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The physical consequences of the existence of inequivalent Lagrangians associated with a given equation of motion
are examined in quantum mechanics. It is shown that in the case of conservative systems one additional condition is
sufficient to select the physically correct Lagrangian. It is remarked that in the case of dissipative systems the
situation is quite different, and no conditions are known to single out a unique Lagrangian.

I. INTRODUCTION

It is known in classical mechanics that a given
equation of motion may be generated by many in-
equivalent Lagrangians.! Classes of such Lagran-
gians have been explicitly constructed by several
authors.'? Recently, Okubo® considered the in-
fluence of this phenomenon on the canonical
quantization of classical systems. He investigated
only if, given a Lagrangian, the quantization is
possible and consistent. He did not, however,
discuss what, to our mind, is the most important
issue: Is it true that the choice of inequivalent
Lagrangians implies contradictory physical re~
sults after quantization? If this is indeed true,
is there any criterion to select the physically cor-
rect Lagrangian? '

This last question is exactly what we want to
dwell upon here. We shall analyze this matter
both in the case of conservative and dissipative
systems. We shall find out that the answer is
quite different in each case. For conservative
systems it will be shown that the requirement
that the Hamiltonian be equal to the energy is
sufficient to define a class of equivalent Lagran-
gians which describe a physically unique quantum
system. For dissipative systems the same condi-
tion cannot be fulfilled, and even a similar but weaker
condition is restrictive enough to rule out all
Lagrangians. Thus the lack of any physically rea-
sonable justification for choosing a particular
Lagrangian makes the canonical quantization of
dissipative systems necessarily ambiguous.

II. CONSERVATIVE SYSTEMS

Although less discussed, it is known that even
in the case of conservative systems the canonical
quantization starting from inequivalent Lagran-
gians leads to inequivalent physical results. An
eloquent example of this fact has been produced
by Kennedy and Kerner.* They constructed a
Hamiltonian for the one-dimensional harmonic
oscillator which generates its equation of motion
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but equals the square root of energy. The out-
come of the subsequent quantization was a contin-
uous spectrum for the energy, in conflict with the
usual evenly spaced spectrum of the harmonic
oscillator. This indicates that there must exist
some criterion to extract the physically correct
Lagrangian. Let us study this now.

Consider a single particle whose motion is
governed by the equation (in Cartesian coordinates
Xy5 X3, %3)

mE+VV(Z)=0. (1)

In order to give a Lagrangian description of Eq.
(1) the first requirement on the Lagrangian, of
course, is that it furnish an equation of motion
equivalent to Eq. (1). At least in one dimension
infinitely many inequivalent Lagrangians that
lead to an equation of motion equivalent to the
one-dimensional version of Eq. (1) are available.?®
Nontrivial higher-dimensional examples have not
been discovered, to the best of the author’s
knowledge.

The work of Kennedy and Kerner strongly sug-
gests that the condition that the Hamiltonian be
equal to the energy is of fundamental importance
as regards quantization. So our additional con-
dition on the Lagrangian is that its corresponding
Hamiltonian be equal to the total energy of the
system. This implies the following differential
equation for the Lagrangian L:

.0 L2 vR). @)
3% 2
Its general solution is easily found to be

m

> F-vE+% 1R, 0, (3)

LZ,%, 0=

where ?(i, t) is an arbitrary vector field. If the
Lagrangian (3) is inserted into Lagrange’s equa-
tions

_d_(il_'_>__ 8L (4)
dat \ a % ax;
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one gets
. v . [af of, df;
—_ X SRS i
mi; + o, + %y (iix, ax‘>+ ot 0, (5)

where Einstein’s summation convention for re-
peated indices is being employed. Equation (5)
is equivalent to Eq. (1) if and only if

o o Y _ Y
ot ax,'ax,“o' (€

In other words, the Lagrangians (3) all lead to
Eq. (1) if and only if there exists a scalar func-
tion ¢(X) such that f=V¢(X). Thus in the case of
conservative systems all Lagrangians of the form

m

5 v +E- Vo), (7)

LE, %)=
and only these, satisfy both requirements.

Now the question is the following: Do all of
these classical Lagrangians conduce to the same
physical properties in quantum mechanics? It
is quite easy to show that they do. The canonical
momentum derived from the Lagrangian (7) is

P= —=p+Vo(®), (8)

where §=m;? is the usual linear momentum. No-
tice that Eq. (8) can be viewed as part of a trans-
formation to new canonical variables

X=X, P=p+Vo(®). 9)
In classical mechanics this is a canonical trans-
formation with a generating function® F,(, X)
=-$+X-¢X). Inquantum mechanics it is a
unitary transformation performed by the unitary
operator U=exp[- (i/%)$(X)], as shown by Dirac.®
Therefore, all Lagrangians of the form (7) yield
the same physics in the quantum theory. Inci-
dentally, this is an illustration of the general re-
sult that to every time-independent canonical
transformation of a classical system there cor-
responds a unitary transformation of its quantum
counterpart.” The final conclusion is that for
conservative systems the additional condition
H=E defines a physically unique quantum system.
It is clear that this result can be generalized ‘
without any changes for systems containing any
number of particles. There is also ample empiri-
cal support to the assumption that the unique
quantum system thus obtained gives a correct de-
scription of nature within the domain of validity
of quantum mechanics.

The above result deserves a few comments.
First of all, one cannot refrain from pointing
out that there seems to be no a priori physical
reason to require H=F in classical mechanics.

The derivation of Hamilton’s equations in any
modern book on analytical mechanics reveals

that the Hamiltonian is constructed directly from
the Lagrangian, and its possible connection with
the energy is discussed only a posteriori. Be-
sides, the value of the energy depends on the
equations of motion alone, so that its value is
altogether insensitive to the choice of the Hamil-
tonian. In quantum mechanics, however, the
Hamiltonian plays a double role: it is responsible
for the time evolution of the system and is also
the energy observable. Contrary to what happens
in classical mechanics, in quantum mechanics
the energy eigenvalues are drastically dependent
on the choice of the Hamiltonian.* Therefore, the
condition H=E acquires a physical meaning only
in quantum mechanics, and notably enough it is
sufficient to characterize a unique physical sys-
tem.

III. DISSIPATIVE SYSTEMS

For our present purposes it will be enough
to deal with one-dimensional systems. So let
us consider the same equation of motion analyzed
by Okubo, namely

X +yx%=0, (10)

v being a positive constant. This is the equation

of motion for a particle of unit mass submitted

to the frictional force F=-yx. Bateman’s Lagran-
gian® for this equation of motion is

L(x,x,t)=3e"x2. (11)

Kobussen® has shown that Eq. (10) is also generat-
ed by all time-independent Lagrangians of the
form

L, 0)=5 [ 2 gty (12)

with g(x) an arbitrary real function such that
&'(u)#0. The Lagrangian given by Okubo’s Eq.
(2.4) is a particular case of Eq. (12) with g(u)=1u
and a total time derivative neglected. It is very
easy to verify that any two Lagrangians of the
form (12) with different g’s are inequivalent. So
we have to face the problem of which Lagrangian
does one choose.

The Lagrangian (11) was deemed “unsuitable
for the standard quantization procedure” by Okubo
because it depends explicitly on time. This state-
ment appears to be open to criticism for the fol-
lowing reasons: Let us take it for granted that an
unambiguous canonical quantization of dissipative
systems is actually possible. Then for dissipative
systems, that is, those whose energy is a de-
creasing function of time, one must choose a
Lagrangian that depends explicitlv on time. In
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this instance the Hamiltonian is also explicitly
time dependent so that its associated Schrddinger
equation does not admit stationary states. On the
contrary, if the Lagrangian is time independent
so is the Hamiltonian, and the Schrodinger equa-
tion does possess stationary states, in contra-
diction to the original hypothesis that the system
was dissipative. This is also a further simple
example which shows that inequivalent Lagran-
gians conduce to inequivalent physical predictions
in the quantum theory. In addition to the pre-
vious arguments let us recall that the Lagrangian
(11), or its generalized version including an ad-
ditional conservative force, has been employed
as a starting point for canonical quantization with
mathematically consistent results,” even though
this attitude has been criticized on physical
grounds. *°

In view of this situation we want to search for
some criterion to select the physically correct
Lagrangian, if the latter exists at all. First we
try, as was done in the conservative case, to
require H=E. Some words of clarification are
necessary. What we call the energy is simply the
sum of Kinetic plus potential energy, where the
potential energy includes all conservative forces
but none of the nonconservative ones.'' Then we
have as before [consider the one-dimensional
version of Eq. (3) withm =1 and V=0]

Lx, )= "?2 Vi f(x, B), (13)

where f is arbitrary. It is exceedingly easy to
ascertain that no Lagrangian of this form can lead
to Eq. (10); no matter what f is. Therefore, the
condition H=E is too stringent for dissipative sys-
tems. This is no surprise whatsoever. Observe
that no vestige of the dissipative force was left in
the Lagrangian (13). Owing to the fact that the
energy fully ignores the presence of the dissipa-
tive force, the existence of a Hamiltonian which
is equal to the energy and at the same time cap-
able of giving rise to an equation of motion in
which the dissipative force is present becomes
highly improbable.

Clearly the above condition has to be weakened
in order to permit the existence of Lagrangians.
In the author’s opinion the simplest weaker con-
dition one can think of is dH/dt = dE/dt, since this

allows H to differ from E by an arbitrary function
of any constants of the motion. This enlarges
considerably the set of admissible Lagrangians.
For the equation of motion (10), the two indepen-
dent constants of the motion are

Cix,x,)=x +yx, Cylx,x,{)=e¥i%. (14)
So the most general consequence of H=E is

. 9 x 2
JoL_

0% 5 +F(C(x, x,1), Cy(x,%,18)., (15)

where F(u, v) is an arbitrary function of two real
variables. The general solution to Eq. (15) is

L(x) k’ t)= % +5‘ fx % F(Cl(x, y’ t)i Cz(xy y) t))
+ 2f(x, 0), (16)

where f is arbitrary. Observe that this is a pos-
sible way to take into account the dissipative force
at least through the constants of the motion C, and
C,, for they carry the seal of the dissipative force,
to wit, the constant y. Whence the optimistic hope
that out of the family of Lagrangians determined
by Eq. (16) only one of them, or at most a subset
of equivalent ones, might produce an equation of
motion equivalent to Eq. (10). This hope is unten-
able, however, because unfortunately even within
this enlarged class of Lagrangians there is none
capable of generating an equation of motion equi-
valent to Eq. (10). This is a special case of a
result that has been proved by the present author'?
for somewhat more general dissipative systems.
Since no other conditions have been found to get
rid of the ambiguity of the canonical quantization
of dissipative systems, it seems that one must
resort to alternative methods for quantizing these
systems.'® Is the problem of looking for a unique
prescription for quantizing dissipative systems
well posed and does it make sense from the phy-
sical standpoint? This is still an open question.
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