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It has previously been shown that for a given angular velocity  there exist three distinct sets of potentials with
harmonic properties: the set 4 (w) of purely classical harmonic potentials [their classical angular velocity o, (E) = w
is independent of energy], the set C(w) of purely quantum harmonic potentials [their quantum eigenvalues are
equally spaced, (E, ,, — E,)/% = w,(n) = ], and the set B(w) of potentials with both of these properties. We show

that each of these sets is uncountable.

It has long been known! that for a given w there
exists an uncountable number of confining classi-
cal potentials with one minimum whose classical
angular velocity wa(E) is independent of energy,?

w,(B) = 2r/(2m)"/? fo(E) dx[E -V(x)]"Y/ 2=z,
xr (B)
@

with x, (E) being the classical turning points. We
call these classical harmonic potentials. Similar-
ly, there are an infinite number of potentials®
whose quantum eigenvalues are equally spaced,

w,m)=Epy —E)/E=w. (2)

We call these quantum harmonic potentials. It has
recently been shown® that although these two
classes are equivalent in the WKB approximation,
in fact, they are not exactly equivalent. This was
shown by the example of the Abraham-Moses

(AM) potential,*

Vau &) =3mo®+Hwid i) o) —2], @)
- e—zz

¢(Z)_1r1/2erfc(z) ’ @

z = (mw/n) %, (5)

which, although it is a quantum harmonic potential,
E,=fivn+3), n=1,2,...

is not a classical harmonic potential. wq(E) de-
pends on energy.>

There are potentials which are both classical
and quantum harmonic potentials. Of course, one
of these is the standard harmonic oscillator (HO)

Vio®) =3tmw?2. (6)

Another is the “harmonic oscillator with centrip-
etal barrier” (HOCB) or “isotonic oscillator,”?

2

2
Vobe) =22

m

v¥(ax —1/ax)?

:éﬁw(yl/z_v/yl/Z)Z’ (7)

v =va’x?, (8)
w=(2/m)av)=w,=w,, ®)
v+ 1), (10)
E,=hwn+iE+r=v)], #=0,1,2,.... (11)

Ghosh and Hasse® have also shown that there
exists a potential which is a classical harmonic
potential but not a quantum harmonic potential.
This is the potential of two half-harmonic oscil-
lators (HHO) of different widths:

smw, %%, x=0
Vo = { ' (12)
mw,x?, x<0,
such that
2oy g, (13)
W+ W,

Thus we have three sets of potentials for a given
w: the set A(w=w,), which contains classical
harmonic potentials that are not quantum harmonic
potentials; the set C(w= wq), which contains quan-
tum harmonic potentials that are not classical
harmonic potentials; and the set B(w= W, = wq),
whose potentials are both. In this note we demon-
strate that all three sets are uncountable.

First consider the V, and V,;,, potentials of Eqgs.
(7) and (12). They both are potentials with two
parameters: (a and v) and (w, and w,), respective-
ly. From Egs. (9) and (12), the two pairs of two
parameters can be varied continuously in such a
way as to maintain the value of w, even though
these variations continuously change the shapes
of V, and Vo, respectively. This trivally dem-
onstrates the uncountability of the sets B(w) and
Aw).

The AM potential of Eq. (3) is a member of the
set C(w). It was obtained by AM* from the har-
monic-oscillator potential by using a procedure
based on the Gel’fand-Levitan formalism.” This
procedure yields a new potential with the same
quantum eigenvalues as the old one except with
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any particular eigenvalue removed, in this case,
that of the ground state. However, since the har-
monic oscillator is a potential with one param-
eter (w itself), the AM potential is also a one-
parameter potential. Thus, it only gives us one
member in the set C(w), not an uncountable num-
ber.®

But the discussion of the past two paragraphs
indicates how one might obtain an uncountable
number of potentials which belong to the set C(w).
Consider a potential which belongs to set B (both
classical and quantum harmonic), and which has
an w which depends continuously on two param-
eters. Using the AM procedure, we obtain a new
potential with the same eigenvalues, except with
the ground state removed, so the new potential
is still a quantum harmonic potential. We then
demonstrate that the new potential has a classi-
cal angular velocity which depends on energy,
w,(E).

We now do this with the HOCB set B potential
of Eq. (7). The reader can consult AM* for the
details of the procedure. Here it is enough to
state the results. With some slightly involved
algebra the reader can verify for himself that the
potential

V) =Vo)+V,(x), : (14)
Vl(x)=2}iw[(7\+1-y)‘l>(7t,y)+y‘l’2(?t,3’)], (15)
_ y)\+1/ze—y 16)
‘1’(7&,3?)=m , (
6,9 =T0) - [ ateto-1, (17)

has Schrodinger eigenvalues
E,=fwn+3G+rx=-v)], »=1,2,3,... (18)

with orthonormal eigenfunctions

Xn(6) =, (0) + "IN, B\, y)e™ M 2y QD /2p M3/ (y)
(19)

where the j, are the orthonormal eigenfunctions
for the unperturbed V, potential,

d),,(x)=N,,e'”/zy‘)‘."“/zL,‘,“‘/z’(y), (20a)

1/2 1/2
Nn=<2av I‘(n+1)> . (20D)

T +3+n)

Since y = (va®)x?, the variations of v as g~2 which
keeps w constant will not change the scale of y,
but will change the shape of V.

The properties of the incomplete gamma func-
tion I'(A +3%,y) mean

lim{&()\,y), Vl(x)} =0,

y=>0 (21)

lim{®(,y),V,(x)/hw}=1.

g

We now show analytically that w_(E) is dependent

on energy for all g — v that satisfy Eq. (9). For
large classical energy E, Eq. (21) shows that
V,(x) is a vanishingly small perturbation on V(x).
Therefore,

lim w,(E)=w. (22)

E->w®
For energies close to the minimum of the poten-
tial, Vv varies as (prime is d/dx)

V) =Vi,)+3V"(x, ) =x,)2+. ..
=V +imw AV, )& =x,)2+. .., (23)

where x,, is determined by the condition V'(x,)=0.
With the aid of (subscript y means d/dy)

A+3

<I>y(>\,y)=< 5

—1)«><x,y)+<»2<x,y), (24)

x, ory, is determined as the solution to
v#=y,2[1+128 (\,v,)+8y,®, 2(\,y,)]. (25)
Putting (25) into (23)
WAV )= w?[1+128 (\,y,)+18y & (A,9,)

+4y,%® (A ,)]. (26)

Using (24), ¢, and ¢, can be calculated yielding
powers of & up to &%, The powers of ¢ multiplied

by powers of y in the square brackets of (26) can-

not cancel each other for the continuous range
of allowed A (or v). This shows that there are an

o]

FIG. 1. For the special case A=%, Vy, Vi, and V are
plotted in units of 7w, as a function of y1/2, V; is the
thin continuous line, Vj is the dashed line, and V is the
thick line. The eigenenergies (z) are indicated. » =0
shows the ground-state energy (1 -3t/ 2/4) for Vs, and
n =1 shows the ground-state energy for V.
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uncountable number of members of the set C(w).
This result can be more easily understood by

considering the special case A=1 (v=31/2/2), Then

the incomplete gamma function is particularly
simple and

24,9175 (27
3 3 2 |

In Fig. 1, V,, V,, and V are plotted in units of
7w as a function of y!/2. The ground state of v,
is at E,=(1 - 3'/2/4)=0.56699. V, goes through
unity at y =1, reaches a slight maximum of $ at
v =3, and then asymptotically approaches unity
as y goes to infinity. The minimum and location
of v, are

V,.=0.82952, y =0.39287. (29)

Since Egs. (26) and (27) tell us that

WAV, A=3) = w? (1+1(21(—1+y-f-)";~)-> , (30)
the combination of Eqs. (29) and (30) shows us
that w,(V,)# w.

Now make a small, positive but finite change ¢
in the value of . Obviously we still have w,(V,,)
# w. Since there are an uncountable number of
values X between % and (3 +¢), we have shown the
uncountability of potentials in the set C(w). Note
that w (V,)>w because V, makes the minimum of
V narrower than that of V.
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