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It has previously been shown that for a given angular velocity u there exist three distinct sets of potentials with
harmonic properties: the set A (cu) of purely classical harmonic potentials [their classical angular velocity co, (E) = co

is independent of energy], the set C(e) of purely quantum harmonic potentials ]their quantum eigenvalues are
equally spaced, (E„+,—E„)/A = co, (n) = co], and the set 8(u) of potentials with both of these properties. We show

that each of these sets is uncountable.

V„M(x) = —,'m(o'x'+I(u4y(z)[y(s) -z],
e

~'~'erfc(z )
'(~) =

z =(m(a/5)' 'x

(4)

which, although it is a quantum harmonic potential,

Z„=m(u(n+-,'), n=1, 2, . . .
is not a classical harmonic potential. v, (Z) de-
pends on energy. '

There are potentials which are both classical
and quantum harmonic potentials. Of course, one
of these is the standard harmonic oscillator (HO)

V„o(x)= —,'m~'x'.

Another is the "harmonic oscillator with centrip-
etal barrier" (HOCB) or "isotonic oscillator, "'

5 a 2V, (x) =
2

v'(ax —1/ax)'

=-'au)(y'~'- v/y'~')' (7)

It has long been known' that for a given & there
exists an uncountable number of confining classi-
cal potentials with one minimum whose classical
angular velocity &u, (Z) is independent of energy, '

xR (E)
~ (Z) = 27/ (2m)~~' dx[Z —V(x)j- ~

xl (E)
(1)

with x~ „(Z) being the classical turning points. We
call these classica/ harmonic potentials. Similar-
ly, there are an infinite number of potentials'
whose quantum eigenvalues are equally spaced,

(u, (n)-=(z„„—z„)/s =(u.

We call these quantum harmonic Potentials. It has
recently been shown' that although these two
classes are equivalent in the WKB approximation,
in fact, they are not exactly equivalent. This was
shown by the example of the Abraham-Moses
(AM) potential, '

p=vax

(o = (2K/m) (a'v) = u), = u), ,

v' -=X(X+ 1),
Z„=@(o[n+-.'-(-', +X —v)j, n=0, 1, 2, . . . .

(8)

(9)

(10)

Ghosh and Hasse' have also shown that there
exists a potential which is a classical. harmonic
potential but not a quantum harmonic potential.
This is the potential of two half-harmonic oscil-
lators (HHO) of different widths:

2m(uI'X', X & 0
VHHO

—,'m~2'X' X 0

such that

2COI(d2 = 4) ~

COI+ (d2

(12)

Thus we have three sets of potentials for a given
the set A(+ = e,), which contains classical

harmonic potentials that are not quantum harmonic
potentials; the set C(&u = v, ), which contains quan-
tum harmonic potentials that are not classical.
harmonic potentials; and the set B(e=a&, = u&, ),
whose potentials are both. In this note we demon-
strate that all three sets are uncountable.

First consider the V, and V»0 potentials of Eqs.
(7) and (12). They both are potentials with two
parameters: (a and v) and (&u, and +,), respective-
ly. From Egs. (9) and (12), the two pairs of two
parameters can be varied continuously in such a
way as to maintain the value of &, even though
these variations continuously change the shapes
of V, and V«0, respectively. This trivally dem-
onstrates the uncountability of the sets B(co) and

A (cu).
The AM potential of Eg. (3) is a member of the

set C (u&). It was obtained by AM' from the har-
monic-oscill. ator potential by using a procedure
based on the Gel'fand-Levitan formalism. ' This
procedure yields a new potential with the same
quantum eigenvalues as the old one except with
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any particular eigenvalue removed, in this case,
that of the ground state. However, since the har-
monic oscillator is a potential with one param-
eter ((b& itself), the AM potential is also a one-
parameter potential. Thus, it only gives us one
member in the set C(&d), not an uncountable num-
ber '

But the discussion of the past two paragraphs
indicates how one might obtain an uncountable
number of potentials which belong to the set C(o&).
Consider a potential which belongs to set B (both
classical and &luantum harmonic), and which has
an & which depends continuously on two param-
eters. Using the AM procedure, we obtain a new
potential with the same eigenvalues, except with
the ground state removed, so the new potential
is still a quantum harmonic potential. We then
demonstrate that the new potential has a classi-
cal angular velocity which depends on energy,
(d, (Z).

We now do this with the HQCB set B potential
of E&l. (7). The reader can consult AM' for the
details of the procedure. Here it is enough to
state the results. With some slightly involved
algebra the reader can verify for himself that the
potential

lim[4(x, y), V,(x)].= 0,
y ~Q (21)
lim (4(&&,y), V, (x)/K&o] = 1.

We now show analytically that o&, (E) is dependent
on energy for all « —v that satisfy E(l. (9). For
large classical energy Z, E&l. (21) shows that
V, (x) is a vanishingly small perturbation on V, (x).
Therefore,

lim (o, (E)= &d.
@~oo

(22)

b,(b, b) =
(

' —1) b(b, b)+b'(b, y),

or y is determined as the solution to

v2=y„2[1+124„(&&,y )+8y 4 „2(&(,y„)].
Putting (25) into (23)

(24)

(25)

For energies close to the minimum of the poten-
tial, V varies as (prime is d/dx)

V(x) = v(x„)+-,'V"(x )(x -x„)'+.. .

= V„+-,'m(o, '(V )(x -x„)'+.. . , (23)

where x is determined by the condition V'(x„) =0.
With the aid of (subscript y means d/dy)

v(x) =v, ( )+v,(x),

V, (x) =2)&f(b&[(X+1-y)4 (&&, y)+y4S(a, y)],
X+1j2 -y

4(z, y) =- (, ),

has Schrodinger eigenvalues

E„=h [(bn&+'(2+ & —v)], n =1, 2, 3, . . .

with orthonormal eigenfunctions

(14)

(15)

(16)

(17)

(18)

(26)

V

I(

5—

(o,2(V )=(o2[1+124,(h. , y )+18y 4„(x,y„)
+4y '4„,(A, y )].

Using (24), g, and 4„„canbe calculated yielding
powers of 4 up to 44. The powers of 4 multiplied
by powers of y in the s&luare brackets of (26) can-
not cancel each other for the continuous range
of allowed A, (or v). This shows that there are an

~ (x) =y (x) ~&2-(~ C,(y y)s-x/ y&x+2&/21 &x+2/2&(y)

(19)

where the )C)„are the orthonormal eigenfunctions
for the unperturbed V0 potential,

( ) -~ s-2/2y&&. +(&/2L &x+(/2&(y) (20a)

2«v"'r(n+1) '/'
I"(&&+ 2+ n)

(20b)
y

I/2

Since y =(va2)x2, the variations of v as a ' which
keeps co constant will not change the scale of y,
but will change the shape of V.

The properties of the incomplete gamma func-
tion I'(&&+-2', y) mean

FIG. 1. For the special ease ~=2, Vo, V~, and V are
plotted in units of @co, as a function of y . V0 is the
thin continuous line, V~ is the dashed line, and V is the
thick line. The eigenenergies (n) are indicated. n =0
shows the ground state energy -(1 —3&/2/4) for V&), and
n =1 shows the ground-state energy for V.
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(27)

3 3$+gV=-,' y -~3+—+
4y (1+y)' ' (28)

gn Fig. 1, p„p„and V are plotted in units of
gw as a function of y'~'. The ground state of V,
is at g, = (1 —3'~'/4) =0.66699. V, goes through
unity at y =1, reaches a slight maximum of -', at
y = 3, and then asymptotically approaches unity
as y goes to infinity. The minimum and location
of p are

y = 0.829 52, y = 0.392 87.

uncountable number of members of the set C(e).
This result can be more easily understood by

considering the special case X= —,
' (v=3'~'/2). Then

the incomplete gamma function is particularly
simple and

Since Eqs. (26) and (27) tell us that

sF(V, / =-', ) = aP (I+
121-~& )
(1+y„)' (30)

the combination of Eqs. (29) and (30) shows us
that (o, (V )0 (g).

Now make a small, positive but finite change g

in the value of A. . Obviously we still have &u, (V„)
Since there are an uncountable number of

values A. between —,
' and (-,'+e), we have shown the

uncountability of potentials in the set C(&u). Note
that &u, (V„)& &u because V, makes the minimum of
p narrower than that of t/, .
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