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Radiative corrections to the neutral-current interactions in the Weinberg-Salam model
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The neutral amplitudes for neutrino-quark scattering are calculated in the one-loop approximation of the standard
Weinberg-Salam model of weak and electromagnetic interactions. A careful analysis of renormalization procedure in

the 't Hooft-Feynman gauge is presented. Apart from the photonic corrections which are subject to the ordinary

@ED analysis, purely weak corrections are of the order of one per cent in the amplitudes expressed in terms of the
Fermi coupling constant.

I. INTRODUCTION

Since their discovery in 19V3, neutral currents
have played an important role in the development
of particle physics. Numerous investigations of
neutral-current interactions established that their
structure is remarkably close to the SU(2) &&U(l)

structure of weak and electromagnetic interac-
tions. In such analyses the neutral-current ampli-
tudes are written in the form of current-current
interactions with some coupling parameters that
characterize the Lorentz and isospin structure of
the currents. ' The neutral-current parameters
are in general arbitrary, but in models of electro-
weak interactions they are related to each other.
In particular, in the sequential Weinberg-Salam
model they are functions of only one free parame-
ter sin 6, with 8 the Weinberg angle. Various ex-
periments determine the neutral-current parame-
ters or some combinations of them from which
sin 8 may be determined. Independent sets of ex-
periments have determined practically the same
value sin 8= 0.23, thus giving a firm support for
the SU(2}&&U(1) structure. 3

The precise determination of the neutral-current
parameters and sin 8 requires careful analysis of
radiative corrections which become important as
the accuracy of the data improves. Radiative cor-
rections may even provide us with a support for
the dynamical aspects of the Weinberg-Salam mod-
el in which renormalizability plays an important
role. In this paper I calculate radiative correc-
tions to the neutral-current interactions in the
standard Weinberg-Salam model with one Higgs
doublet. In the tree approximation the neutrino-
quark scattering vq- vq is described by the Z-ex-
change diagram in Fig. 1, and the amplitude is
given by

I-&5 — I-&5 2»» vy vqy T3 -@sin 8 q,
2M~ cos 8

(1.1)
where T3 and Q are the weak isospin and electric

charge of the quark. The amplitude (1.1) is valid
for ~q ~

«M», where q is the momentum transfer
from the neutrino to the quark. The amplitude
(1.1) will receive propagator effects for finite q
and radiative corrections from the one-loop dia-
grams shown in Fig. 2, and the corrected ampli-
tude is represented as

-ig~ — 1 -y5
Vy — Vqy~

gT +g — y' —c -d sin'8 q, 1.23 2

where a-d are functions of q which are to be com-
puted. Corrections are calculated up to the order
n and terms of order omz /M» in a-d are neg-
lected, where m& is the fermion mass. The so-
called spin terms that have Lorentz structures
different from those of (1.2) are also neglected;
these terms may contain, for instance, qo &p q,
where P is an external momentum, and they are
smaller than the order n corrections by the factor
s/M~ (or t/M~ ) in the cross section.

It is conventional to express the amplitude (1.1)
in terms of the Fermi coupling constant G~ using
the relation G~/v 2 =g /8M» cos 8 Howeve. r,
since this relation also receives order-n correc-
tions which depend on the renormalization method
used, such a replacement in the corrected ampli-
tude (1.2} is in general not allowed. I discuss the
corrections to this relation in this paper and ex-
press (1.2) in terms of Gz.

FIG. 1. Born diagram for vq —wg.
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(e)

gw, z g

FIG. 2. One-loop corrections to the ~ scattering
amplitude involving vertex corrections (a)-(c), gauge-
meson self-energies (d)-(e) and box diagrams (f)-(g).
The shaded blobs represent the sum of all one-loop dia-
grams.

plications in this class of gauges are due to un-
physical fields which render the Feynman rules
complicated. One may therefore feel that these
gauges are not suitable for practical purposes.
Fortunately, however, in most cases the contribu-
tions of unphysical fields may be neglected. This
is because they [the Faddeev-Popov, (FP) ghosts]
do not couple to fermions or they (the would-be
Goldstone bosons) couple to fermions with strength
gm&/M», thus contributing only to terms of order
nmz /M~ which are neglected. The only place
where the unphysical fields play an important role
is in the gauge-meson self-energies, which is
discussed in detail.

Since the full amplitude (1.2) is computed with
all the external lines on shell, the results are in-
dependent of gauge. I work in the 't Hooft-Feyn-
man gauge~ in which the symmetry properties of
the theory are simplest. In fact in this gauge the
vector propagators have the simplest form and,
more importantly, all the unphysical propagators
have poles at the same locations as the corre-
sponding physical propagators. This enables one
to avoid the use of complicated Ward identities;
one must simply require that the locations of poles
be unchanged by renormalization.

The parameters that characterize the theory are
chosen to be

Calculation of the order-a corrections in the
Weinberg-Salam model is not a straightforward
task. To extract finite terms from one-loop dia-
grams, one must distinguish two classes of dia-
grams: those that are ultraviolet convergent, and
those that require the subtraction of appropriate
counterterms. In the latter case, it does not suf-
fice to simply throw away divergent terms, since
such a procedure is incompatible with the gauge
invariance of the theory. In other words, the
counterterms correctly determined contain finite
terms as well as divergent terms, and the finite
terms could give rise to sizable effects. For this
reason a large portion of the paper is devoted to a
detailed discussion of the subtractions which are
consistent wi. th gauge invariance.

The physical picture of the theory is clearest in
the so-called U gauge in which the contributions of
unphysical fields can be trivially eliminated. In
this gauge, however, Green's functions are not
well defined since they contain extra divergences
that cannot be removed by the renormalization
counterterms. ' Although such extra divergences
vanish in the sum of diagrams for an S-matrix
element, it is not easy to separate the contribu-
tion of each type of the diagrams such as shown in
Fig. 2. In the class of R, gauges, g all Green's
functions are finite after renormalization. Com-

(e, 8 M&w M&z M&e &ym) &

the electric charge, the Weinberg angle, 8' mass,
Z mass, Higgs-boson mass, and fermion masses.
The Weinberg angle is defined as the mixing angle
of the renoxmalized isovector and V(1) gauge.
fields to form the xeno~mali @ed photon and 2-
meson fields [see (2.2)]. Then the renormalized
gauge coupling constant g is defined by g=e/sin8.
This definition of g does not contain any ambigui-
ties such as infrared divergences present in other
methods. s' I employ the renormalization proce-
dure of Ross and Taylor' ' with some modifica-
tions; I make the number of parameters minimum
so that, for example, I do not introduce the unxe-
no~malized Weinberg angle.

The renormalization of the Weinberg-Salam mod-
el has been studied by many authors in various
gauges. s 2 One may in principle obtain the neces-
sary counterterms by appropriate redefinitions
of the coupling constants and masses in the pre-
vious works in Refs. 8-12. However, because of
the complexity due to the differences in gauge as
well as the subtraction procedure, a direct com-
parison of the parameters (coupling constants and
masses) in the present work and those in Refs.
8-12 is not easy. Therefore, for completeness,
all the necessary expressions are presented in
this paper.
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The plan of the paper is as follows. In Sec. II
the Lagrangian is exhibited and the renormaliza, -
tion counterterms are generated. In Secs. III-VI
the relevant counterterms and renormalized
Green's functions are computed. In particular,
in Sec. III the lepton self-energies and the neutrino
vertex corrections are computed. The corre:-
sponding functions for the quark sector are con-
sidered in Sec. IV. Then I proceed in Sec. V to the
FP-ghost self-energies which determine the
gauge-boson mass counterterms. In Sec. VI the
self-energies of the gauge mesons are computed,
including the Z-y transition diagram. In Sec. VII

the box diagrams are calculated and the results
are presented. In particular, the radiative cor-
rections to the mass ratio M~/M~ are discussed.
%ith this result and the radiative corrections to
the muon decay amplitude calculated by Ross,"
the neutral-current amplitudes (1.2) are expressed
in terms of the Fermi coupling constant, C&. Ap-
pendices A and B contain some of the lengthy ex-
pressions. In Appendix C some general features
of the radiative corrections in the %einberg-
Salam model are discussed and some aspects that
arise in different renormalization procedures are
cia,rif ied.

II. THE LAGRANGIAN AND THE COUNTERTERMS

The Weinberg-Salam (WS) Lagrangian is written in the manifestly invariant form
I

~ws= Lsy ~u, -ig
2

&' —i
2 B„ I )+ iRgy" 8 —ig B„R,—~E'„„E'""

2 g ( 2 2

--,'(a, a„—a„a„)'+
~

a„-zg—'A'„+z —a„C --( C'C —— —QG, (I. ,Ca, +ft, C. '1. ,}+a,, (2.1)

where E'„„=g, g'„- g„g'„+g~'"g'„g„'. The quark
terms , are considered separately in Sec. IV.
As usual, the following are defined:

q2

g„s=Q2, +Rzz+L zzz+Zzv+2, , (2.5)

where the explicit expressions are given in Appen-
dix A.

The gauge-fixing terms are chosen in the
formez 7$ i 0

Z, =A„cos8+B, sin8,

A.„=-A„' sin8+ B„cos8,
l~~ 1-y5 "l ~

p, .I

2
p, I

+

1,~2 (v+g+zX). l

with

g sin8 =g'cos6 =e

and

(2.2)

(2.3}

S,= ——,'(a "A,, )z —
(
a"W,

' —zM, C
' [' ——,'(a"Z„-M,X)',

which gives the Goldstone bosons p', X (associated
with W', Z) masses Mz, ,M~, respectively. Follow-
ing the usual procedure, the Lagrangian R» for
the Faddeev-Popov ghosts is obtained (see Appen-
dix A), and we have the effective Lagrangian

(2.'7}

The Feynman rules can be read off from this
Lagrangian, and are listed in Fig. 3 and 4.

So far all the quantities are the bare quantities.
The gauge-invariant counterterms are generated
by the following transformations:

gv
MN—

2

.2cos8 '

Xv
MH ——

2

(2.4)

Osv

The field g is the Higgs scalar of mass M„. . Then
(2.1) can be rewritten as

Z &/2g&
W

B+ Zg 8&i/2

L Z L

R-Z~ R,
Z 1/2C,

8-~w (8'+ ~6
r'-2'~ '"(g'+ ag '),

(2.8)

applied to the Lagrangian (2.1). Here the fields
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icos�&icos�
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ig ~g t&fg
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C

/s gW„~ ~ i. i $ cos 8 P~

c&
p

Wi„~
CA

= + pep~

p Cz

W ~ = +~f co&8 $&l"

+
C

Cg
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Cg
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g cosg

P C~

+ ie pit'

+
Wzz w)s

A~

Zp
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I- '"(p, ~, e) = g '(p-e". ~'~(~-q) + g "(~-I)

Cz

FIG. 4. The complete list of the Feynman rules in-
volving the FP ghosts.

p"gimp)

w+t' Wy

A~

Z~

Zr

$+

COSTS tzil — (p-k)
k/ gcoS 8/I

Wy

Stn 8 pP) =«i$ -H~g
CoSO

Vdp,

~ z&~Ig (zg4vgy& s~F gP" g~"pbbs')

.e)
A

Zg

Ag

and take Mw, Mz, M~, m, as physical masses mea-
sured in experiments. The gauge-meson mass
terms are discussed further in Sec. VII. Note that
the relations (2.4) are no longer valid after re-
normalization; they receive one-loop corrections.
The resultant Lagrangian is then written as the
sum of Z«[(2.5), now as the renormalized La-
grangian] and the counterterm Lagrangian 8„'z.
Some relevant terms in 8„'s are given in Appendix
A. The gauge-fixing terms 2, given by (2.6) need
not be renormalized. However, the gauge trans-
formation for the renormalized fields involves re-
normalized parameters. Consequently, the FP
ghost Lagrangian develops the following counter-
terms:

at tos gg
Icos 8

$ Sin 0 gP~+ icos 8
RFp ———5zz c'(8 +Mz )c' —c' MN 5„M'c

—~Zzcz(B'+Mz')cz —czMz5Mzcz + ' '

FIG. 3. A partial list of the Feynman rules.

and coupling constants on the right-hand side are
the renormalized ones. After these rescalings
are performed the resultant Lagrangian is written
using (2.2) as the relations among the rerlormal-
iged fields. As for the mass terms, these are
written as

.,= (z,M, '+ 5M, ')w„'w "+-,'(z~, '+5M, ')z„z"
+z(z~„+6M„)g -f (m, +5m, )l (2.9)

(2.10)

here Sw, z =1+&Zw, z are the wave-function re-
normalization constants for the ghost fields c' and
cz.

The counterterms involve ultraviolet diver-
gences. To deal with such divergences, the di-
mensional regularization is used together with
the notation

2
lnA = -y+ ln4m,4-n
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where y is the Euler constant. I assume the se-
quential model in which the axial-vector anomaly
cancels out, and treat y& as anticommuting with
all other y matrices in n dimensions. " To deal
with the infrared divergences the photon mass 5

is introduced. This can be achieved, without de-
stroying gauge invariance, by a spontaneous sym-
metry breaking, the effects of which vanish as
5 -0 except for the normal log6 in the infrared-
divergent terms. "

-i,v(P )p' ' = —i[v(P ) —5zL]p ' . (3.1)

The subtraction on the v mass shell means

~
[v(P') —6zL]P'

2
' =0,

Q~p

which yields

5ZL = v(0) . (3.2)

Before the symmetry breaking, l~ and l~ are

ut, Z

V = X = V

(c)
PEG. 5. Diagrams contributing to the neutrino self-

energy.

III. THE LEPTON SELF-ENERGIES
AND THE NEUTRINO VERTEX FUNCTIONS

The counterterms 5g and 5g' are determined by
requiring that the photon vertex function of the
lepton defines the physical (renormalized) charge.
The charge thus defined must be the same for the
electron and muon. This means that 5g and 5g'
must be independent of the lepton mass nz; other-
wise the renormalized charge would be different
for the electron and muon, and our renormaliza-
tion procedure would fail. For this consistency
check, all terms involving powers of m2/Mv2 are
kept in this section.

Let us first consider the lepton self-energy to
determine the lepton wave-function renormalization
constants Z~ and Z~. To determine Z~ we choose
to make a subtraction on the neutrino mass shell.
Let iv(P'-)p(1-y, )/2 be the contribution from the
one-loop diagrams of Fig. 5(a) and 5(b} to the v

self-energy. The counterterm [Fig 5(c)] .gives,
from (A6), the contribution i 5ZLp(l -y, )/2, and

hence the renormalized v self-energy is"

The mass counterterm 5m is discussed in Ref. 9,
and we do not consider it here. For the wave-
function renormalization constant, we require

~(P) =fL (3.5)—m /~m

which means that the l~ component is subtracted
on shell. Since 5Z~ has already been determined

by (3.2), the number fL cannot be zero, but is
finite. The condition (3.5) fixes 5Z„and fL as

&Zz =amp+ 2oz&+ 2pg (3.6)

fL = &Lo+ 2~Li+ 2Pi ~ZL ~ (3.V}

where 0, , p; are the coefficients of the expansion of
o(P'}, p(P'} about Pt =m2,

2 P -m2 2

+R, L(P ) R, oL+8 Li 2 +
(3.8)

2 P -m
P(P )=Pp+P~ 2

+' ''
~

m

The fL is a constant remaining after renormaliza-
tion, and a factor ~ fL(1-ys/2) is to be associated
to each (renormalized) external 1 line. (gL, be-
cause the renormalization constant for an external
line is ZL'~'= 1+-,'5ZL but not ZL).

Calculation of each diagram in Figs. 5(a) and

5(b} gives
2

v(P ) —' —~ ln 2 +—+I&(Mv)m, p),2 & ~ 1 A 1
M„2

-1 1 A2 1
v(P') —,—ln, ——-I,(M, 0, P)2cos 8.2 M~ 2 (3.9)

2 2

v(P ) = —
2

—ln 2
— I, (M2~, m, p)

m. 1

W ) W

m' P'
Ig(M, m, p)=' ) dx(1-x)ln 1-x+x~ —x(1 —x)

0 Isa

two different particles. This is why they carry
different renormalization constants Zi. and Z~.
The spontaneous symmetry breaking generates the
mass term which mixes l~ and l~, and we want to
treat the mass term as a part of the propagator.
Then the propagators for /~ and(l~ cannot be sep-
arately defined, but one has a single propagator
which is a mixture of l~ piece and l~ piece. The
l self-energy, coming from the one-loop diagrams
[six diagrams similar to Fig. 5(a} and 5(b)], has
the structure

-i):()()=-s(e,(u'))(
q

'+s, (P')()
q

'+V(P')I}.
(3.3}

Adding the counterterm contribution [Fig. 5(c),
with v -l] obtained from (A6), the renormalized
self-energy is
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Here and below, the symbol = means that the
right-hand side must be multiplied by the common
factor g /16m . From (3.2), we obtain

A2 ].
5Z~ =' ——ln 2 +—+ I~(M~, m, 0),

m2
6Z+~ -' — 2

—ln 2 ——g(M~, m, 0)~w' -4 mw'

eZ, = OZ&+ OZ~+OZ~ .

A—2cos28 2 '"MZ2 4
(3.10)

The quantities p and 0 can. be calculated from the
one-loop diagrams [Figs. 5(a) and 5(b), with v- l], from which and from (3.6) we find

4 sin'e cos2& rn' ' x(1-x)
cos'6 Mx', 1 —x+x'(m'/Mx') '

A2
&Z„" =' -sin'& ln, + 4+ 2 ln

Vl m ) ' (3.11)

I,(M, m, p)= J dx(1 -x)ln (1-x) 1-xM, +xM,

All other contributions, ~Z~~, &Z~, 6Z~, can be obtained similarly. It is convenient to deal with the con-
stant f~, defined in (3.V), in groups as

m', "' x(1 -x)f~+&Z~==In 2+—+I,(M, O, ~)-2M 2 ~ dx
( 2/, ),

' 4cos'~ . ~S' 0 t-X+X' ~' ~Z'

4 sin'8 cos2& m' ' x(l -x)
„M „—sin'e~ ln, +4+2ln —,~,m 2)

(3.12)

and similarly for fx~+ f~++ &Z~~. Then from (3.10) we see that the divergences cancel in each group and f~
becomes finite,

2 ~ 2 9 Q2 ( ~2—ln x, ———2ln 2 +0~&
yg2

(3.13)

where only the leading terms are exhibited.
The lepton-photon vertex corrections depicted by the diagrams in Figs. 6(a)-6(f} are now calculated.

In the limit of q'- 0 (q is the photon momentum), the contribution from these diagrams can be written as

~,+~ey~„1-y5 . ~ 1+y, (3.14)

where ~» are constants which we are to compute. Let us begin with the Z-exchange diagram in Fig.
6(d). With some algebra we find

. 2 sin, e 1 ' f' m' ' x(1 -x}'+x
Az-' -2 — —ln 2 -1 —

Jl dxx ln 1-x+x
M 2 +M 2 dx

1 x+x2(~2/M 2)
0

4 sin'8 cos28 m' t' x(1 -x)
cos'~ ~ ' 1 —x+x' ~' j/1~' (3.16)

Quite remarkably, at least from the appearance of
the expressions, one can verify with some mani-
pulations that the sum &Z„+A~~ vanishes. %e have
checked such cancellations for other contrit. utions,
and have found that &Z~s+A~=0, A=(Z, y, g, X, g).
Collecting all these, we find

~Z„+A„=o, (3.16)

which is valid to all orders in m'/M~ .
Let us now compute the W-exchange diagram. It

is convenient to group three diagrams in Figs.
6(a)-6(c) together, whose contribution is given by
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$ w

v ~ Y

gw

R

$ w

v

p' w

(c)
(b)

y

(d)

FlG. 7. Diagrams contributing to the lepton-photon
vertex. The shaded blobs represent renormalized two-
and three-point functions of order n.

FIG. 6. One-particle irreducible diagrams contribu-
ting to the lepton-photon vertex.

A~ = rlnM 2 ———1,(Mz, 0, m)
A2

W

m' ' x(I -x)
+ 2M 2 dx

( 2/M 2)
(3.17)

It is obvious from (3.12) and (3.17) that f ~~+5Z~~

+A) ='In(A'/M~'). For the contributions from other
diagrams in Fig. 6(d)-6(f), I have checked that f z,

+f ~I, + ~Z~+A )+A~ =0 and fx~+ f~~+ &Z~~+Ax~+A~

=0. Summing all these terms yields

g A
f~+&Z~+A~= 2 lnM, . (3.18}

77 gf

I emphasize again that this equation is valid to all
orders in m'/M~'.

Finally the contribution from, the counterterms,
Fig. 6(g) is considered. Using the same notation
as in (3.14), from (A.6) it is found that

QgI~'„=&Z„+ cos~,
(3.18)

~~ = ~Z~+—+ cot~ .5g 6g'

2g
%e now have all the terms necessary to deter-

mine ~g and &g'. Consider all the contributions to
the photon vertex up to the order g3, with the lep-
ton on shell. They are the diagrams shown in Fig.
7, where each shaded blob represents the sum of
all one-loop diagrams and the counterterms (i.e.,
the renormalized two- and three-point functions of
order g'). We impose the usual renormalization
condition; the sum of these diagrams approaches

~~+ ~Z~+ cos~ = 0 ~

QgI

e

fr+Ay+ 6Zg+ —+ cot~ = 0.Qg Qgt

2g .2g

(3.20)

Then, together with (3.16) and (3.18), we find

&g'= 0,
2g3 A2

6g= l
(3.21)

This result is valid to all orders in m2/M~'. If 5g
and/or &g' hsd depended on the lepton mass, then
the renormalized charge of the electron and muon
would be different, since the same &g and ~g' are
subtracted at the eey vertex as well as at the p, p.y
vertex.

Once the counterterms (3.21) are found, the
coupling of the neutrino to the photon, which is in-
duced by the diagrams in Fig. 8, can be computed.
The counterterm Fig. 8(e) is given from (A.6) by

6g 7 y5-i —sin6} y~
2 2

(3.22)

with &g given by (3.21), which cancels the diver-
gence arising from Figs. 8(a)-8(d), leaving the
finite result

icy~ as q =0, which is already given by the tree
diagram Fig. 7(a). Therefore, the sum of all the
corrections must vanish. As shall be discussed
in later sections, the photon self-energy is sub-
tracted on shell of the photon. Thus the diagram
of Fig. 7(b) vanishes as q'- 0 [see (6.2)]. It will
also be seen later that the Z-y transition diagram
in Fig. 7(c) vanishes as q'- 0 [see (6.24)]. Ac-
cording to the rule for external lines, the dia-
grams of Figs. 7(d) and 7(e) give 2 f~iev" (I -y, /2).
For the diagram of Fig. 7(f), the sum of (3.14) and'
(3.19) is obtained. Thus our renormalization con-
dition requires
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p& -ys 2

16"""' (3.23)

where
1~ ( m' q' &A„(q') = --,' — dx dy in~ 1-x-y+(x+y) 2 -xy

0 O
Mv2 Mv ]

1 ' ' (1 —x)(1 —y)q' +rn '
M ', ", y 1-x-y+(x+y)(rrP/M~') -xy(q'/M~')

l lM m' q'
+ dx dg ln x+g + ~ —.x —g M 2

—xgM
0 0 lV

l
t
1"x (x+y)(q'/M, ') q2

+ dx Ji d$ (1 )( / ) ( / )
+ dx in 1 x(1 x) ) (3.24)

For small
~

-q'~ compared withM~', one can expand (3.24) in powers of q'/M~'. Keeping terms involving
the ratio q'/tn',

—q' 1 1 m'--+-ln 2 +2 Cxx(1-x) ln 1-x(1-x)—2 ~

M~ 3 3 M~ m') (3.25)

For very small
~
-q

~
«m',

P M 2 3 3 M 2 $5 m2 )(
(3.26a)

Thus for very small -q' the lepton mass gives the
dominant effect; in(M~'/m, '}=24 and ln(M~'/m„')
= 14. Consequently, for very small ~-q'~ A„ is
considerably different for v„and v, . This differ-
ence gives rise to the apparent v&-v, universality
violation in neutral-current interactions. " For
m2++ ~2+~M

6Z~+ cos9
~

y"ig i5g 'l 1-y,
2 cosa ~ 2

(3.28)

and a =b =d =0.
The corrections to the vvZ vertex arise from

the diagrams in Figs. 8(a), 8(d), and 8(e) with

the replacement y. -Z. There is also a diagram
of the type Fig. 8(d) with the exchange of Z in
place of W. Subtracting the counterterms

(3.26b}

which is a good approximation already for -q'/m'
= 100." Thus the fermion mass effects rapidly
disappear as -q' increases. In other words, the
fermion mass simply serves as an infrared cutoff.
The contribution of this term to the amplitude
(1.2) corresponding to Fig. 2(a}, which is denoted
with subscript 2(a), is

(a)

(d)

|,'b)

(e)

(c)

Mw
cg,) =-1~,2, A„(q )

lg
(3.2V)

FIG. 8. One-particle irreducible diagrams contribu-
ting to the induced neutrino-photon vertex.
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where 6Z~ and 6g are given by (3.10) and (3.21),
we find for the vvZ vertex correction

le'

g'=g (6Z~ (T, —@sin'8)+6gT, cos8 Z,~ cos8

»1 ys g A 2

2 cos8 2 1$'

where

(3.29}
—(6Z+Qg sin8+ 6g T, sin8)A qz, y» q~

—g 6Z,Qg sin8(Z„ tan8 +A»)iffy»qs . (4.1)

A~ =, I,(q, M«) +(1 —2 sin'8)I, (q, M~)2 cos28
'The subtraction for the u-quark self-energy is
made on shell. Thus we find 6Z~ = 6Z~~+ 6Z~z+ 5Z~,

—2 cos 8'(qf M~ ),
(3.30a)

1M «y q')I,(q, M)= d«dyln 1—
0 0 1-x-yM )

w ~ 1 A2 1
~Z~ —— In 2+—,

lV

1 1 2 . 2 A2 1
6Z ='

8 2 3slne . lnM 2+2cos'8 2 3 z
(4.2)

1 q2)I,(q, M) = d«ln 1-«(1-«)—,
~

0

+ dx dyln 1—

A2 g2
5Z~=-~ sin 8 ln -2+4+21n

m, 2 fÃ

The Higgs-boson contribution is negligible. Since
the d-quark self-energy is not subtracted on shell,
a finite constant fz remains on shell of d as

q2 1 1"+ X+/
+ dS dg «+y -«y(q'/M )

(3.30b)

(3.31)

and b =d =0. Here we have neglected terms of
order o.mm/M~'.

IV. THE QUARK CONTRIBUTIONS

The contribution of (3.29) to the amplitude (1.2)
corresponding to Fig. 2(b} is

~&(q')
16'' 1-(q' ')

1 - - 1 —y,(P =f,
d l~ lily

By the similar procedure as in Sec. III [Eqs.
(3.5)-(3.13)j, we find

eZ~=0,a

2sin 8 A 1
cos28 Mz2

A2
&Z", =' —Q'sin'8 ln, +4+21n

m. '
Mz2 9

fn =' —', nin'2 (ln, +—+ 2 lnm' 2 m']

(4.3)

(4 4)

For simplicity only the u and d quarks are con-
sidered. The Lagrangian f, for the quarks can be
written down in the same way as for t;he leptons20
and we do not bother to exhibit it here. 'The left-
handed quarks form a doublet (u~, d~) while the
right-handed quarks are two singlets, u~ and d~.
Correspondingly, there are three independent
wave-function renormalization constants ZL' Z„,
and Z„. In terms of these constants, the counter-
term Lagrangian involving the Z meson and photon
becomes

2
g» (q2)

cos8 16m'
(4.5)

where, excluding the contribution of the photon-
exchange diagram,

The one-loop diagrams contributing to the qqZ
vertex are essentially the same as those for the
vvZ vertex. 'The only difference is the presence
of the photon-exchange diagram as well as the
factor of —,

'
f~ for each external d line. Calculation

gives the result

Ii:.= [T,—(q ——,') sin28]y» y'I, (q, M, )

(T,—Q sin'8)'
2

' —(Q sin'8}' '
~I, (q, Mz) —2 cos'8T,y» 'I4(q, Muf)

&-&5 (4.6)

with I, ,defined in (3.30b). It is convenient to write
the photon-exchange contribution separately as

Q2 2 2
Q'sin'8 2ln —,ln, —1 —ln', ~ T„„, (4.'7)

a

where T, , stands for the tree amplitude (1.1), and
I have assumed that —q2» m, '. The contribution
of (4.5) to the amplitude (1.2) corresponding to
Fig. 2(c), a,&,&-d„,&, can be read off from (4.6).
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V. THE SELF-ENERGIES FOR THE
FADDEEV-POPOV GHOSTS

We now proceed to the gauge-meson sector, and
determine 6M~, 6M~, Z~, and Z~. It appears at
first that one can do the usual subtraction, i.e.,
subtract on mass shell of S"' and Z, thus deter-
mining the four constants. We note, however, that
the photon does not carry an independent wave-
function renormalization constant. Therefore, one
is then no longer allowed to subtract on shell of
the photon. A consequence of this would be that
the diagram of Fig. 7(b) does not vanish as q'- 0,
which drastically complicates the determination of
5g. Furthermore, the above subtraction is not a
priori gauge invariant, since various Green's
functions are related by Ward identities, and such
subtractions would destroy these relations after
renormalization. Thus we require two conditions:
(1) subtract the photon self-energy on shell of the
photon, and (2) make subtraction in accordance
with Ward identities. To satisfy these conditions,
the calculation of the ghost self-energies becomes
necessary.

There exists one FP ghost field for each gauge
vector field. Thus there are four FP ghosts c',
c» c» in the WS theory. Although in certain
gauges c„completely decouples, in our gauge de-
fined by (2.6) all of them are important entities.
However, in this section the self-energies of c'
and c~ are calculated, but not that of c» for this
is done only to calculate the gauge-boson mass
counterterms 6M~ and 5M~'. The self-energy
functions themselves are not needed for our pur-
poses since they begin to appear at the two-loop
level.

Let few(q') [iez(q')] be the sum of all one-loop
contributions to the c' [cz] self-energy, Figs. 9(a)
and 9(b) [similar diagrams for cz]. The counter-
term contribution, Fig. 9(c), is i6Zw(q'-Mw')
—iM w6Mw [i6Zz(q' -Mz') —iMz6Mz] obtained from
(2.10). Thus the renormalized self-energies are

ilaw(q')

and inz(q'),

nw(q2) =e'(q')+ 6Z, (q& M;) M,6M„

Pz(q') =ez(q')+ 6Zz(q' —Mz') —Mz6Mz.

Due to gauge invariance of the theory, Vw(q ') is
related to the self-energy of W' by Ward identity.
Therefore the renormalization condition for e (qz)

must be compatible with the Ward identity. This
is the point where the 't Hooft-Feynman gauge
provides us an advantage. In this gauge, the FP
ghosts c' and c~, as well as the Goldstone fields
&f&' and y, are nothing but the longitudinal compo-
nents of the correspondirig gauge vector mesons

Z, Y, W

+ +

C , Cz CA

+
C

c+ c

FIG. 9. Diagrams contributing to the FP ghost c+
self-energy.

W' and Z. ' This is why their propagators have
poles at the same point as the vector-meson prop-
agators: at q'=M~' for c', and at q'=M~' for c~.
These locations of poles have to be maintained
after renormalization. Thus we have the following
simple conditions:

e w(M, ') =0,

e'(M ')=0
(6.2)

which give ew(Mw') =Mw6Mw, etc. Since 2Mw6Mw
=5M~', we write

6M 2 2ew(M 2)

6M '=2e'(M ').

At this point, it may help to remark on some
peculiar feature& of the ghost Feynman rules in
Fig. 4. First of all, we note that the ghosts c' and
c are two different fields. This means that the
c' loop and the c loop must be counted separately,
in contrast to a 8"' loop which is counted only
once. This is because ~ is the antiparticle of
S"', while the antiparticle of c' is not c ." The
second remark is that the FP ghosts are fermions
and one must keep track of the arrows in their
propagators. In particular, 'there is no vertex for
c'- c„+P', although the vertex exists for c„+P'
-c'. Therefore a diagram such as shown in Fig.
10 does not exist. Furthermore, there are v'er-
tices for cz-c'+P and c'+Q -cz, but they carry
different coupling strengths.

With these remarks, actual calculation of the
diagrams in Fig. 9 is straightforward. We merely
write down the results:
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1 M 2

(—,
' tan 8 —z) ln, —4sin'8+(3 ——,

' tanz8+2sinz8) dxln xi+(1-x)
lV 0 W

1

dxln x'+(1 —x)
0 Mw']

(4sin 8+z tan 8 ——,') ln, +(3 —4sin'8)

dxln x', +(1-x)2cos 8 «0 M~ M~ )

«0

~1 Mz
dx ln 1 —x(1 —x)

M~

(6.4)

VI. GAUGE-MESON SELF-ENERGIES

In this section, we compute the self-energies
for the gauge mesons, and determine the wave-
function renormalization constants Z~ and Z~.
To this end, we first compute the photon self-
energy coming from a.ll the one-loop dia, grams
in Figs. 11(a)—11(g), which we denote by
iii"(q')(q'g„„-q„q„). From (A6) the counterterm
contribution [Fig. 11(h)] is —i(5Z~ sin'8
+5Zz cos'8)(q'g„„-q„q„), so that the renormalized
photon self -energy is

I

Then the renorma. lized Z and 8" self-energies
are

ivz„'(q') =~"(q')g, +ib "(q') ".",
q'

s"(q') =s"(q') -5Zz, a'
+5ZMz, w +~Mz, w .

(6.6a)

(6.6b)

Now in our gauge (2.6), the relevant Ward identity
reduces to the statement that the renormalized
propagators must maintain the poles at q' =Mz ~'.
It follows from (6.6) that

iver„"„(q') =is"(q') (q'g„„-q„q„),
F(q') = m" (q') —(5Z~ sin'8 +5Zz cos'8) .

(6.1) (zz'~(Mz ~') =0,

which in turn gives rise to the equations

(6.'I)

As we have discussed in the previous section, we
treat the photon in the usual way, i.e. , make sub-
traction on shell,

az'+(Mz. I,),5Mz, ~
M ' Mzt w' Zs W

(6 6)

g~(q') = 0.
q2 up

Thus we find

5Z~ sin'8 +5Zz cos'8 = v"(0) .

(6.2)

(6.3)

Next we compute the Z and S" self-energies,
coming from all the one-loop diagrams (similar
to those in Fig. 11), which we write as

im„*„' (q') =ia* (q')(((„„- ",")

(b)

+ib'~(q') q "q" (6.4)q'
From (A6) the counterterm contributions are
—i5Z»(q'g„„-q„q„) +i(5Z~M»'+5Mz ~')g„„with
the notation

6Zz = 5Z~ cos'8+HZ~ sin'8 . (6.5)

(e)

C~

FIG. 10. An example of diagrams which do not exist
in our Feynman rules.

FIG. 11. Diagrams contributing to the photon self-
energy.
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By ebminating 5Z from (6.8), we obtain

Y~~ =5Z~ —5Z~ = (5Z~ —5Zs) sin'8,

where we have defined

(6 9)

Once these constants are found, the renorma], ized
Z and W self-energies are given by (6.6a) with

g ss Iv(q2 ) ~s zs Iv(q2 ) s ss w(M 2) 5Z (q2 M 2
)

a~(M ') a'(Mz') 5M '
I"z ~ 2 jg 2 I 2

z I'

Finally, from (6.3) and (6.9), we

5Zs = v"(0) —Y~~,
5Z~ = v~(0) + Y~s cot'8 .

5Mz'
M '

z
(6.10)

(6.11)

(6.12)

Straightforward calculation of seven one-loop
diagrams in Fig. 11 for the photon self-energy,
together with (6.1) and (6.3), gives

5Z~ sin'8 + 5Z s cos'8 =1 —+ 3ln, —
3

Q' ln
e' 2 A' 4, A'

2

dx [4 —2 (1 —2x)' ) in(1 —x(1 —x)
M~

t' 1 t' $2sq iq'J dxx(1-x)ln(l -x(l -x)
0 my'

(6.13)

(6.14)

The last term due to fermion loops is the same as in QED.
There are eleven one-loop diagrams similar to those in Fig. 11 for the Z self-energy. To see how the

divergences cancel, we shall consider only the divergent terms for the moment. For a in (6.4) we find

a (g') =g Z& m&'- —~+4m&'tan'8Q(T, —Q sin'8) ln
etc z

2

+ [(4 cos'8 —2 —sec'8)Ms' + (3 cos'8 + —', —~ sec'8)q'] ln
MI,

(6.15)

The first term is the fermion contribution; the summation is taken over flavor as well as color, and Z&
=2[(T, -Q sin'8)'+Q' sind8]/cos'8. Calculation of 16 similar diagrams for W self-energy gives

2 +2 A'
a (q') = Q -'—ln, + [(2 —sec'8)M~'+ ~ q'] ln

etc z lV

(6.16)

From (5.4) and (6.10) it follows that

Y~~ =-—, tan'8( —,
' —4Q' sin'8) ln, +—~+1n, +(3 sin'8+ t22. tan'8) ln, +5Y»,

/AC
N'

where (g /16@ )5Y~~ is the remaining finite terms in Y~& defined in (B3). The leading contributions of
the fermions to Y~~ are explicitly written in (6.17) so that the fermion contributions to 5Y~s are of order
m&'/M)q . Numerical calculation gives

(6.17)

0.79+0.22 (M» 10 GeV)—
5Y~z= 0.79+0.09 (Ms —100 GeV)

0.79 —0.15 (MH —500 GeV)

The functions g~ ~ are given in Appendix B. Since the contribution of the longitudinal parts 5 in (6.6a) to
the amplitude (1.2) is zero [note vg(1 -y, )v=0], we do not consider b. The contribution of (6.18) to the

for sin 8—0.23 and M~ —80 GeV.
When the divergent terms in (6.17) are substituted in (6.11) and (6.5), all the divergent terms disappear

in the renormalized functions (6.12),
2 2s*(q')=, (q* —M ') csin'4 glil' ln, —— —Ilqx (cot'4 —1) s( (q*) —4 (Mx')I

.s (q') =, (q' —Mc') g. x sin'44)' ln *, ——Is ln *, —(q' —M ')ll's cot 4 + qx(q') —qs(Ms )I
(6.18b)
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amplitude (1.2) corresponding to Fig. 2(d) is

-a (q')
2(d~ 2~6~ q2 ) 2 y

Mz' 1-
(6.19)

b =d=0

(6.20)

The counterterms can be found from (A6) as

We remark that, as in the case of the lepton line, the finite constants zfz and —,'f~ remain for the 2 and
W self-energies on an external line, where fz ~ are defined by

gzs )F(q2)
2 2 -fZW

Mz, w

which can be readily obtained from (6.18).
The diagrams for the Z-y transition are exactly. the same as those for the photon self-energy, Fig. ii,

in which one of the external lines is replaced by a 2 line. The contribution from one-loop diagrams,
which we denote by iz„"„, contains divergent terms, and they are canceled by the counter terms which
have already been determined. To show how it works, we write the divergent terms explicitly,

2 2

iv„"„=i(q'g„„-q„q„)—,
' tan8 g (-,

' —4Q' sin'8) ln, —sin8(3 cos8+ )'r sec8)ln
nss AC z lY-

2 ~—ig„~z 2 sin8 sec 8 ln, + ~ ~ ~ .A

lY

(6.21)—i(6&a -6Zv) cos8 sin8(q'g„„-q„q„) +i M~—' tan8g„„.

From (6.1V), (6.9), and (3.21), we see that the counterterms (6.21) cancel aii the divergences in (6.20).
Thus the renormalized Z-y transition amplitude is given by

i2(~zj'(q')= iaz" (q')g, „+-ibz"(q')

fg—
16 e(q g„,—qeq, )

t'
2 . 2 1 MZ2 5 1 ( q2 cote Mz2

tan8(2T, Q —4Q'sin'8) —ln —,———2 dxx(1-x)lln 1 -x(1 -«) 2
—— ln

3 m' 9 I
' 6 M ~

( q+sin8 cos8 dx[4-3(1 —2«)'] in~1-x(1 —x)
0

+ —tone Sx(1-2x) ln(l —x(1-x)————, stnccoscxilx scott)1

0 W

+,g „2M~'tan8 dxin~ 1-x(1-x)M,— (6.22)

This term gives to the amplitude (1.2) the contribution, corresponding to Fig. 2(e),

cot8az"
2(e) (] q2/M 2)q2

(6.22)

and a=b=d=0. We note that (6.22) vanishes for q'=0.

VII. CORRECTIONS TO THE NEUTRAL-CURRENT AMPLITUDES

To complete the calculation box diagrams must be computed. There are four box diagrams contributing
to the amplitude (1.2) as shown in Figs. 2(f) and 2(g). They are finite without subtraction. A general meth-
od of evaluation of scalar one-loop diagrams discussed by 't Hooft and Veltman" is useful here. Assuming

q )) fpg f p Ix find for the Q'- exchange box diagram s

, vy '& qy (-,'T, —g) 'q B(q, Mv), (V.l)
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where

q'l
1 ln 1 —x(1 —x)—

~

—lnx
M2~

B(q, M)= dx . .. ,
)

-1 as q'-0. (7.2)

As was mentioned in the Introduction, the spin terms are neglected in (7.1). Similarly, for the Z-exchange
box diagrams,

py 'yyy, ',* (sin'S(i —ssin S)T, —s(i —2 sin S+—'sin S)] '+sin S(i&sy)IS.
Z

(7.3)

From (V.l) and (7.3) the box-diagram contributions
to a-d, which I denote by a~„-db,„, can readily
be read off.

Now we are ready to discuss the total contribu-
tions. Let us write the corrected amplitudes (1.2)
as 0

~tot t ree weak yho ton

where T„„,is the tree amplitude (1.1), T,„„„is
the photonic correction (4.7), and T„,~ is the sum
of all the other corrections (pure weak correc-
tions). Since T „„„involves infrared divergences,
one must take account of the photon bremmstrah-
lung corrections, the amplitude for which is de-
noted by Tb„. Thus we consider the cross sec-
tion

&n-ly„..sy.. I'+S]y„..y:....I sf ly.....l*

which is valid up to the order-n corrections. The
last term is integrated over the photon phase
space. The sum of the last two terms, which is
infrared finite, represents the photonic correc-
tions. Although in the Weinberg- Salam model
electromagnetic interactions are connected with
weak interactions in an essential way, the photonic
correction term T,„„,„may be separated out and
it has the same form as that encountered in QED.
Thus the photonic corrections may be dealt with . .
within the framework of QED, such as the analysis
of the charged-current interactions considered

q2
c2( )+c2(N 2(e&

z

(7.4)

and b=b„„, d=d~„. Numerically, b=-0.0027
and d = 0.0002 and they are practically constant
over the range -q'/M~~=10 ' —10'. These terms
are absent in the tree approximation, but they are .

induced by loop diagrams. However, the results
imply that the induced effects are too small to be
observed, in accordance with the previous result
for q2-0 "

For small values of the momentum transfer the
expressions can be written as

I
s

by De Hujula, Petronzio, and Savoy-Navarro. "
Qnce the data are modified for the photonic cor-
rections, they are to be compared with the ampli-
tude (T„„+T„,~) which includes only the pure
weak corrections. I now assume that the photonic
corrections have been performed to the data, and
discuss the weak corrections; henceforth I assume
that g-d do not contain the photonic corrections
(4.V).

The tree diagram and the one-loop corrections
(3.2V), (3.31), (4.5), (6.19), (6.23), (7.1), and
(7.3) give the total contributions to a-d. Numeri-
cal calculations show that (3.31), (4.5), and (7.3)
are negligible so that

( q2 -1
a =

~

1 —
~ + a2 ((&)

+ ahy„,

g' 16 2 -q'
2&» 16~2 9

+
3

Z f

a, (~&
= c,«&

—
16~ (1—,~ —,()&' sin'8

~

ln

+ g (I — 5F (1 —cot 8)—16m'i M ' WZ ~ 2
Z Z

g' 5 sin'8 (1 —2 sin'8)
16m' 2 2cos28

, (7.5a)

(7.5b)

(V.5c)

(7.5d)
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In (V.5b) it is assumed that m&2«Mz', for heavy-
quark contributions one must refer to (6.22) and
(6.28) instead.

The largest corrections arise from the fermion
contributions in (7.5b) and (7.5c), and the estimate
of the appropriate quark masses is important. The
effective quark masses are known to depend on the
energy, and the quark mass m, in (7.5b) may be
written as m, (q'). We note that in (V.5c) the fer-
mion contributions are the finite parts of the
counterterms which are subtracted at q' =M~'.
Therefore, in (7.5c), m, may be written as
m, (M~'). The values m, (M~') may be estimated
from the known experimental data in the e'e an-
nihilation which measures the photon self-energy
II" given by (6.14). The up-to-date dispersion
calculation for II" has been performed by
Paschos. " By identifying I, as m, (q') in (6.14)
and fitting the data, I find that the following values
of II" in Ref. 26 with smallest errors: rn„=nz„
=0.02 GeV, m, =2.0 GeV, m, =0.4 GeV, m, =15
GeV, and rn„= 5.0 GeV for (-q')'" = M+ ~ (80-90
GeV). Using these values and ~&/16m'= z/4v sin'8

333, I obtain th e cor re ctions which are summar-
ized in Table I.

The smallness of the induced terms b and d al-
lows one to write the effective neutral-current
amplitude (1.2) as

and consider the corrections in the following two
relations

M~ =1+0(o.),M 'cos'8 (V.Sa)

, [1+0(o;)].SM,' (7.8b)

To calculate the correction term in the gauge-
meson mass ratio (V.8a), let us investigate in de-
tail the gauge-meson mass terms (2.9). Since the
masses are proportional to gv, the counterterms
are generated by the shift (2.8) together with
v —v+ 5v. Thus one must identify

Z M '+mVC '= iZ +2—+2-g'v' ( 6v 6g
lv 8' 4

g'v' ( 6v, 5gZ M '+ 5M =
2 i

Z +2—+2cos'g-
4cos gI, v g

which in turn give

(V.9)

The relevant counterterms are given in (8.22) and

(5.4). The last term involving 5g in (V.9) just can-
cels the divergences in the first two mass counter-
terms, and the total contribution is finite. Nu-
merically the correction is small; I find

2, , vy „'vqy a T, ' ——@sin'8 q.M~' cos'g 2 .
3 2 a

(7.6)

Our next task is to rewrite it in terms of the
Fermi coupling constant Q~. To this end I write
(7.6) as

M~
M cos'g

$V

1.0011+0.0004 (Mz = 10 GeV)

1.0011—0.0001 (M „=100 GeV) .
1.0011—0.0010 (M „=500 GeV)

8M M 8SM~ M~'cos 8

x T,(1 —y, ) ——2Q sin'8 q (7.7)

( C2) 1/2

(GeV) C2 &~ C2 (e) a 2 &@=C2 (ap a&ox C/a —1 pco1'

TABLE I. Summary of the weak corrections in per-
centages. The corrections due to different values of
the Higgs-boson mass Mz are given in the lower part
of the table.

(7.10)
Note that fermions have no effect on this relation
[see Appendix C].

Next we consider the corrections in the relation
(7.8b) which is given by the muon decay amplitude.
The radiative corrections to the muon decay ampli-
tude in the Weinberg-Salam model have been cal-
culated in Refs. 8, 11, and 12, and we refer to the
work of Ross" who has used the same renormali-
zation procedure as the one empl, oyed here. The
result may be summarized as in the following
form for the amplitude

4
6

10
20

M~ (GeV)

10
100
500

-1.46 2.00
—1.32 1.67
-1.15 1.26
-0.92 0.71

0.19
0.08

-0.13

6.13
6.12
6.07
5.86

-0.38
—0.08

0.19

0.65 -0.11
0.65 -0.30
0.65 -0.54
0.65 -0.86

0.34
0.09

-0.75
-4.44

0.19 0.04
0.08 0

-0.13 -0.10

,y'(1 —y, )uey, (1 —y, ) . 1+, +q+R).

(7.11)

The term -g~(0)/M~' represents the 8' self-energy
contribution, where g~(0) is given by (6.18b) with

q =0. Note that g~ is infrared finite. The con-
stant q contains all the vertex corrections, and
box-diagram contributions that do not involve
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photon exchanges. Note that q is also infrared
finite. The box-diagram contributions to q are
negligible while the vertex corrections give q
=-0.005. The term 8 contains all the photonic
corrections arising from the photon exchange in
box diagrams and the factor f~ given in (3.13). It
turns out that 8 is exactly the same as the photonic

I

corrections encountered in the current-current
interaction theory. " Therefore one must identify

(1+iI )—: , I+, +q) . $.12)

The 5' self-energy contribution is given by

(7.13)

Using the effective values for m, (M~') = m, (M~')
given above, I find

u~= ~p- —,p —sin g,2 2

-0.0037 (M„=10 GeV)

5 =0.0635 -0.0009 (M„=100 GeV) .

+0.0021 (MH = 500 GeV)

(7.14)

C=-zp+-p —sin g,

2 C 2uz=- ~~p —sin g,
(7.17)

Using the results (7.10) and (7.14) the amplitudes
may be written as

pvy (1 —ys)vqy T~(1 —y, ) ——2Q sin2$ q.0

-i G~
vy (1 —y, )v{uy [u~(1 —y, )+uz(1+y, )]u

+dy [d~(1 —y,)+ds(1+y, )]d].,

the parameters u~ ~ and d~ ~are given by

(7.16)

TABLE II. The gauge-meson masses in GeV. The
corrections due to different Higgs-boson masses are
given in the lower part of the table.

sin28

0.220
0.225
0.230
0,235
0,240

M~ (GeV)

10
100
500

82.03
81.12
80.23
79.37
78.54

-0.15
-0.03
+ 0.08

92.78
92.04
91.32
90.64
89.99

-0.19
—0.04
+ 0.15

(7.15)

In the tree approximation with q' =0 we have p =1
and c/a = 1. The corrections p, = p —1 and

(a/c —1) are listed in Table I for various values
of (-q')'". If the amplitudes (1.2) are parametrized
as'

=--p —san g.C
R 3

In this parametrization the effect of the weak cor-
rections are small in the neutral-current in-
teractions. However, this is so if one uses the
definition of sin g as defined here, but the radia-
tive corrections can in principle be larger for
sin'g defined in some other way.

The smallness of the corrections is due to the
cancellation between similar contributions of the
Z and W self-energies in (7.5c) and (7.11). 'There-
fore a large correction is expected where they
do not cancel. One such example is the prediction
of the gauge-meson masses. In fact, Marciano
has shown2' by renormalization-group arguments
that the gauge-meson masses are modified from
the naive values by'-+3%. Subsequently, Sirlin
has shown2' that the mass correction in the one-
loop approximation is a 3.3'/o increase. Since our
definition of sin g is slightly different from Sir-
lin's, I calculate, for completeness, the mass
corrections using (7.10), (7.14), g'=4vu/sin'g,
and the value G~ =1.166 x 10 ' GeV ' " The 6.4%
correction in (7.14) implies the mass correction
of 3.2/0, in agreement with Refs. 27 and 28. The
values of M~and M~ for various values of sin'g
are listed in Table II. Similar calculations are
also performed by Veltman, and Antonelli, Con-
soli, and Corbo, "who found somewhat larger cor-
rections to the gauge-meson masses, 3.7—4.7%.
Their results are in apparent contradiction with
that of Hefs. 27 and 28 and ours, but a direct com-
parison would be misleading because of the differ-
ent renormalization methods used. Their sin'g
may involve also a large correction which cancels
a part of the mass corrections. In our treatment
it is clear how to extract sin g from neutral-cur-
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rent experiments, which then predicts the gauge-
meson masses- as in Table D.

Note added in Proof. After this paper was sub-
mitted, corrections to the work of Ref. 30 ap-
peared [M. Green and M. Veltman, Nucl. Phys.
8175, 547 (1960); F. Antonelli et a/. , Phys. Lett.
(to be published)]. Their results on the gauge-
boson mass shift are now consistent with those
of Refs. 27 and 28, and ours.
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APPENDIX A: LAGRANGIANS

We give the expressions for the Lagrangian
(2.5),

2, = v, iB'v, + l (i8'-m, )l+ ely" LA„+ ~ (v,y"l, W'„+ i~y"v, W„-)+ v, y~v, Z
2 cosa

+
~

—
2 l~y"l~+ l„y"l„IZ„-~ (v, is/'+ i„v,Q ) -- (l lg+ily, lX),g cos28 — „gsin'8 — „) g m, g m,

2» = ——,
~

B„W'„-B„W'„ie(W-'„A„-WP„)+ig cos 8(W"„Z„-W'„Z, )
~

'
——,[B„Z„-B„Z„+igcos8(W„W'„—W' W„)]~——,[B„A„-B„A„-ie(W„W'„-W'„W„)]',

cos29, , , iB„Q' —ig Z„(t)'+ ieA„Q' —iMI, W'„-- gW'„(tp+ i}t)2 cos8
2

+-,' B„(/+i')-igW„Q'+iMxZ„+2 Z„(/+i')2 0 2 cosa
2 2 2

2M '8-- ~ X(4'4 +-'~4+iX(')-6M . (4'4 +k(4+iX(')'.

'The Faddeev-Popov ghost Lagrangian is

(A2)

(A3)

(A4)

8» = -c (8'+ Mv')c'+ ig cos8c'B" (Z„c') iec '-B"(A„e') -i gc
'B"[W'„(cx cos8 -c„sin8)]

g cos29 g-MqC'
2 cose

c Q' —ec„Q'+ c'(&+i)—t) + [c'-c W'- W i- -i]
2

c,(s +I, )e, ',-col((c,s ("((„cw„) M, c, (--,--. (-,-"( +, -—-
2 cosa )

-c„B'c„+iec„B"(c'W„-c W'„) . (A6)
'The relevant terms in the counterterm Lagrangian are

2„'8= 5Z~ vip'v+ 5Zz ilia'lz + 5Zzl +i 9'lz -5ml l+ 5Zz +—cos8
~

vy" vZ ——sin8vy" vA
&g

2 cosa 2 ) " 2

(gcos28 5g ), 1-y, sin'8 1+y,5Z~+ —cosg
[

+g 5Z„
I 2cose ~ 2 ) 2 cosa " 2

5g . 5g' 1-yg l, l 1+ys g 5g')I-ly"
~

e5Z~+
2

sln8+ cos8
2

+ le5ZR+5g cos8I iAp+ 5ZI+ —~(vy"l, W'+L, y" vW )2 2

-g 5Zq,
t B„W;-B„W'„~2+ (5Z~MI, '+ 5MI 2)W'„W" -4 (5Zv sin28+ 5Z~ cos'8)(B„A„-BP„)2

--,'(5Z cos'8+ 5Z sin'8)(B„Z„-B„Z„)'+-,'(5Z M '+ 5M ')Z„Z"

-2(5Z~ -5Zv)cos&sin8(B Z -B Z )(B"A"-B"A")+ M' Z —A)'+. . . .5g, sing
(A6)v g cosg

APPENDIX B: THE FUNCTIONS gs v
The function ()v is given by

I 2 2 2

g))(q )=q g p+2 I dxx(1-x)1n x '2+(1-x), -x(1-x) 2 +q (-(((+cos 8)
M~,

1
1 2 2

dx[(x-2)Mv +(1-x)M„—x(1- x)q ]1n~x+(1- x) 2
—x(l —x)2 2 MH

0
1 ( M 2

—cos 8 dx{q [4 —3(1—2x) ]—4q (1 —2x) + 6(MI —Mz )(1 —x)] ln(x+(1 —x) 2
—x(1 —x)

0 MI p
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M 2

+(4 —cos 8)
~t dx[q (1-2x) +q (1 —2x)-2(Mw -Mz )(1—x)]ln x+(1—x) p

—x(1 —x)
Jp Mw Mw2])

-Mw ~cos 8+2 —
2

~

) dxln x+(1 —x) 2
—x(1 —x)

M~
cos 8~ Mw ]

1 Q2 2

-sin 8 dx[5(1-2x+2x)q +(8x —1)M ]in x+(1-x) 2
—x(1 —x)

p Mw Mwg
'

where the summation Z is taken over fermion doublets and color, and m, is the mass of the T& =ay
fermion.

The function $z is given by

2 2

gz(q )=q QZ& y+2 dxx(1 —x}ln( 2
—x(1-x) 2 +q

p
cos 8-

0 I,Mg 12cos 8

ch [(x- 2)M~ + (( - x)M„- x(( —x)t) ) ~ In
l
x+ (1 -x),—x(( —x),)2 2 Mg g

2cos ~ o
7 H

Mg Mg
1 2

—q' cos'8 dx[4 —3(1 —2x)'] ln 1 —x(1 —x)
0 Mw )

+q 2
—1[ ~

dx(1-2x) ln 1 —x(1 —x)
q' l

4cos 6) ] Mw j

n 1 x(1 x)cos 8j p Mw )'
5Ywz is given by

2 tan20 1 M@2 1 Mg2
5Yw~=3 sin 0+

4
+

4M 2
—3 —

2 28 lnM 2
w cos w

gw(Mw ) gz(Mz ) 16z 5Mw 5Mz+ 2
—

2 + 2 2
—

2 +4sin 8ln
w g g w

(82)

Numerically we have

Ew(0) —fw(Mw )
Mw

2

+0.729 (MH ——10 GeV}
= -2.616 +0.047 (M„= 100 GeV)

-0.311 (M„=500 GeV)

+0.985 (M„=10 GeV)
=-1.453 +0.110 (M =100 G

M -0.373 (Mz —500 GeV)

(84)

APPENDIX C: GENERAL FEATURES
OF THE RADIATIVE CORRECTIONS

As is mentioned in the Introduction, the advan-
tage of the calculations of loop diagrams in a re-
normalizable gauge is that the contribution of each
diagram such as the one in Fig. 2 may be sep-
arately considered, since all Green's functions are
finite after renormalization in such a gauge. The
problem of gauge invariance is more subtle be-
cause the contribution of each diagram depends
on gauge reflecting the gauge dependence of the
corresponding Green's function, although the
gauge invariance of the total contribution is of
course guaranteed. However, the difference in
gauge appears in the difference in the longitudinal

I

components of the gauge-meson propagators,
which in turn give rise to a difference of the order
Gwu(~& /Mw ) for each diagram in Fig. 2. Thus
the gauge dependence does not affect the contri-
bution of each diagram up to the order G~n, and
therefore the discussion of the general properties
of each diagram is meaningful. We now concen-
trate on the 't Hooft-Feynman gauge.

Let us first summari'ze the general properties
of the vertex corrections.

(1) The photonic corrections at the ffy vertex or
ffZ vertex are the same as those in @ED; the tree-
diagram term times the infrared-divergent func-
tion which appears also in @ED, as in (4. 7) .

(2) The W and/or Z contributions to the ffy or
ffZ vertices are proportional to q'/Mw for not too
large q, after renormalization. Therefore, for
~q ~/Mw «1 the contribution is very small. This
is in fact the content of the heavy-particle decoup-
ling of the Appelquist-Carazzone theorem. "

(3) The above remark does not apply to the vvy
vertex in Fig. 2(a). Although it is proportional to
q /Mw, the factor q is just canceled by q in the
photon propagator, so that the contribution does
not decouple for ~q ~

«Mw .
(4) The correction at the ffW (plW) vertex does



RADIATIVK CORRECTIONS TO THE NEUTRAL-CURRENT. . . 1167

not vanish at q'=0, though numerically it is
small, 0.25%. The q -dependent terms are again
proportional to q /MI, for small q . An important
point is that this vertex function is infrared finite
except at q =Mq . Therefore its contribution to
the muon decay amplitude, for which q =0, is in-
frared finite.

Next we consider the gauge-meson self-energy
corrections and the propagators.

(5) The photon self-energy has been subtracted on
shell of the photon. Therefore it has the form
(q q„„—q q„)vr(q ) with w"(0) =0. In particular, the
8'-meson contribution to m" is suppressed by the
factor q /Ms for small q . It is again justified by
the Appelquist-Carazzone theorem.

(6) The W and Z self-energies are subtracted on
shell of the corresponding particles. This implies
that the renormalized W and Z propagators are
proportional, in the q -0 limit, to [1+0(o.)]/
Mn s, where the O(o.) are given by a' s(0)-/M~ s2.

Since these correction terms gave rise to the
largest effects, let us discuss them in some detail.
Vfe simplify the argument by considering a case
of a neutral scalar with mass M, which is free
from complications due to the I orentz and isospin
indices. Let m(q ) be the renormalized self-energy
which is obtained by subtracting counterterms
from the corresponding unrenormalized self-ener-
gy. Then the renormalized propagator 4n(q ) is
proportional to [q —M —v(q )] '. We discuss two
different choices for the subtx action points.

(a) Subtraction on shell, q = Mt. The counter-
terms are chosen so that v(M ) =0. Therefore
&n(q ) has a pole at q =M . This means that M
is the physical mass. In the limit q -0 we have
&s(0) cc [-M' —w(0) ] ' = —[1 —m(0) /M', ]/M' which is
to be compared with -1/M in the tree approxima-
tion. The term -v(0)/M is the O(o. ) term men-
tioned in (6) above.

(b) Subtraction at qt = 0. The counterterms are
chosen so that s(0}= 0. Then 4n(q ) has a pole at

q =.M, where M is determined by the equation
M -M - v(M ) =0. Thus M is the physical mass,

but M is not. The M is a parameter that charac-
terizes the theory and it is related to the physical
mass by the above equation. In the limit q -0 we

have &s(0) cc-1/M which is the same as that in the
tree approximation.
Of course these two methods are physically equi-
valent; when an amplitude is expressed in terms
of physical quantities both methods give the same
result.

I et us compare these two methods in the calcu-
lation of the radiative correction to the muon decay
amplitude. Appelquist et p/. have employed the
dispersion method. The 8' self-energy is diver-
gent and therefore requires a subtraction. How-

ever, when the self-energy is embedded in the
amplitude as in Fig. 2(d), the absorptive part of
the amplitude becomes apparently less divergent
due to the extra denominators of the propagators.
The amplitude is then obtained by dispersing the
absorptive part without subtraction. The resultant
amplitude is proportional to -I/Ms, in the q -0
limit. This procedure 'therefore corresponds to
the subtraction at q =0 for the 8'self-energy, the
case (b) above. Although this correction looked
apparently small, a large correction arises if the
amplitude is expressed in terms of the physical 8'
mass. This point is not discussed in Ref. 8. On
the other hand, Ross has used method 6(a) so that
the mass is the physical one while the amplitude
received the large correction from the W self-
energy.

Finally I remark that in method (a) employed in
this paper, the gauge-meson mass counterterms
are calculated from the self-energies of the FP
ghosts. This is dictated solely by the gauge in-
variance, and since the FP ghosts do not couple
to fermions there is no fermion contribution to the
mass counterterms. This does not mean, how-
ever, that fermions do not contribute to the mass
shift. In fact, the fermions give the dominant
terms in g (0) which in turn gives rise to the -3%
increase in the gauge-meson masses from the
naive predictions, as is discussed in Sec. VII.
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