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Inequivalence of the classes of quantum and classical harmonic potentials:
Proof by example
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It has been proven by explicit construction that there exists a quantum harmonic potential {equally spaced energy

levels) which does not belong to the class of classical harmonic potentials (frequency independent of energy). In this

paper we prove the converse, also by example, that all classical harmonic potentials are not necessarily quantum

harmonic potentials. Thus all classical harmonic potentials are not quantum harmonic potentials and vice versa.

I. INTRODUCTION

As has been reported earlier' there exists an
infinite number of potentials (called generalized
classical harmonic potentials) where the classical
frequency ~, is independent of the energy. There
also exists an infinite number of potentials which
support equaily spaced (level spacing= h~, ) quan-
tum eigenenergies. If &, = co, then in the WEB
approximation these two classes are equivalent.
It has been shown by Nieto and Qutschick' that
there exists at least one potential where the ener-
gy levels are equally spaced but the time period
of a classical particle depends slightly on its en-
ergy. This is the potential, considered by Abra-
ham and Moses, ' which is obtained by removing
the ground state from the spectrum of the simple
harmonic oscillator through the Qel'fand-Levitan
formalism. ' The resulting spectrum is identical
to the one for the harmonic oscillator except that
the ground state is missing and the corresponding
potential, although anharmonic, approaches the
harmonic-oscillator potential for large displace-
ments. But whether the converse is true, i.e.,
whether there exist classical harmonic potentials
which are not quantum harmonic potentials, re-
mains an open question. The aim of this paper is
to answer this, also with an example, and thus
complete the proof of inequivalence to the con-
verse proposition.

II. THE EXAMPLE

The simplest example of the stated behavior is
the asymmetric matched harmonic oscillator

( )
gm&~x, x ) A

Vx =
&m+2 X, X -O.

It is obvious that the time period of a classical
particle in such a potential is independent of its
energy. In fact, if T, and T2 are the periods for
the two spring constants ~, and cv„respectively,
then the time period in the potential (1) is simply
given by the arithmetic mean, i.e. ,

T=-,"( T+r,),
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where g, and x2 are the classical turning points
determined from E = —,'~e, '&,'= &~+2'x2'. The
solution of Eq. (3), as expected, is

E„=(n+—,') 5
1 2

(4)

The eigenfunctions of the Schrodinger equation
for the potential (1) are parabolic cylinder func-
tions and the normalized solutions with the cor-
rect asymptotic behavior are

ND($, ), x ~ 0

q(x} =

~ N,D,(-$,), x ~ 0,
where $» =(2m+»/5)'~2x are dimensionless
quantities, and the normalization constants are
given by
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Here, g(x) is the logarithmic derivative'of the

This classical frequency determines the WEB
energy levels which are obtained from the Wilson-
Sommerfeld quantization rule
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gamma function. The quantum numbers v and p,

are, of course, related by the condition

E=(v+ —,')h~, =(p+-2)5~, ,

Q —1
p, = (xp+

TABLE I. Quantum numbers & and quantum number
differences && for two values of 0'.

D„'(0) D,'(0)
' D„(o) 'D, (o) ' (6)

Q = M&/(d2 .
Since the potential is asymmetric, the solutions

do not have good parity and v will not be an inte-
ger. The matching conditions for the wave func-
tion and its derivative at g =0 yield

0.1787
1.4934
2.8348
4.1675
5.4990
6.8337
8.1670
9.4997

10.8335
12.1668

1.3147
1,3414
1.3327
1.3315
1.3347
1.3337
1.3327
1.3328
1.3333

0.0567
1.1659
2.2784
3.3886
4.5003
5.6110
6.7224
7.8333
8.9443

10.0556

1.1092
1.1125
1.1102
1.1117
1.1107
1.1114
1.1109
1.1112
1.1111

which reduces to4

I'((1 —v)/2)1 (-p, /2) 1 0I"(-v/2) F((1 —p.)/2}
(7)

Equation (7) can be solved numerically to find
the quantum numbers v, p, as a function of 0., see
Fig. 1. As expected for n = 1, the quantum num-
bers become integers. For n & 1 the quantum
numbers are simply obtained by the replacement
n-n ' and v- p, . As a deviates more and more
from unity, the levels become more unequally

sin[-,'w(v —p) ]+sin[-,'m(v+ p) ]
sin[ —,'7j(v —p) ] —sin[2w(v+ p,) ]

(8)

which is satisfied whenever (v+ p) is an even in-
teger. Using Eq. (5) we obtain, for large v and p. ,

spaced for small quantum numbers but the spacing
approaches the WKB value for large quantum num-
bers, see Table I. To show this analytically we
convert the I' functions with negative arguments
in Eg. (7) to those with positive arguments and
use the asymptotic form of these functions for
large arguments' to arrive at

2n
p 1+&

where n is an integer.
The level spacing for large quantum numbers

comes out to be

2R4E =S, 4v -h
~&+ (d2

which is precisely the WEB value.
In conclusion, we want to point out that the sim-

ple example provided here completes the proof of
the inequivalence of the classes of classical. and
quantum harmonic potentials. We see that although
the two sets overlap, neither is contained within
the other. After submission of the maDuscript
the authors were informed that one can also ob-
tain nonequal level spacing in half an oscillator
potential by imposing nonstandard boundary con-
ditions at the origin. '

FIG. 1. Quantum number v plotted as a function of a.
For a ~, v--2, and for ~ 0, v-~. The intersec-
tions of a vertical line, at a particular value of G.', with
the different curves give the quantum numbers of the
system at that value of of.
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