for the subtraction points.

(@) Subtraction on shell, ¢¢ = M?. The counter-
terms are chosen so that 7(M?) =0. Therefore
Ag(g®) has a pole at g?=M?. This means that M
is the physical mass. In the limit q2 -0 we have
AR(0) o< [-M? = 7(0) " =~ - [1 - 7(0) /M2]/M? which is
to be compared with -1/ M? in the tree approxima-
tion. The term —n(0)/M? is the O(a) term men-
tioned in (6) above. .

(b) Subtraction at ¢ = 0. The counterterms are
chosen so that 7(0)=0. Then Ag(g®) has a pole at
q* =M, where M is determined by the equation
M* - M*-1(M*)=0. Thus M is the physical mass,

but M is not. The M is a parameter that charac-
terizes the theory and it is related to the physical
mass by the above equation. In the limit q2 -0 we
have Ag(0) < —1/M? which is the same as that in the
tree approximation.

Of course these two methods are physically equi-
valent; when an amplitude is expressed in terms

of physical quantities both methods give the same
result.

Let us compare these two methods in the calcu-
lation of the radiative correction to the muon decay
amplitude. Appelquist et al. ¢ have employed the
dispersion method. The W self-energy is diver-
gent and therefore requires a subtraction. How-
ever, when the self-energy is embedded in the
amplitude as in Fig. 2(d), the absorptive part of
the amplitude becomes apparently less divergent
due to the extra denominators of the propagators.
The amplitude is then obtained by dispersing the
absorptive part without subtraction. The resultant
amplitude is proportional to -1/ sz in the qZ -0
limit. This procedure therefore corresponds to
the subtraction at q2=0 for the W self-energy, the
case (b) above. Although this correction looked
apparently small, a large correction arises if the
amplitude is expressed in terms of the physical W
mass. This point is not discussed in Ref. 8. On

_ the other hand, Ross!! has used method 6(a) so that

the mass is the physical one while the amplitude
received the large correction from the W self-
energy.

Finally I remark that in method (a) employed in
this paper, the gauge-meson mass counterterms
are calculated from the self-energies of the FP
ghosts. This is dictated solely by the gauge in-
variance, and since the FP ghosts do not couple
to fermions there is no fermion contribution to the
mass counterterms. This does not mean, how-
ever, that fermions do not contribute to the mass
shift. In fact, the fermions give the dominant
terms in ¥(0) which in turn gives rise to the ~3%
increase in the gauge-meson masses from the
naive predictions, as is discussed in Sec. VII.
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