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Matching of WKB solutions to other solutions
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%'e comment on a perturbation procedure for the Schrodinger equation which permits the derivation of several
similarly constructed pairs of solutions. In particular we establish the matching of these solutions to the WKB
solutions, and we point out their usefulness, e.g., in deriving the eigenvalue gaps characteristic of symmetric
potentials.

I. INTRODUCTION

Recently we have formulated' and tested' a per-
turbation procedure for solving wave equations
which has certain advantages over such customary
methods of approximation as the WEB method.
In particular we have shown that two similarly con-
structed pairs of solutions can be derived (belong-
ing to one and the same eigenvalue in the discrete
sector of the spectrum), and that these solutions
can be matched in regions of common validity.

A point that we did not elaborate on previously
which, however, is vital for the specification of
the solutions over the entire domain of the var-
iable is the relation of our type of solutions" to
the well-known WEB solutions" as well as their
matching across Stokes discontinuities. A fur-
ther point which we did not discuss in Ref. 1 is the
asymptotic degeneracy of eigenvalues resulting
from the symmetry of a potential. It is these
points we wish to comment on in this addendum
to Refs. 1 and 2; in particular we wish to stress
the importance and usefulness of our WEB-type
solutions in linking the solutions in the neighbor-
hood of an extremum to those in the neighborhood
of a turning point.

This investigation was motivated by the recent
upsurge of interest in the double-well potential
and its significance in relation to instanton phe-
nomena. ' ' However, for ease of presentation we
discuss our points here for the important and

equally ubiquitous case of a periodic potential,
i.e. , the Mathieu equation, which in view of the
existing literature'" obviates the need for a de-
tailed derivation of solutions. The method is, of
course, much more general.

II. OSCILLATOR-LIKE, WKB-TYPE, AND WKB
SOI.UTIONS AND THEIR MATCHING

We consider the equation

g" -f(x)/=0, f(x)-=V(x) -E,
V(x) = 2h' cos2x .

It follows from the symmetry of the equation that
if g(x;h) is a solution, the following functions are
also solutions:

P(x+nv;+h), P(-x+ nv;*h),

'lt 'Tt'

q(e+ —;ei)e, q x ——;ei)e

where n is an integer. It suffices to consider the
domain -m/2- x- m/2; in other domains the solu-
tions simply repeat themselves in view of the per-
iodicity of the potential (there are solutions of
periods )T and 2v}.

The eigenvalues E associated with solutions
around a minimum of V(x) are given by~

E = -2h + 2hq+ z& q, —

where q is approximately (see below) an odd in-
teger, and & is a known function of q and I/O. It
is important to distinguish between the domains
around x = -v/2 and x =+ w/2. The solution around
+ ))/2 is

q (e, q, )e)=e"" Q, pep;( q+q4))B, ( ())e,e
i p ~ j~

fop

(4)

where

II(,-»g. (~)
@q(x(x)) 2(q y)/4[1

( I)])

z (x) = 4k'i' cos(~x+ -,' v),

~z(x)~ «a'", i.e. , x= v/2.

Here H is a Hermite function and P are known co-
efficients which are independent of h. The solution
is valid around x=)T/2. The corresponding solution
gc(x, q, h} valid for ~x(-x)~ «h'~', i.e. , around
x= -v/2, is obtained' by replacing B, by C, with

C (x( x)) 2 [ (q 3)]IH ( )g (g)
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and H*(z)=(-i) H„(fz).
In each of these two cases an associated solution

P is obtained by changing throughout the sign of x.
These associated solutions Pe and Pe are valid
around x =vw/2, respectively (see Fig. 1). Thus,
e.g. , the general solution around x =+)T!2 is (with
constants n, P)

P(x, q, h) = c(Pe+ PPc .
The solutions around a maximum of V(x) are

obtained by transforming the solutions (2a) to
(2b) (then the factors e"" " become e"' '").
There, of course, q is no longer (approximately)
an odd integer; rather, it is a parameter deter-
mined by E(I. (3). Thus, a solution valid around
x = 0 is Pe(x -m/2, q, ih) and the associated solution
is Pe(x -w/2, q, ih). We dub all these solutions
which involve Hermite functions "oscillator-like. "

In the region above the minimum of the potential
but far below the turning point a solution P(x, q, h)
1S

40

P„(x,q, h)=e' " Q, , —„QP,(q, q+4j)A, (x),
t 0 5 & j~

&So

where

cos" "~'(-'x+ -')})
sin"")~'(zx+ —,v)

2'/' g dx
(cosx)'~' 2 cosx

and the coefficients P; are the same as in (4).
The associated solution P„ is obtained by changing
throughout the sign of x. Both solutions are valid
where

'The corresponding solutions below a maximum of
V(x) but above a turning point are again obtained
by transforming the solutions (2a) to 2(b), etc. ,
as explained above. %e dub the solutions of type
(7) "WKB-type. " Finally, we note that the solu-
tions P„and P„can easily be matched to the solu-
tions Pz and Pe in their common region of validity
by using the asymptotic expansion of H(, »&,(z).
'Thus, in these regions'

Pe{x,q, h)= a(q, h)P„(x,q, h),
(8h)(a 1)/4

c((q h) t'g { 1)]
1+

and

Pc{x,q, h) = ~(q, h)P„(x,q, h),

h(q —8)]! 1+O —
~

~al

(8)

where F satisfies an equation which has been given
and solved by Dingle. " Since

f= V E= 4hm -c osmx —2hq —~ ~ ~,
we have (for x close to aw/4)

f 'i'= (2h cosx)'/'

and

Jlf'~'dx= 2hsinx -~
Il

2 3 coax

(10)

In the region above the minimum of the potential
but just below the turning point a solution P(x, q, h)
1S

1 x

QK~(x, q, h)=, &, exp f'~'dx)F(x, q, )),
(9)

cos g'tl'+ px

ji cos 2x

Thus, on expanding f '~' in the domain just below
x = +&/4 (i.e. , where cosxe 0), we recover the so-
lution (7). This shows that the solution Pwxs joins
smoothly on to the solution (7), i.e. , in their
common domain

-m/2

~o oo~oooo

~s, ~c(x- g, q, ih)
o o

~' 1 'o

Qx .(I)A(x+-,(}.IQ

-~/4& &wKs. &wKs ~~/4

~WKB, ~WKB

A, QA(x, q, h)

m/2

ooo oo
oooo

Qc, gs(x, q, h) $8,$c (x, q, h)

FIG. 1. The periodic potential cos 2x. The domains
of the various solutions are indicated by dots, con-
tinuous lines, and crosses.

pg( qx, h) = 2h' 1+ O~
—

p)N„a (x,q, h)WKB

Again an associated solution g„„a is obtained by
changing throughout the sign of x. The correspond-
ing solutions on the other side of the turning point,
i.e. , far below a maximum of V(x), are again
obtained as before. It should be observed that the
solution (7) is singular at the nearest extremum
point. In effect the expansion {7)shifts the turn-
ing point to the extremum thereby hiding it in the
solution (7).

The matching of the WKB-type solutions (7) in
the domain below a turning point to the appropriate
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WKB-type solutions above the turning point is
now seen to be achieved by matching the WKB so-
lutions in the usual way and then matching these
to our WKB-type solutions. The WKB matching
relation for the leading terms is"

reasoning would be incomplete without a specifica-
tion of the parameter q. The even and odd Mathieu
functions g, are most conveniently defined in
terms of g„and g„; thus (apart from an overall
constant)

,&4 exp + ' 'dx, &4

for

cos
x . ( f)'~ dx+ —,'w

sin cos —,~ +2K

l.e. )

'4KB (xl '8 h) 2 (kwKB (x t ql ~)+ ~4KB (x|qt ~)]

(12)

There are two types of functions —those of period
2~ and those of period m —and the functions of in-
tegral order are defined by equating to zero the
following particular values":

In the domain above the turning point (i.e. , on the
oscillatory side) each of the solutions P„„s on the
right-hand side of this relation is to be continued
to solutions g„and g„as discussed previously.
'These solutions would now, however, be expanded
with respect to the nearest maximum of the po-
tential. Equation (3) then becomes an equation
from which the (nonintegral) parameter q is to
be determined. This then completes the continua-
tion of the solutions into any domain. The do-
mains of the various solutions are indicated in
Fig. 1.

III. THE PARAMETER q AND THE ASYMPTOTIC
DEGENERACY OF EIGENVALUES

In the range under consideration our potential
has two symmetric wells. This has the conse-
quence that the actual eigenstates must be even
or odd about the axis passing through the central
maximum; moreover, the degeneracy is split by
the perturbation so that the symmetric state lies
slightly below the antisymmetric one. This split-
ting has been calculated previously' and has been
treated rigorously by Harrell" recently. We
have nothing new to add here except that the above

g, (x=-,'v)=0, (x=-,'v)=0,

g (x=-,'m)=0, *(x=-,'w)=0.

Inserting in g, the continuations of g„and f„ into
the domain of x= —,'v [i.e. , g„= (I/&)g~, etc.] and
solving the resulting equations for q near an odd
integer q„one obtains' (for t/r„respectively)

q=q, v o(h'o~'e '") .
'Then

BEE = E(q) = E(q, )+ —— (q —q, )
Bq ap

shows that the state corresponding to the sym-
metric solution has a lower energy than the state
corresponding to the antisymmetric solution.

his, therefore, determines q and the splitting
of the eigenvalue degeneracy.
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