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Higher-twist term in inclusive pion production at large transverse momentum
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We calculate the absolute rate and kinematic dependence of the cross sections for the high-twist subprocesses
qG~mq and qq~m G in perturbative quantum chromodynamics (QCD). These cross sections are used to estimate the
high-twist contribution to large-transverse-momentum inclusive single-pion production in hadronic collisions. We
compare the normalization of these terms with leading-order minimum-twist QCD processes such as qG~G. The
high-twist contributions are shown to be quantitatively important for pT & 6 GeV' and xT & 0.5, and they should be
included in detailed analyses of data. We discuss cross sections and charge ratios, and we comment briefly about
inclusive spin-correlation measurements at large p~,

I. INTRODUCTION

Definite predictions for the production of hadrons
at large transverse momentum have been obtained
from hard-scattering models based on quantum
chromodyna. mics (QCD). ' ' The observation that
the leading singularities in QCD perturbation
theory factor in such a way that they may be ab-
sorbed into scale-dependent constituent distribu-
tion and fragmentation functions has allowed the
calculation of a large number of hard processes. '
Several groups have investigated in detail the phe-
nomenology of large-p~ hadron production in the
framework of leading-order QCD. '

The simplest and best known of the hard-scatter-
ing predictions is that the 90 cross section should
attain the form

Pr der/dPz,
' =f,(xr ln(P~'/A-')).

Here xr = 2pr//s, and f is determined from a
convolution of calculable cross sections with con-
stituent distribution and decay functions which
are, in principle, measurable in other processes.
Perturbative QCD predicts two types of correc-
tions to Eq. (1.1}. One is logarithmic, 1/1n(pr'/
A'), and the other is of an inverse-power form,
m'/pr'. Both types can result in significant mod-
ifications of Eq. (1.1}. A complication as yet poor-
ly understood is associated with the role of "intrin-
sic" hadronic constituent transverse momentum
and its attendant smearing of do/dpr'. Partial
calculations of the explicit higher-order perturba-
tive terms which give nonleading logarithmic cor-
rections to large-p~ production indicate that they
can be large. "

In this paper, we concentrate on the role of high-
twist inverse-power terms in inclusive large-p~
single-pion production. As a result of such terms,
Eq. (1.1) is replaced by

dg f.(x~, ln(p~'/A')) f,(xr ln(p '/A'))

dP ~ PT P~'

(1.2)

where the f 's are now convolutions involving non-
minimal cross sections and/or generalized multi-
parton densities. ' Our specific contribution is
a detailed evaluation of those p~

' terms due to
the hard-scattering subprocesses qg-qTJ and

qq —mG, including absolute normalization. In ad-
dition to their different dependence on p~, t'he high-
twist amplitudes provide different expectations
for x~ and x~ dependences, as well as different
spin and charge correlations from the leading
minimum-twist p~

4 term.
It has been emphasized for some time that in a

hard-scattering expansion involving had~ons, a
very significant role may be played by subprocess-
es involving "constituents" other than the conven-
tional single isolated quarks and gluons. ""Stated
otherwise, pairs of quarks or gluons from a given
hadron may participate together in a coherent
fashion in the hard-scattering process, sharing
momentum in a well defined way. Examples in-
clude q+ G- (qq)+ q, q+q- (qq)+ G, and (qq)+q
(qq)+q. Because the processes involve systems
such as (qq), containing more than the minimum
number of constituent fields, we label these "high-
er-twist" processes, in analogy to similar effects
identified in the operator-product expansion for
deep-inelastic scattering. " Recently, Brodsky
and Lepage have developed a detailed systematic
method for incorporating hadronic binding effects
in QCD perturbative calculations. "

Although they are suppressed by an inverse pow-
er at large p~, the high-twist cross sections de-
crease less r apidly as x~- &; e.g. , as x~- &,

f,/f, —(1 —xr) ' in Eq (1.2). Th. is is an important
compensating advanta. ge. The high-twist subpro-
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cesses are enhanced further by "trigger bias. ""
If a ha, dron is detected with a given p~, its parent
quark or gluon jet must have had even larger p~.
Because the production cross section falls rapidly
with p~ the hadron cross section is suppressed
considerably with respect to the jet cross section
at the same p~. By contrast, in the processes
qG-qm and qq-mo, the final n is produced direct-
ly, without the necessity of jet fragmentation, and
there is no trigger-bias suppression.

Many high-twist processes exist which contribute
to the production of a single pion at large p~. For
purposes of classification, we may distinguish
high-twist effects associated with the hadronic
structure of the initial hadrons" from those as-
sociated with the final observed pion. " All of
these effects are potentially significant. I'he kine-
matics of large-p~ production probes the initial-
hadron structure functions at relatively large val-
ues of their fractional momenta z, , precisely in
the kinematic domain in which high-twist and other
hadron-wave-function effects are most important.
For example, predictions for the x~ a,nd p~ depe~d-
ences of charge ratios depend on assumptions
about the large-x, . dependence of the ratio of up-
to down-quark distribution functions M(x;)jd(x;).
This ratio is affected both by high-twist phenomena
and by assumed symmetry properties of the wave
functions of the initial hadrons. " Expectations
for quark- or gluon-jet cross sections are also
not immune to significant high-twist modifications.

In this modest beginning, we limit the scope
of our investigation to those p~

' high-twist effects
associated with the final pion. Furthermore, we
examine in detail only the 2- 2 processes ("lowest-
order") qG-qv and qq mG. These are the only
2 - 2 processes giving p~

' contributions to the
cross section. In quark-quark or gluon-gluon
scattering, 2- 3 body subprocesses are required:
qq- wqq, QG- mqq. Our present results therefore
provide a lower bound on the potential size of high-
twist effects in high-p reactions.

To construct coherent amplitudes for qq-mQ and
qc- mq, we follow the methods developed by Far-
rar and Jackson" and extended by Brodsky and
Lepage" for exclusive hadronic reactions and
electromagnetic form factors. The absolute nor-
malization of the rates for qq- wg and qQ- mq is
determined in terms of the pion's weak decay
constant f, or in terms of the pion electromagnetic
form factor ~, (Q') at large Q'. These procedures,
used here for high-p~ amplitudes, have already
been tested in other constituent-scattering proces-
ses. In particular, the methods were used pre-
viously by Berger and Brodsky" '~ in their treat-
ment of mq- y~q and lead to a successful, predict-
ion of the dominant longitudinal polarization of

massive virtual photons" in nN (l~)X at large
Berger" investigated high-twist phenomena,

in semiinclusive deep-inelastic processes QV-
$'mX, and predicted joint correlations in the y and
z variables which have now been observed. "
Finally, our approach is consistent with that used
by Farrar and Fox' in their study of mq- mq. In
contrast to a previous claim, "we find tha. t the
requirement that the constituent quarks combine
to form a color-singlet pion state produces no
extraordinary suppression of the cross sections
for qq- nG and qG- nq.

In Sec. II we present an explicit derivation of
the amplitudes and cross sections for qq-wG and

qG —mq. We develop two independent ways to nor-
malize the cross sections. The principal method
follows the work done on higher-twist phenomena
in other reactions, as mentioned above. In the
second method, we begin with 2-3 cross sections
[e.g. , for qq (qq)G] and then convolute these
with an empirical recombination function for qq-p.
The empirical. function is taken from fits to data
at low p~ in terms of the quark-recombination
model. " The normalizations are in good agree-
ment.

In Sec. III we discuss numerical results. We
derive some simple a,nalytic approximations which
enable us to understand the ratios of different
contributions to the overall cross section in the
limit g~- 1. Because we are considering here
only a portion of the possible higher-twist effects
we do not attempt a complete analysis of data.
Nevertheless, we discuss the charge ratio do
(m N- m N)/dv(v N-m N) since this is sensitive
to the presence of higher twist. Using the con-
stituent-interchange model (CIM), Gunion and
Jones" found a very large va, lue for this ratio,
whereas the data show small values consistent
with unity. " An indication that our normalization
of high-twist effects is reasonable is to be found
in the fact that our results are consistent with
charge ratio data at 90 . There may be a problem
in the forward direction, but it is not a problem
of the normalization of higher-twist effects. Sec-
tion III aLso includes a brief discussion of the spin
structure of the high-twist subprocess. In p(0)p(k)
—~X it is possible to define spin-spin asymme-
tries" "which measure the ability of the consti-
tuents to "remember" the proton spin and which
are sensitive to the underlying spin dependence
of the hard- scatter ing mechanism, Simple cal-
culations of the helicity amplitudes yield
A~~(q~q~ —vG) = —I and A~~(q~G —vq~) &O. It
may be possible with measurements at large x~ to
observe spin effects associated with higher twist.

Section IV includes some discussion of our con-

clusionss.
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II. ELEMENTARY PROCESSES

In this section we evaluate the elementary pro-
cesses

—P2

CkqB

q&G q 71

(2.1a)

(2.1b)

A. Coherent model

We indicate the coherent-model amplitude by
the suggestive notation

&a va I «) =
&e~va I ~~~aG) &cava l~), (2.2)

where Q, p denote distinct quark flavors. To
motivate our specific amplitude for qq- mG, we
consider first the single quark-exchange process
sketched in Fig. 1(a). In this 2-2 process, the
pion emerges from an a Priori complicated qqm

vertex whose momentum dependence and absolute
normalization we wish to specify in some detaii.

We take all external particles to be massless
and on shell. The transverse momentum of the
pion in Fig. 1(a) is thus

(2.3)

where 5', t, 9 are the usual. 2-2 invariants. For

We treat only charged-pion production so as to
avoid perturbative QCD singularities (which are
properly associated with scaling violations). Iso-
spin invariance allows us to extend our results to
m' production as well.

We will. in fact present two different models for
these processes, which we label "coherent" and
"recombined. " In the coherent approach, we cal-
culate a definite underlying 2-2 scattering ampli-
tude, including an explicit pion wave function. We
follow an approach which has been successful in
treatments of form factors, "large-g Drell- Yan, "
and other exclusive processes. "" Details of the
coherent model are presented in Sec. IIA and will
form the basis of all calculations done in Sec. III.

In the recombination approach presented in Sec.
IIB, a 2-3 cross section is convoluted with a
probabilistic qq —x recombinatiop function, yield-
ing an effective 2-2 moss section. We include
this extra calculation primarily to show that our
estimates for qq-mQ, qG- qw are not strongly
dependent on assumptions concerning the transi-
tion from quarks to hadrons. Within the uncertain-
ties inherent in the recombination approach, the
results in Sec. IIB are completely consistent with
those of Sec. IIA.

In Sec. IIC we summa. rize the elementary cross
sections for (2.1a), (2.1b) in a simple, phenomen-
ologically useful form and make some elementary
comparisons.

P) P5

—
P

2

(p3

Pl

(bj

P5

FIG. 1. (a) Single-quark-exchange amplitude for qq
xG and (b) hard-gluon approximation for the general

qqvr vertex, valid when the exchanged quark is far off
shell.

fixed c.m. scattering angle, the exchanged quark
in Fig. 1(a) is offshell, carrying squared four-
momentum proportional to p~'. Thus, if we think
of the pion as a qq system, the large-p~ process
in Fig. 1(a) probes the pion wave function with one
of the constituents far off shell. Appealing to the
asymptotic freedom of QCD, we represent this
large off-shell momentum dependence by the ex-
change of a single hard gluon, as sketched in Fig.
1(b). The unshaded oval in this figure encompass-
es all (and only) soft binding effects. " Normaliza-
tion of these soft effects may be obtained in terms
of the pion weak decay constant f„All hard-scat-.
tering effects in Fig. 1(b) are associated with the
single exchanged gluon which is off shell by an
amount proportional to p~'.

The procedure just outlined has been used to
obtain a good description of pion-form-factor
data. " Moreover, it provided a remarkably good
prediction for the magnitude and ~~ dependence
of an unexpected longitudinal polarization of the
massive virtua, l photon in m~- @*X.""

Additional gluon lines may be inserted in Fig.
1(b). These additional amplitudes are of higher
order in the strong coupling and presumably sup-
ply logarithmic corrections to our formulas. "
We will restrict our attention to the exact 0(g')
calculation, including the graph in Fig. 1(b) and
its four gauge-invariance partners.
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We consider, then, the full underlying QCD
amplitude for

q„(p„i)+qz(p„j)- ~(p„k)+qz(p„ l)+ G(p„a),

For simplicity we ignore "primordial" transverse
momentum within the pion. The sharing of longi-
tudinal momentum is expressed through

(2 4) P3 zg~ P P$ z2P7f ~ (2.9)

where i, j, k, ), g are color indices. The five
contributing graphs are shown in Fig. 2. In Feyn-
man gauge, the amplitude for the first graph, Fig.
2(a), is

(p, —p.)'('p, +p,)'~, = i g 'c,[u(p, )y" (p', + p', )y"u(p, )j

&&[v(p,)y v(p.Hc"* (2 5)

The pion is considered massless: p„'= 0. Intro-
ducing the invariants 9= (p, +p,)', t = (p, —p,)',
@ = (p, -p„)', and simplifying the result, we obtain
the amplitude

zA' Ti3 Q,

gp+

oval

z,z, ei

The color factor is

c,= (T'T'), ,T'„:. (2.8)

x [-4(P, z.P, )"-v(P.)y'P'„u(P, )

(P.)y'y" (P,)) (2.10)

The amplitude is simplified when the final q„q~
state is projected onto a state with spin and color
quantum numbers of a pion.

Pseudoscalar projection:

1 — -1
v(P, )u(P, ) - ~2 v ,(P,)u, (P,) =

~2
P',y, .

(2. 'f)

ig'T', ; 3g" c"*
(q&s I Q~qa), G)-

6 6 z,z2stM '

with

elf'(z„z.) =&v(P2)y'y" u(p&)

(2.11)

Proceeding in a similar, manner for the other four
graphs in Fig. 2, we obtain for the total 2-3 am-
plitude in Eq. (2.2)

Color-singlet projection:

C,- n„C, (ijafa) = — T'„-=C,. (2.8)
1 ~ ~ — 1

k, f
where

+ &"v (p.)y'p'. u(p. ), (2.12)

P P5

A. = 16z,gl —16z,su,

B'= 32up," —32fp~2+ 18(t"—u)p",

(2.13)

+ 32(zg —z, u)p", . (2.14)

Note that

-P
2 - P4= —z2P~

p, Lj'=A~p", st~ = o, (2.15)

'
(a) (b) as is required by gauge invariance. The Eq. (2.12)

thus contains all the appropriate "color cancella-
tions" which have been argued previously to sup-
press the contributions of qq- 7tg and qQ- qm. "

For the pion projection amplitude in Eq. (2.2)
we take the asymptotic form" [evolved fully in
ln (q'/A')]

(c)
(q„q (~) = W3f,z, z, 5(1-z, —z,)dz, dz„ (2.18)

where f„ is the pion weak decay constant, f, = 93
MeV. A similar procedure yields the correct
normalization for the pion form factor. "" Com-
bining Eqs. (2.11) and (2.16) we find

(e)
FIG. 2. Full set of Feynman graphs for q&qz (q&q&)G.

(2.17)

From this we obtain the spin- and color-averaged
squared matrix element
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~(q;q. -~G)= ..-
colors, spin

2 6 32 (9/~2 ~ s/f 2)

l&q qsl~G&I'

z, (q„c-q, ~) =f„'g'A[ i/s'--f/a'1

6f.' 2 4=g' " —1—z 1+
27 (1+cos 8}'

(2.19)
I

where cos 6=cos 8, (q„,q~).
It is useful to recall at this point the results of

a QCD analysis of the pion electromagnetic form
factor. " At large Q', one obtains

F,(q') =16w a, (Q') f„'/Q . (2.20)

Thus, both Eqs. (2.18) and (2.19) can be reex-
pressed in terms of F, (R), eliminating f,~.

As in the case of the form factor, Eqs. (2.18)
and (2.19) are modified by modest logarithmic
effects (ln 0/A') when the full Q' evolution of the
pion wave function Eq. (2.16) is incorporated. "
We will ignore such logarithmic corrections
throughout this paper.

,f'128 1 1
81 (1+cos 8)' (1—cos 8)'

(2.18)
where cos 8 = cos 8, (q„, m). The expected "higher-
twist" scale dependence is present in the form
f„'/S. Note that the normalization in Eq. (2.18)
involves no free parameters.

Finally, we may obtain the corresponding mean-
squared matrix element for q~o-q~m either ab
initio or by a simple crossing, 9 ——t":

proach, we begin with the perturbative QCD cross
section for the 2-3 process q q~- q q t". For
distinct flavors A~B it is ea'sy to see that the
lowest-order 2-3 cross section is finite and well
behaved for m»'= (p„+ps)' —0. Given the exis-
tence of 2- 3 processes in the theory, it is possi-
ble to compute the cross section for production of
an approximately collinear, on-mass-shell quark-
antiquark pair. As pictured in Fig. 3, the quark
and antiquark can then produce hadrons either by
fragmenting individually or by recombining to form
a single meson with the combined momentum of
the pair. This recombination is not a short-dis-
tance effect and thus is not calculable in perturba-
tion theory. However, if we assume that recom-
bination is a universal phenomenon, we can use the
quark-recombination probabilities obtained by
Das and Hwa, "by DeGrand and Miettinen, "and
by others" in the study of pion production at low

p~. In contrast to the coherent model of the pre-
vious section, the recombination model leads to
a probabilistic, incoherent approximation

1&q~q. le& I' =
l&q~q. lq,q, G& I'l&q q. l~&f'. (2.»)

We now address spin and color constraints in
the recombination model. There are two approach-
es to this question, and we will consider both in
order to put to rest any confusion about the role
of color projection. In the usual recombination
model' the spins and colors of the quark and anti-
quark in Fig. 3 are assumed to be uncorrelated.
The requirement that the produced pion be a color-
singlet pseudoscalar is incorporated in the nor-

B. Recombination model

The results in Eqs. (2.18}and (2.19) depend not

only on perturbative QCD per se, but also on the
assumption that the qq representation in Fig. 1(b)
provides a quantitative description of physical
pions. While the methods used above have enjoyed
success, it is nonetheless worthwhile to investi-
gate the extent to which our results are sensitive
to the manner in which we append hadrons to a
theory which does not yet contain them. With this
in mind, we now digress briefly from the main
line of this paper and recompute the mean-squared
matrix elements for (2.1a) and (2.1b) using a rath-
er diff erent, "softer" picture of the transition
from quarks to pions. The principal conclusion
of this exercise is that our results are not strongly
dependent on details of the hadronization model
for qq- m. The discussion below is self-contained
and, without serious loss of content, the reader
may prefer to skip directly to Sec. IIC.

Turning to specifics of the recombination ap-

P
A

B

PB

z P

'e Pg' A+ 8

(bj

FIG. 3. Mechanisms for hadron production from a
parallel quark-antiquark pair: (a) individual hadroniza-
tion and (b) quark recombination.
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malization of the recombination function

l(q q, l~&l' =R.(z„z,)

=a, z, z25(I —z, -z,), (2.22}

where the invariants 9, t, Q are as defined after
Eq, (2.9).

In order to combine Eqs. (2.22) and (2.26), we
first simplify the 2-3 phase space for q q~-q„q~t":

with a, —-1.""" Thus, if we use the 2- 3 color-
and spin-summed QCD cross section and convolute
with Eq. (2.22), we obtain a consistent normaliza-
tion of the effective q„q —mQ cross section.

Alternately, we can recompute the 2- 3 cross
section in Eq. (2.21) projecting out the color-
singlet component of the final-state qq pair and
inserting a factor —,

' to account (statistically) for
the projection of spins. The two-jet system in
Fig. 3 thus has the quantum numbers of a pion.
If the two jets are sufficiently close in invariant
mass, the probability that they wil. l recombine
to form a pion should approach unity. The nor-
malization of the singlet-projected recombination
function is thus determined:

1

dz,dz~R(z~, z2) = 1 = dz~ a„z,(1—z,).
0

(2.23)

H-=„
color, spins

l II (q~qs —q~qsc) I (2.24)

where 3)I is the full 2-3 QCD amplitude. We again
simplify the kinematics and use the parallel-con-
figuration replacements in Eq. (2.9}. It is stra, ight-
forward to obtain

This procedure yields D„=6. This explicit color-
singlet modification of the recombination model is
reminiscent of the "preconfinement" picture" of
hadronization inspired by leading-logarithm per-
turbative QCD. In essence, we have simply iden-
tified a sufficiently small mass color singlet with
an individual hadron.

To implement the recombination model, we first
need the spin- and color-averaged squared ampli-
tudes for the underlying 2- 3 processes. The
required spin sums are evaluated in Ref. 34. The
modifications imposed by the color-singlet restric-
tion are discussed in the Appendix. For the pres-
ent, we restrict consideration to the color-aver-
aged process q q -~q~G, and define

d,P(1 + 2- 3+ 4+ 5)

-=(») '. .. , 2E'6"'(P.+P.-P. -P, -P.)
2=3 m~

(1+2-X+ 5) d, Pg- 3+ 4),
27r

d mz'/2z -am'/2w,

1
d P(X-3+ 4}-—dz, .

(2.28)

(2.29)

The parameter b.m' in Eq. (2.28) is a maximum-
mass cutoff for identifying the final-state qq sys-
tem with a single hadron.

Using Eqs. (2.28) and (2.29) we obtain the effec-
tive 2- 2 mean-squared matrix element

Pl(q&qz- vG) = l(q~qsl&G&l' (color averaged), (2.30)

E =
2 8 dz, dz, H(z, )R(z, )

&m

g' 8 a.gm '(2t '+2%t + 5. S')(3t"'+ 33t+ 'ly')

16m 2 729 ef'9'

, a b m' 16 (cos 6'+ 9)(3 cos 8'+ 25)
16m'9 729 (1 —cos 8}'(1+cos 8)' (2.31)

with cose as defined after Eq. (2.18). Results for
the other color-averaged process and for both
color-singlet processes are quite similar and are
listed in the next section.

Note that, unlike the coherent model, the nor-
malization of Eq. (2.31) is somewhat uncertain
due to the cutoff am'. We will use b, m' = (0.5
GeV)' as a plausible value in subsequent calcula-
tions.

(2.2V}

where X is identified with the final q q~ pair. In
the paralleL-kinematics approximation we may
replace

64 q'H
yP@2

with

H=z, z2s (4u +4t +tie) —3zg (9 —t )

(2.25)
C. Elementary cross sections

Vfe now summarize and compare the elementary
pion-production cro ss sections resulting from the
mechanisms described in the preceding sections.
These can be written in the general form

+ t 2@2 + 6$2t 2 8$,3@+$3t (2.26) s2 4& Q
(ab-cm) = „," ~- ' F(cos8}, (2.32)



HIGHER-TWIST TERM IN INCLUSIVE PION PRODUCTION AT. . . 105

where s, is a higher-tourist scale fixed by the mod-
els, and. the c.m. scattering angle is defined by

256 1+z2
q„qs-mG: F(z) 81 (1 — )'(1 )' ' (2.36)

t = —(1 —cos 8) s/2 . (2.33) (2.37)

For comparison, recall that an elementary 2-2
QCD cross section (e.g., for qq-qq) is of the
form

2
q„G-q,~: F(z)= —(1-z) 1+,j1+z)2

(2.38)
- (ab - cd) = .„; B(cos 8),do

s (2.34) t =(p, -p,)'. (2.39)

where f3 —= ( III'&/g'.
Coherent model. The higher-twist scale s, is 2s, =a,~ . (2.40)

Aecombination models. Here the scale s0 is

so=16m'f, '.
The angular functions F in Eq. (2.32) are

(2.35)
Keeping the angle assignments used above, we
have

16 (z'+7)(z'+15)F(z) =
81 (1 ),(1 ), (color averaged),

16 (z'+9)(3z'+25)=
729

—
(1 ),(1 ), (color singlet);

(2.41)

(2.42)

4 (z' -z +2)(2z' —3z +3)
q~G —qzz' F(z) =

27 (1 (», (color averaged),
+Zi J

(2.43)

1 (5z' —6z +9)(7z' —8z +13)F(z) =
486 (1 )(1

—
), (color singlet) . (2.44)

In Fig. 4 we show results for (n, /4) s,F for all
models and processes with a., =0.25, ~' =(0.5
GeV)', and f, =93 MeV. As discussed in the pre-
ceding section, the constants in the recombina-
tion model are a, = 1 (color averaged) and a, = 6
(color singlet). Several comments are now in
order.

(1) In the region relevant for high-pr physics,
say

~
cos9,

~
&0.6, we find that

4

F (qq —~G)» F (qG —qm) . (2.45)

00

10
—1.0 -0.5 0.0 0.5

COS9c m

1.0 —0.5 0.0 0.5 1.0
COS(9c m

FIG. 4. Angular dependence of the higher-twist
squared matrix elements for qq mG, qG qm.

Thus, the particular higher-twist mechanisms we

I

are studying will be more important in mN-mX,
mp -mX, and pp-mX than in pp-mX.

(2) The angular functions have strong forward
and/or backward poles (comparable to those of
2-2 QCD squared matrix elements). The double
poles correspond to zero-angle scattering of one
of the pion constituents. In contrast, for cos L9

= 1 in q~G - q~m, q~ has been scattered through
180, and the cross sections are greatly reduced.
The coherent-model amplitude for qQ —qm van-
ishes for cos(9 =1, as expected from a simple heli-
city argument.

(3) Except for the very forward region for
qG —qn, the coherent- and recombination-model
predictions are extremely similar in both angular
dependence and magnitude. It is interesting in
this regard to note the similarity of the effective
higher-twist scales s, in Eq. (2.35) and (2.40),
with s,= (1 GeV)'.

(4) When differences due to the values of a„and
the statistical spin factors are removed, the color-
singlet restriction does not significantly decrease
the cross section. Because this is contrary to
expectations based on a simple examination of
the color factors, " the result is discussed in
more detail in the Appendix.

Finally, to give some meaning to the vertical
scale in Fig. 4, we note the typical 2-2 con-
stants B in Eq. (2.34) at 90':



106 E. I, . BKH, G E8. , T. GOTTSCHALK, AND D. SIVEg S
I

~2 (
fl (0) 3 (q~qs q~qs)

(qgG qgG) ~

(2.46)

III. NUMERICAL ESTIMATES

A. Objectives

Our aim in this section is to provide quantita-
tive estimates for the magnitude of higher-twist
modifications to cross sections and charge ratios
at large p~. It would be most illuminating to
confront the high-twist cross sections directly
with data. However, to make such a comparison
meaningful, we would have to deal in detail with
at least two significant problems. These are (i)
smearing of the predicted p~ dependence asso-
ciated with the intrinsic k~ of initial constituents,
and (ii) modifications (damping) of our expected
p~

' dependence associated with logarithmic
ln(P r'/A') scale breaking in the initial-hadron
structure functions. Furthermore, direct com-
parison with data at this point is premature. As
discussed in the Introduction, we are aware that
we have evaluated too few of the potentially signi-
ficant high-twist terms. Instead, we shall com-
pare our high-twist cross sections with yields
expected from mimimum-twist 2- 2 QCD pro-
cesses. In other words, we intend to compare
the behavior of the p~

' and p~
' terms in Eq.

Incorporating the higher-twist denominator s
in Eq. (2.32), we thus estimate a typical suppres-
sion of 10 —10 ' for higher twist vs 2-2 rnini-
mal-twist QCD at currently accessible energy
scales. However, if we incorporate the known
particle-jet suppression for 2-2 QCD plus frag-
mentation (typically 10'), we expect that the higher-
twist single-particle yield is not negligible, par-
ticularly at large x~. In the next section, we pro-
vide specific quantitative expectations.

(1.2), in an attempt to ascertain over what range
of the kinematic variables the high-twist term is
expected to be a significant "correction. "

Our procedure is not without ambiguity. For
example, we are still required to make choices
of structure functions. However, these choices
affect both the 2-2 minimum-twist and higher-
twist cross sections in roughly the same way,
and one may hope that subtleties cancel in the
comparison. We will ignore intrinsic k~ smearing
altogether. The principal source of uncertainty in
the comparison is associated with our choice of
quark-to-pion or gluon-to-pion fragmentation
functions. We need such functions in order to
convert the minimum-twist 2- 2 QCD jet yields
(e.g. , qq-qq) into pion yields (qq-mX).

x, =-t/s,
x„=-u/s.

(3.2)

(3.3)

Here, t =(p„—p, )' and u =(ps-p, )'.
We denote by G, ~„(x,)dx, the probability of finding

a constituent a (in incident hadron A) with momen-
tum fraction between x, and x, + dx, .

In the case of a minimum-twist 2- 2 hard-scat-
tering process such as qq-qq, q-n, the inclu-
sive yield is"

B. Analytic results

We begin with formal expressions for the inclu-
sive cross sections E dc/d3p for the process
A +B-m +X. We imagine that constituents a and
b of particles A arid B scatter to produce a state
c plus anything. State c is either the x (as in

qq -xq) or must fragment to produce a pion (as
in qq - qq, q-x). In the c.m. frame of A and 8,
we define

(3 1)

3 dx, dx, G, &„(x,)G,gs(x, ) ——
f

'; dx 9(1 —x)
7I' p ' p z=x ix +x !xu a

(3.4)

We now adopt simple forms for the distribution
~ functions:

I

we may obtain a simple analytic result":

(3.5)
g&&+ &y+ & ~+2

Dn A. y&~oyI A.yc

and we express the 2-2 hard-scattering cross
section in the form

g
—~ =D, , s '(x, ) r(x„) U. (3.6)

After inserting Eqs. (3.5) and (3.6) into Eq. (3.4),
we specialize to x~ =0. In the limit that xR -1,

g T U 3 I (g + 2)I (gy + 2)I (g + 2)
I' (3 + g. + g, + g, )

(3.7)

Neglected terms are of higher order in e.
When the fragmentation of c is not present, as

in the case of our high-twist processes qq-mG
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and qo-xq, Eq. (3.4) is replaced by

E,dc
dx, J dx, o,g„(x,)G,ga(x„)

~1}' 0 0

x — 5 1 ~ ~ . (3.8)
'lT d t xb Xg

Expressing the high-twist (HT) cross sections
in the form

ger bias, " and the factor (I -xa) ' ~~ indicates
explicitly the manner in which high-twist effects
grow in relative importance as gR is increased.
For fixed s, the higher-twist terms are most
important for large p~.

Typical numerical values are g, (m - q) = 2,
g, (N- q) =3, and g, =2. Thus, the ratio of I' func-
tions is 84. Furthermore, choosing A ~, =0.2,
o.', =0.25, and f„=0.093 GeV, we find that

1 do'——
) =D„~ s '(x, ) r(x.) (3.9)

8.1
sxR (1 —xa)' (3.16)

and evaluating Eq. (3.8) at x~ =0 in the limit xa-1,
we obtain

Edo
de 6 HT a /A b/BPr

r (g. + 2)I (g, + 2)
I (2+g, +g, ) (3.10)

and

It is instructive to examine the ~atio of the high-
twist to minimum-twist results. We begin with the
contributions of the qq processes in m N -wX
For the high-twist reaction qq-Gm, a compari-
son of Eqs. (2.35) and (3.9) permits the identifi-
cations

8s,o.,' 128m f,'
+HT 81 81

At x„=0.75, the value of R = 920/s, where s is in
GeV' units and, at xa = 0.90, R = 10'/s. Equation
(3.16) shows that the high-twist correction to
qq-m X is expected to be very substantial for all
gR & 0.5. For values of s ~100 GeV', the high-
twist effect may predominate even for the inter-
mediate values of xR at which data are frequently
obtained.

A similar exercise may be carried out for the
high-twist qG -mq modification to qG -qG, with

q -m or G -7t. While the steeply falling gluon
distribution function yields an increased trigger
bias relative to the qq case, this is more than
offset by the reduced size of the squared matrix
element for qG-qm, as discussed in Sec. IIC.
The result of all factors is a reduction in the
relative importance of the higher-twist contribution
for qG initial states. We find

T = (2, 0} with U = (0, 2}.
For the minimum-twist process qq- qq,

(3.12) 1.4
sx '(1-x„)' ' (3.17)

1 do 4&2 1
—., (1 + x„') . (3.13)

Thus,

4 22=9 ~s (3.14)

32vf,'a„r (3 + g. + g, + g, )
45Pr'(I —x„)""A,g, i" (g, + 2)I (2+g, +g,)

'

(3.15)

An extra factor of 2 was inserted in the denom-
inator of Eq. (3.15) to account for the fact that
the pion may arise from the fragmentation of
either of the final quarks in qq- qq.

In Eq. (3.15), the ratio of I' functions represents
the numerical enhancement associated with "trig-

T = 2, with U = (0, -2) .
Using symbol R„- to denote the ratio of high-
twist to minimum-twist contributions to the cross
section at x~ =0, we find that

C. Numerical results

xd, -(x) =xu, (x) = 0.6(1-x)'. (3.18)

We believe the power p =2 in (I -x)~ is a correct
representation of the scaling behavior. The form
with p= 1 found in some phenomenological fits"
probably represents an average of the scaling
minimum-twist (1 —x)' contribution and the large
constant high-twist piece calculated by Berger
and Brodsky. ' We ignore sea, distributions in the

The analytic expressions in Eqs. (3.7) and (3.10)
are precise only in the limit of large xR. Be-
cause data are available principally in the region
of xR ~0.5, we have also employed numerical in-
tegration procedures to evaluate Eqs. (3.4) and
(3.8) for a, range of values of xa and for three
choices of the lab angle of the final pion. In ob-
taining these numerical results, we used parton
densities with somewhat more structure than the
simple power-law form of Eq. (3.5). In particular,
for nucleon densities, we chose the scaling quark
distribution functions of Field and Feynman. "
For densities in pions, we selected
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xG~(x} =3(1 —x}' (3.19)

pion. This is not a restrictive approximation in-
asmuch as sea quarks are fairly ineffective at
producing scattering at large p~. At any rate,
details of the pion densities do not greatly affect
comparisons of high-twist and minimum-twist
2-2 results. (Note the cancellation of A, ~„and
factors of g, in Eq. (3.15)j. For the gluon den-
sities, we use the counting-rule expectations

with

(3.23)f (n) =(d+1)q'~&(z) = (1-z)"'.
We use d =2 in our calculations. For gluon frag-
mentation we take

D~(z) =-', (1-z)'/z. (3.24)

Because we have ignored scaling violations and
primordial transverse-momentum fluctuations,
the inclusive cross sections take on the simple
scaling form

xG, (x) =2(1 —x)'. (3.20) E d'o/dp' =Jr 'f(x~, cos 9) (2- 2 QCD)

D~ = D„-' = D& = D„'D~(z=—) -(favored), (3.21)

For fragmentation functions, we adopt the cas-
cade formalism of Field and Feyman, except that
we use an elementary branching function f(q)
which vanishes for q-0. That is, we identify z =1
hadron production with specific higher-twist mech-
anisms and not with universal hadronization. We
select

=pr 'h(x~, cosa) (higher twist).

(3.25)

Our numerical considerations will be restricted to
m N- m'&; 0 is the c.m. angle between the pions.
We will use the fixed coupling e, = 0.25 in all
calculations.

As in Sec. III B, we first investigate

= DF = D„- = D -—:DU(z) (unfavored) . u~d~ r X (3.26)

Following Field and Feyman, we adopt
u„G -g X. (3.27)

D (z) = 0.16F(z) + 0.40f(1 —z),
D (z) = 0.16F(z),

(3.22} Specifically, in the full hard-scattering expansions
in Eqs. (3.4) and (3.8), we consider only those
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FIG. 5. Cross sections at 90 for u~dz —~ X, u~G& —7l X for minimum-twist 2 -2 @CD (dashed curves) and the

higher-twist mechanisms of Sec. IIA (solid curves). The higher-twist results scale as s"; we show results for N/ —=v" s
=10 and 25 GeV.
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U~ dN~ 7T X u„GN~ 7T X
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r d -vr X andu~G„—7t X at various scatteringFIG. 6. Batios of higIIer- is mh -tw t to minimum-twist contributions for u~d& —vr an u~
=Wangles. The curves scale as s

terms corresponding to ~d and ~G initial states.
In the 2-2 minimum-twist QCD expressions, we
sum over both fragmentation sequences, e.g.,

ud- ud, d-K
(3.28)

Ad~Ad~ Q~S ~

In Fig. 5 we show results for pr4E d'o/dp' at

8 =90'. According to Eq. (3.25}, the higher-twist
curves scale as s '. We provide results for 8"
= v s = 10, and 25 GeV. In Fig. 6 we show ratios of
h' h bvist-to-minimum-twist cross sec ions
for Ws = 10 GeV and 8 = 60', 90', and 120'. We note
that the higher-twist corrections are roughly an
order of magnitude more important for qq than
for qG, in agreement with the discussions in Secs.
II C and III B. For W=10 GeV, the higher-twist
term is at Ieast a 30/~ correction to ud scattering
for all x~, and, in fact, it dominates for g„~ 0.65.

8'- 60

10+

5.0

4.0

~ N n-'X

S.o—

I
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Coherent Mod. el
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FIG. 7. Charge ratios N(m )/N(sr+) for m' N x~X' for
the higher-twist mechanisms of Sec. II A.
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FIG. 8. Full charge-ratio predictions, Eq. (3.29), for
z~X. The dashed curves are the minimum-twist

results, A /A+.
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The nG, dG, and ud initial states constitute only
about 20fp of the total 2- 2 constituent-constituent
hard-scattering contributions to mN -mX and to
pN-mx. So far we have not considered GG and qq
scattering and their pertinent high-twist correc-
tions. Consequently, we cannot extrapolate direct-
ly from Figs. 5 and 6 to obtain a firm estimate of
the full high-twist fraction of the signal at large
p~. The results shown in Fig. 6 are at best preli-
minary estimates that the high-twist fraction may
well be sizable. We expect to treat qq and GG
reactions in another paper.

D. Charge ratios

N(s-) W-(x„e) + B-(x„g)/s
N(v') W'(x„, e) + B'(x„,e}/s

(3.29)

The functions A.' represent the minimum-twist
terms of 2-2 @CD, and the terms B'/s repre-
sent higher-twist contributions. In Fig. 8 we
present our results for Eq. (3.29) for three scat-
tering angles. The dashed curves show the mini-
mum twist predictions, 2 /A'. We remark that
(i) for fixed s, the higher-twist effects are unim-
portant for small x~, but dominant for x~ - 1, and

(ii) for fixed xR, higher-twist effects decrease
with increasing s, roughly as s '.

The data at I9 =90 agree with our expectations, "
but new data at higher x~ would be telling. The
g = 60' panel in Fig. 8 deserves special comment.

For the process qG -mq, the high-twist diagrams
in Fig. 2 show that the initial quark necessarily
emerges from the diagrams as one of the con-
stituents of the final pion. For qq-7|G, both of
the initial constituents emerge as constituents of
the final pion. Among the higher-twist processes
under consideration, the only mechanism for the
charge-changing reaction w N-n'I is G„u„-n'd.
According to See. II C, this process is relatively
suppressed, particularly for small 0. Thus, we
expect substantial "charge retention, " viz. , N(x )/
N(s')» 1, for the higher-twist processes. Our
explicit results are shown in Fig. V, where we
present charge ratios for the higher-twist mechan-
isms alone.

The large charge retention shown in Fig. 7 is
also typical of constituent interchange mechan-
isms. ' The failure of data to show such dramatic
asymmetries is evidence against the dominance
of CIM terms in high-p~ physics. %e emphasize,
however, that the higher-twist terms considered
in this paper are not an "alternative" to conven-
tional QCD, but rather, a correction —of fixed
magnitude —required by the perturbative expan-
sion itself. The total charge-ratio signal to be
compared with data is of the form

The large charge ratio for the minimum-twist
QCD approach results from (i) strong forward
poles in qq-qq elementary cross sections, and
(ii) strong flavor retention in the fragmentation
functions, Eqs. (3.21) and (3.22). In contrast, pre-
liminary experimental" results indicate a charge
ratio N(s }/N(s') -1 for these forward scattering
angles. For the reasons discussed above, our
higher-twist corrections to mX scattering cannot
rectify this disagreement.

If data continue to differ substantially from the
9 =60' expectations shown in Fig. 8, a possible
explanation might be sought in the charge-reten-
tion properties of fr agmentation functions. The
fragmentation functions in Egs. (3.22) and (3.23)
are deduced from minimum-twist phenomenologi-
cal fits to relatively low-energy data, including
the deep-inelastic process vN- pm'X, for W-4
GeV. Higher-twist contributions could well be
sizable in these data. ' "" lt may be necessary
to remove expected, charge-retaining higher-twist
effects'~ from the data before fitting to extract the
minimum-twist fragmentation functions D(s).

F,(--) = F(++) = 0, (3.31)

(3.32)

For q(h)G(X)-sq we find

t+.(++) = g f*~ (- =,. '

t

(3.33)

(3.34)

At the constituent level, both processes have a
fundamental asymmetry a~~ & 0. This is opposite
in sign to the fundamental asymmetry of the mini-
mum-twist process qG -qG. The importance of
this result depends on features of the spin-weight-

E. Inclusive spin-spin asymmetries

In experiments with polarized proton beams
and polarized targets, "we can define an inclusive
spin- spin asymmetry

do(P(+)p(+)-mx) -dv(p(+)p(-)-mx)
da(p(+) p(+)-sX)+ dc(p(+) p(-)-sX) '

(3.30)

where the + and -refer to proton helicities. The
importance of these measurements in the context
of the @CD-based hard-scattering model is dis-
cussed in Befs. 29 and 30.

We would like to note briefly here that the two
processes we are considering have rather simple
spin structure. For q(h, }q(h,)-sG a simple calcu-
lation shows that the color-averaged squared ma-
trix elements are
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ed distribution functions for a proton. To the ex-
tent that gluon helicities are correlated with pro-
ton helicities, there will be the possibility of x~-
dependent cancellations between the negative asym-
metry of qG -vrq and the positive asymmetry of
qG —qG.

IV. DISCUSSION AND CONCLUSIONS

There is a growing awareness of the relevance
of higher-twist phenomena in quantum chromo-
dynamics. The inclusion of such terms affects
the interpretation of Q dependence in all con-
stituent scattering processes. Some phenomena,
such as longitudinal-polarization effects in deep-
inelastic scattering' ' ' and in the Drell-Yan pro-
cess" appear to require higher-twist terms with
specified, relatively large normalization. More-
over, these processes are quite amenable to
higher-twist analysis in that the underlying min-
imum-twist process is quite simple, and because
simple observables exist (e.g., longitudinal po-
larization in the Drell-Van process) which are
sensitive to higher-twist effects in experimentally
accessible regions of phase space.

For high-p~ production in hadron-hadron col-
lisions the situation is more complex. To begin
with, the minimum-twist QCD contribution is not
based on one simple underlying elementary pro-
cess. It involves a sum over many such terms.
In addition, the most naive minimum-twist pre-
dictions for high-p~ processes do not agree well
with experiment. Currently available data show
an approximate power-law behavior

, (hN-~X)-P, "f(x,)dp'

with a power N- 6-8. This relatively large value
of N has led many to advocate the importance of
higher-twist phenomena —primarily in the con-
text of constituent-interchange models. "' '

In this paper, we have evaluated the processes
qq-mG and qG - qm, emphasizing the natural role
of these processes in the framework of perturba-
tive QCD. Our normalization procedure does not
rest heavily on specific assumptions about the
pion wave function. Viewed as corrections to the
"inclusive pion yields, "

q„q~ -wX, qG -mX, we

find that the process qq -mG is quite significant,
whereas qG —qm is less important. For both pro-
cesses, the higher-twist contributions are greatest
at large Pr for fixed vs. The region xr- 1 should
be dominated by higher-twist phenomena of the
type considered here, but it is very hard to reach
this region experimentally.

We remark that our normalization procedure is
identical to that used by Farrar and Fox 4 in their
study of qm - qm, and by Brodsky and Lepage" in

their investigations of the pion electromagnetic
form factor E,(Q') Farrar and Fox found that
qm - qm is of relatively negligible importance for
high-p~ processes, whereas we find that qq -mG
and qG -mq should not be ignored.

Our calculations must be combined with quanti-
tative estimates of other high-twist effects (for
example those associated with qq -mqq} in order
to obtain the full high-twist "correction" to large
p~ observables. The mechanisms we consider can
give rise to charge ratios in m N-m'X which are
substantially larger than unity. However, when
we include the usual lowest-order, minimum-
twist QCD processes, our results are consistent
with data on this ratio measured at 90 in the
hadron center of mass. The higher-twist contri-
butions do not dominate the x~ region of present
data (xr & 0.5). Nevertheless, owing to trigger
bias, the region of x~ influenced significantly by
high-twist terms is larger than the region in xF
for Drell-Yan production or in z.for deep-inelastic
scattering. Charge-ratio data and spin-correla-
tion measurements appear to offer the best chance
to isolate high-twist effects at large p~.
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APPENDIX: COLOR AND COLOR PROJECTIONS

Consider the process q„(i,P,)qe(j, P2)-q„(k, P,)qs
&& (l, P,) G (a, P,} with the Feynman diagrams as speci-
fied in Fig. 2. It is instructive to consider sepa-
rately the color factors associated with these dia-
grams. These are

C, = (T"T'),„T,', , .

C = (T'T') T'

(Al)

C, = T,', (T'T')~;

fabc T 5 T c

where the T's and the f's form the fundamental
and adjoint representation of SU„respectively.
The normalization conventions are defined in
Ref. 6. In addition we can specify that the final
q„(k, P,)q (/, sP, ) are in a color singlet by using the
projection operator P» =(l/vs) 5». This pro-
jection gives color factors proportional to T' as
specified below:
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SC', = -- T,'),

4

If the momentum-dependent portion of the Feyn-
man amplitudes were unimportant (Mz = Mz for
I,Z= 1,. .. , 5), then the normalization of physical
cross sections would be determined only by the
color factors (A4) and (A5):

1
C3=

6 T'1, (A2)
d &(qggB (qd ga) G) summed

d&(qgqa —(qgqa) G) singe~

QC„
~Ca 25/27

'

(A6)
4

C4=
3 T;;,

CIJ CICJ
colors

With the Cz given by (Al) the Clz are

(A3)

1
3
2
3

1
3

3

2
3
2
3

2
3

2
3

l
3

(A4)

3
2W

In order to calculate cross sections, we need the
factors

With these crude approximations, the formation
of color singlets from the qq would be strongly
suppressed. lf (A6) were valid it would be hard
to understand how color-singlet clusters of quarks,
antiquarks, and gluons could ever form. If this
type of suppression operated in perturbation
theory, then the assumed conf inement mechanism
(whatever it is) would have to overcome the can-
cellation in order to eventually form hadrons.
Final states would then be enormously sensitive
to the interplay between perturbative and nonper-
turbative eff ects.

In fact, when we calculate the total matrix ele-
ments instead of just looking at color factors,
things change dramatically. For a low-mass qq
pair in the recombined model of Sec. II we get

5

27

With the color-singlet projected
(A2) we have for the C~~

3

4 J ~ ~6.
27 27 27

5
.3 3 3

27

27

27

27

5

3.

3

(A5)

3

color factors of
do(q„~ - (q„q )G),„,d 9 (cos'8+ 7)(cos'8+ 15)
dv(q„q~ - (q„qs)G), «„4 (cos'8+ 9)(3cos'8+ 25)

= 1.05 (cos8 = 0). (A7)

It is clear that instead of suppressing color-singlet
qq clusters, perturbation theory favors singlets
over octets here. This is consistent with the sim-
ple notion of perturbative preconfinement espoused
by Veneziano and others. " Confinement does not
have to drastically change simple perturbation
estimates.
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