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Monopole ionization and the transition from weak to strong coupling in gauge theories
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The influence of long-range gauge-field configurations on the Wilson loop integral 8' is discussed. It is shown that
8' can in principle be found from effective two- or three-dimensional models. The long-range fields considered are in

two dimensions a vortex field, and in three dimensions a magnetic monopole field; the connection between these is

that a monopole in three dimensions creates a vortex in two dimensions. Models of the statistical distribution of
vortices or monopoles are invented and used to study the effect of these fields on 8'. It is suggested that the

transition from weak to strong coupling might be due to a topological order-disorder phase transition in which

monopoles are liberated. The XF model is discussed as an analog system with such a phase transition.

I. INTRODUCTION

A quantity of theoretical interest in quantum
chromodynamics (QCD) is the quark-antiquark
static potential V(R), which is the potential energy
of a pair of static quarks in a color-singlet com-
bination separated by the distance R. It is thought
that V(R) increases to infinity in the limit R-~,
for the pure gauge theory, and that this diver-
gence of V(R) is a sign that quark confinement
occurs inQCD.

In recent papers I have studied the instantane-
ous Coulomb potential of a static quark pair, for
the pure gauge theory with gauge group SU(2), as
a model of the static potential V(R). The instant-
aneous Coulomb potential depends on the distribu-
tion of vacuum fluctuattons of the gauge fields
A,'(x). It is shown in Ref. 3 that coherent long-
range vacuum gauge fields A', (x), i.e. , fields that
decrease as ~x~ as ~x~ —,affect the R depen-
dence of the instantaneous Coulomb potential at
large R; the specific long-range field considered
is the Wu- Yang monopole field. The observation
that this field changes the asymptotic form of the
instantaneous Coulomb potential leads to the sug-
gestion that quark confinement might result from
the influence of such vacuum fluctuations. '

The idea that the vacuum state of the SU(2) gauge
theory might be described as a superposition of
monopole fields with only small fluctuations away
fr om the monopole fields has been discussed by
Mandelstam.

The instantaneous Coulomb interaction is the
origin of asymptotic freedom in the Coulomb-
gauge formulation of the theory, ' and is there-
fore a natural quantity to examine for a sign of
confinement. However, the instantaneous Cou-
lomb potential is not fundamental because it is
not gauge invariant. Thus, it is at best a qualita-
tive model of V(R).

The gauge-invariant potential V(R) can be ob-
tained from the Wilson loop-integral formula.

I et Z be a finite two-dimensional surface in Eucli-
dean four-space with boundary BZ a simple closed
curve, ' for simplicity let ~ be planar. The Wilson
loop integral W is the vacuum expectation value

W=Z dA", x e "—,'TrP

x exp fg )) ds~+
~ac

where S(A) is the Euclidean action

(I.2)

S(A) = d x 4P,'"P,'"— (I.3)

and gauge-f izing and Faddeev- Popov ghost terms
have been suppressed for simplicity of notation,
the normalization factor Z is

Z= dA", xe (l.4)

If the loop BZ lies in the (x4, xq) plane, where x4
refers to Euclidean time, and has lengths T and
8 in the x4 and xq directions, then it can be ar-
gued ' that in the limit T'-~ with R fixed

2 -Tv' (R)

where c is independent of T and V(R) is the energy
of the lowest-energy state containing a qq pair
with separation R. If V(R) is linearly confining,
i. e. , V(R)-rR as R-~, then

2 ~ A(C) (l.6)

0 —,'TrI' exp ig ds„&",t, 0
ac

where t, are the matrix generators of the gauge
group SU(2) in the fundamental representation and

g is the coupling constant. The symbol & indicates
path ordering with respect to multiplication of
SU(2) matrices and time ordering with respect to
multiplication of gauge-field operators A", (x).
The quantity & can be written as a Euclidean path
integral as
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where &(Z) =RT is the area of the surface Z. The
constant y is called the string tension. Thus, one
formulation of the question of quark confinement
in a gauge theory is simply whether the loop inte-

gral W obeys the area law Eq. (1.6) as the size
of Z tends to infinity. If so, the theory is said to
be confining, ' if not, i. e. , if instead W obeys a
perimeter law W-exp[-XL(BZ)], where L(BZ) is
the length of 8Z, the theory is said to be noncon-
fining.

The gauge theory should properly be defined as
a lattice theory to avoid ultraviolet singularities
in the quantity W.

By rotational invariance of the Euclidean theory,
W is independent of the orientation of the surface
Z. In what follows, Z mill be taken to lie in the
(xq, x2) plane. Then Eq. (1.1) shows that W is
determined by the distribution of time-indepen-
dent configurations of the gauge fields in the vacu-
um state. On the other hand, the path-integral
formulation Eq. (1.2) can be thought of as a kind
of statistical mechanics problem. ' The variables
are field configurations &", (x) with energy &
=P Sg) and partition function Z; in this language
N' is the ensemble average of the loop integral
exp(i gds A). The inverse temperature P need
not be introduced explicitly but can be absorbed
into the definition of the coupling constant g.

The purpose of this paper is to examine the in-
fluence of coherent long-range gauge fields, such
as monopole fields, on the loop integral W. To
be specific, simple models of the contribution of
such fields to functional integrals that define 2
and W will be invented and used to study the ques-
tion. Under what circumstances dods 8' decrease
exponentially as the area of Z (area law) as in Eq.
(1.6), and under what circumstances as the length
of the boundary curve 8Z (perimeter law)'?

The study of the influence of monopole fields
on the loop integral W will involve two steps.
First it will be shown that to calculate the quan-
tity W the theory can in principle be reduced to
an effective two-dimensional (2D) theory. The co-
herent long-range fields of interest in the 2D
theory are vortex configurations. Simple statis-
tical-mechanics models of the distribution of vor-
tices will be used to study their effect on 8'.
Second, three-dimensional (SD) monopole fields
in the vacuum state and their effect on W wiQ be
considered, again by looking at statistical-mecha-
nics models of the monopole distribution. The
connection between these two approaches is that
3D monopole fields create 2D vortex fields.

The 2D vortex models and 3D monopole models
that are to be considered are obtained by replacing
the functional integrals that define ~ and ~ by
integrals over just the collective coordinates of

the vortex or monopole configurations. The idea
behind this repjacement is suggested by instanton
calculations. ' The assumption is that the func-
tional integrals over field configurations are
dominated by two kinds of fields: (1) long-range
topological configurations, vortices (2D) or mono-
poles (SD), which in a lattice gauge theory could
be treated in a continuum approximation because
they spread over many lattice sites; and (2) typi-
cal quantum fluctuations away from the topological
configurations, which are small and hence could
be treated in Gaussian approximation. The long-
range fields are assumed to have the dominant
effect on the large-Z behavior of S', so only the
vortex or monopole sector need be considered.
This replacement reduces the problem to a stati-
stical-mechanics model of a gas of vortices or
monopoles.

A system in which this separation of fields into
topological configurations and Gaussian fluctua-
tions is quite explicit is the XF model in the treat-
ment of Kosterlitz and Thouless. The analogy

between the spin vortices in their theory of the
&F model and merons in @CD is described in
Ref. 14. The &F model will be discussed further
in Sec. V in a way that emphasizes analogies with
the discussions in the present paper.

Models of the monopole sector of the theory
that are particularly interesting are those that
have two phases, a disordered phase with free
monopoles arid an ordered phase in which mono-
poles are bound in dipole pairs. The phase tran-
sition separating these phases is the monopole
ionization referred to in the title of this paper.
It will be shown that an ionized phase is associated
with an area-law behavior of W, and a dipole-pair
phase with a perimeter law.

It is believed that Abelian lattice gauge theories
have two phases, a disordered confining phase at
large g and an ordered nonconfining phase at
small g, separated by a phase transition at some
critical point g, . ' It has been suggested that
this phase transition is caused by the appearance
of Dirac monopole vacuum fields at g ~ g, that
are not present for g &g, . It is this transition
from strong to weak coupling, from area-law be-
havior of W to perimeter law, that is r efer red to
in the title of this paper.

Non-Abelian lattice gauge theories are expected
not to have a phase transition to a nonconfining
phase at small g . However, the string tension
y of these theories must have a different g de-
pendence for large g and small g, and there is
evidence that the transition from strong- to weak-
coupling behavior occurs quite abruptly. ' It is
possible that this transition is also associated
with monopole vacuum fields, and that in the non-
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Abelian theory the monopole ionization occurs
abruptly but continuously. In a non-Abelian gauge
theory, monopole vacuum fields result from the
contribution of meron paths to the path integral
Eq. (1.2}. The possible role of merons in the
transition from strong to weak coupling will be
discussed briefly in Sec. IV.

The ionization transition from dipole pairs to
free monopoles can be considered a topological
order-disorder transition, just as the phase tran-
sition in the &Y model involves topological or-
der. The role of topological symmetry break-
down in quark confinement has been considered
also by Samuel.

A different explanation of the transition from
strong to weak coupling in non-Abelian gauge the-
ories, involving only effects of instantons, has
been proposed by Callan et al.

The approach to the problem of understanding
8' that is taken in this paper is frankly heuristic.
Some of the remarks could perhaps be formulated
more rigorously in the context of a four-dimen-
sional (4D) lattice gauge theory. The aim of the
discussion here is not to derive the role of mono-
pole fields in the theory but just to illustrate how

they might influence S' with explicit models.
The outline of the paper is as follows. In Sec.

II the effective 2D theory that determines 5' is
described, and the influence of 2D vortices on $V

is examined. In Sec. HI, SD monopoles are dis-
cussed in their effect on W and their role in cre-
ating vortices in the 2D theory. In addition, a
brief discussion of dual parameters, such as the
't Hooft loop operator, is given. Section IV con-
cerns the origin of 3D monopoles in gauge theo-
ries, . and is largely a repetition of remarks from
Pef. 16. Finally, in Sec. V the &F-model analogy
is developed.

II. TWO-DIMENSIONAL VORTICES AND THE
WILSON LOOP INTEGRAL

In this section it will be shown that to calculate
the quantity 8' the theory reduces to an effective
two-dimensional theory. The influence of 2D
vortices on W will be explored by considering
simple models of the distribution of vortices.

The full theory described by the path integral
in Eq. (1.2) is four-dimensional: x is a point in
Euclidean four-space and A", (x) is a four-vector
field. However, the Wilson loop operator W de-
pends only on the value of the field on the two-
dimensional subspace Z. In particular, if Z is
taken to lie in the (1, 2) plane then the expectation
value W reduces to the expectation value in an

effective 2D model on the (12) plane. Let the re-
duced probability distribution P2(p', ) be defined by

P2(y', ) = dA.", (x)e ""'

Z= dy, xI'2 y, (2.3)

An effective action s2(y) can be defined by s2(y)
=- lnP2(y), and W can be thought of as a correla-
tion function of the effective 2D theory.

It would be necessary to solve the full 4D theory
in order to determine P2(q). That is intractable.
However, it might be of some value to consider
some simple models of P2(y) as a first step to-
ward lea, ming how the area-law behavior of 8' in
Eq. (1.6) can be produced. To be specific, the
influence of coherent long-range fields will be
considered.

The long-range 2D field configurations to be
considered are vortices in the field y, (x). For
simplicity, vortex configurations for an Abelian
gauge theory will be discussed first. The point
vortex field, centered at x = 0, is

xq 1
p (x)=——~ ~=—6 8

2g "x 2g
(2.4)

where & =arctanx2/xq. The loop integral of that
field is

g ds y„=m8c(0),
ap

where the function ec(x) is defined as

( )
1 ifxGZ
0 if xgE.

(2.6)

(2.6)

The quantity that appears in W is exp(ig$as q&),

which has the absolute value 1 and is equal to +1
for y=0 and -1 for y=p„ if 0Z surrounds the
vortex center. The special significance of a vor-
tex field is first that it obeys a flux quantization
condition, namely, that the total flux of 7'&& y is
m/g, that implies W=-1; and second that it is of
long range, i. e. , is of order

~
x

) as (
x

(

|L[p, (x ) -&, (x, 0, 0)],
xg @=1,2, 3

o=l, 2

(2.1)

where y, (xd) is a two-vector field (o.'=1, 2) in a
2D space with point xi = (xq, x2); that is, P2(y', ) is
the reduced probability distribution of fields on
the 2D subspace, the (12) plane. The loop inte-
gral W is determined from P2(((((, ) by

sr=d' dd'. (x)s's(d.'(-', rrPexp s'd ss dssd s), '.a g "ac

(2.2)

because Z lies in the (12}plane; the partition
function Z is
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y (x)=Q y„(x —x,) — y„(x —y, ),
~=i

(2.7)

where x, and y,. are the centers of vorticity of n
vortices and n' antivortices. The loop integral
of q (x} gives

and thus contributes to the line integral around BZ

for arbitrarily large ~.
An antivortex field, with opposite vorticity, is

simply -y„. Multivortex fields can be defined as
superpositions of vortices; the general multivor-
tex field is

In the remainder of Sec. D the influence of 2D
vortices on the loop integral & will be studied by
considering some simple models of the vortex
contribution to the 2D functional integrals in Eqs.
(2.2) and (2.3). These models are obtained by re-
placing the functional integrals by integrals over
just the coordinates of the vortex centers and
summing over all vortex configurations. That is,
the quantities Z and W are replaced by

f
n'

d x;, , d y~P(x, y) (2.10)

exp ~g ds q = 8'"c"~'e '"~"~'. 2.8
ac

It is possible to construct a similar point vortex
field for the SU(2) gauge theory, i. e. , a' long-
range field obeying a flux quantization condition
such that 8'=-I if BZ surrounds the center of
vorticity. The flux quantization condition for a
non-Abelian vortex can be described as follows:
the line-integral operator P exp(i

wads„qr

) is
the operator that describes parallel transport in
the field y, t, of vectors e of the basis of the funda-
mental representation of SU(2); flux quantization
of the vortex field q, means that parallel trans-
port of v around 8Z carries v to -e if BZ sur-
rounds the vortex center. A specific example of
such a configuration is an embedding of y„(x) into
the non-Abelian theory

p„,(x) = 2n, q„(x), (2.9)

where n, is any constant unit vector, n,'=1. This
field satisfies the topological flux-quantization
condition P exp(ig$ds .y,t,) =-1 if t, are the gen-
erators of the fundamental representation of SU(2).
It is interesting to note that S'=+1 if t, are ad-
joint-representation generators.

It is not known to me how to generalize the mul-
tivortex configuration in Eq. (2.7) to a non-Abel-
ian theory. Simple superposition of single vortex
fields does not make sense in a, nonlinear theory.
A multivortex configuration would presumably
have additional degrees of freedom, besides just
the positions of vortex centers, associated with
relative orientations of the vortices in SU(2) space
[i.e. , the choice of n, in Eq. (2.9)]. In what fol-
lows I shall assume that such a generalization
exists but that the additional degrees of freedom
are not important for understanding the influence
of vortices on the quantity g. That is, Eq. (2.8)
will be assumed to be appropriate to describe the
loop integral of a multivortex field even in a non-
Abelian theory.

In Sec. IG it will be argued that vacuum fluctua-
tions of the farm of monopole fields create vortex-
like configurations in the 2D theory.

xg~ac( &&e «~Q'~y)

{2.11)

where P(x, y} is the probability distribution of
configurations with vortex and antivortex posi-
tions x, and y&,

' the factor (n!n'! ) is the Boltz-
mann counting factor that appears because vortex
configurations that differ only by exchange of x&'s

or y,. 's are identical. The integrand of Eq. (2.11)
for W is the loop operator evaluated for the multi-
vortex field y in Eq. (2.8), and it is assumed that
this form would also be appropriate for a non-
Abelian multivortex field.

The idea of using these expressions as models
of Z and 8' is suggested by instanton calculations,
in the manner described in Sec. I: The assump-
tion is that the partition sum Z is dominated by
fields p (x) that differ from the multivortex field
y'(x) only by typical perturbative fluctuations,
and that these small fluctuations do not have a
major effect on S'. This a,ssumption would lead
to the replacement of the loop operator by its val-
ue for the field y and to integrals over the collec-
tive coordinates x, and y, as in Eqs. (2.10) and
{2.11};the probability distribution P(x, y) would
be determined by the volume in field-configura-
tion space of the small fluctuations of y away
from p

The repla, cement of the full average over field
configurations by an average over vortex configu-
rations reduces the problem to the statistical
mechanics of a 2D gas of vartices with probability
distribution P(x, y). The quantity Z, for example,
is the partition function of the grand canonical

ensemble. Determination of the distribution
P(x, y) would require evaluation of the path inte-
gral t dip (x). That is not attempted here. Rath-
er, some simple models are considered in which
P(x, y) is chosen ad hoc. It is hoped that these
models illustrate how the vortices might influence
8' in the full theory.
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The first model to be considered is a perfect
gas of vortices and antivortices. That is, P(x, y)
is just taken to be

P(x, y) = P"'. (2.i2)

P =('", (2.i5)

where g is the density of pairs. Again P is inde-
pendent of the positions of the vv molecules so
they are noninteracting. The degrees of freedom
of each molecule are the position z of the center
of mass and angular orientation ~ with respect to
the xq axis. The partition function of this system
is

(2.is)

The loop integral is

$ III dg pn
W= e ' "Q, , I d e —e'+c+'e '+c' "'

~ d8
=exp — d 8 ~ cos& ~g &

(2.IV)

where x and y are the v and v positions corres-
ponding to the (vv} coordinates e, 8; that is,

X=@+2P~

y=~- z&~
1

p =(l cos8, I sin8}.

Finally, S' can be written
" de

W = exp —2 g'
i d g —Ec (x, y)

(2.IS)

(2.»)

Since I' is independent of the positions x& and y&,

the vortices do not interact. The parameter $,
which has units (length), is the density of vor-
tices. The partition function is

g ~2&Q (2.iS)

where n =f d'x is the volume of the 2D space,
kept finite for the moment. The loop integral is

gn+n' ( 'II n'

W=e"" Q '
„~ d'xe'"~"' d' ye '"c'"'~

„,„.nf n'1 &g
y )

e-w(c)4g (2.i4)

where A(Z) =f cPx 8c(x) is the area of the region
Thus a perfect gas of vortices produces the

area-law behavior associated with a linearly con-
fining potential with string tension 'Y =4 $.

The next model is a perfect gas of vortex-anti-
vortex bound pairs, in which the vv separation
length of each pair is fixed at /. That is, P(x, y)
vanishes unless the centers x& and y& of vorticity
are paired with ~x-y~ =/ for each pair,''and if
there are n pairs then I' is

where the function Ec(x, y) is equal to I if one of
x and y is in 5, and is equal, to zero otherwise.
The integral in Eq. (2.i9) cannot be evaluated
exactly for an arbitrary region Z, but it is not
difficult to obtain the limiting form when the size
of Z is large compared to l:

W-exp -&(SZ) —$'l for
& }

«I,4, l
(2.2O)

where 1-(8&) is the length of the curve 8&. Thus,
a perfect gas of vv pairs gives the perimeter-law
behavior associated with a nonconfining gauge
theory. The origin of the perimeter law is that
the vv configurations that affect W significantly
are those for which only one of the members of
the pair lies in Z; for Z large compared to l, only
pairs with position near BZ are relevant.

The loop integral 8' provides a measure of the
amount of disorder in the system' . a small value
of S' indicates a large amount of disorder. For
example, in either of the above models, an in-
crease in the density $ of vortices or vF pairs
results in a decrease of S'. Furthermore, W de-
creases as the size of the loop BZ increases and
the rate of this decrease of ~ is also sensitive to
the amount of disorder. ' in either of the above
models, the rate of decrease of W increases as the
density $ increases. The distinction between an
area-law decrease and a perimeter-law decrease
is a more subtle measure of the disorder in the
system. This distinction involves more than just
the amount of disorder' . In the perfect gas of vv

pairs, S" obeys a perimeter law no matter how

large g' and l are, whereas in the perfect gas of
vortices S" obeys an area law no matter how small
g is. In these models the distinction between area
law and perimeter law measures the special dis-
order created by the coherent long-range vortex
fields, i. e. , the topological disorder, a term
used in B,ef. &2.

The final 20 vortex model, which will be dis-
cussed presently, has two phases, one with free
vortices and one with only bound vv pairs; there
is a phase transition that can be called vortex
ionization. The model is a two-dimensional Cou-
lomb gas, or plasma, of vortices and antivortices.
Before describing that familiar system ' some
general remarks will be made concerning the
possible relevance of such a phase transition to
the gauge theory.

A transition from free vortices to vv pairs would
imply a transition from a confining phase to a non-
confining phase. The vortex ionization in the 2D
slice of the theory would reflect some other pro-
cess in the full 40 theory, such as a sudden in-
crease in the contribution to the 4D path integral
of some special topological field configurations
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that create vortices in the 20 subsyace. In a non-
Abelian gauge theory, meron ionization in the 4D
theory might serve this purpose. A model of this
kind of transition is the vortex ionization transi-
tion in the XF model.

An ionization transition like that described in
the previous paragraph would manifest itself not
only by the change in the asymptotic form of the
correlation function S' but also by changes in or-
dinary thermodynamic functions of the system.
The nature of these functions can be determined
from the results of recent Monte Carlo studies of
an SU(2) lattice gauge theory. ' ' In particular,
it is interesting to compare the results of those
calculations to a similar Monte Carlo study of the
XF model. The transition of the &F model is
reasonably well understood as a vortex ionization
effect, ' and comyarison of the two Monte Carlo
studies might indicate whether an ionization tran-
sition is inconsistent with the observed behavior
of the thermodynamics of the gauge theory.

The quantity that will be compared in these two
systems is the specific heat. Consider a system
with partition function Z and inverse temperature
P. The free energy E is defined by

1P~= =lnZ,0
where 0 is the volume of the system. The energy
yer unit volume E is

'= —(P~)
a

a

The thermodynamic entropy 8 is

Finally, the specific heat C can be written in two
ways as

, aE as'=-'
8P =-PrP.

The specific heat C measures the rate at which
entropy increases as P, decrea, ses. It is related
to the mean-square fluctuation of the energy by

1, 1a'z 1 as '
C=—P ZBP' ZBP

Figure 1 shows the specific heat C as a function
of P for the XF model computed by Tobochnik and
Chester by Monte Carlo methods, for a, lattice
of size 60&&60. The parameter P is 1/T where T
is the temperature parameter of Ref. 26. The
volume 0 of the system, used in the formula for
C, is taken to be the number of lattice sites
(=8600). It can be shown that the low-P behavior
of C is C-P as P-O, and the high-P behavior is
C--,' as p-". There is abroad peak around P

l.5

I.O
C3

0.5

0
0 0.5 I.O 1.5 2.0

FIG. 1. The specific heat C vs inverse temperature
P=1/T for the XY model, taken from the Monte Carlo
study of Ref. 26. The vortex-ionization transition point
is estimated to be at P=1.12.

l.5

I.O

0.5

FIG. 2. The specific heat C vs p=4/g for an'SU(2)
lattice gauge theory, taken from the Monte Carlo study
of Ref. 25. The values of C on the curve are accurate
only to within an error of roughly 5 to 10/p.

= 1 but no singularity. The vortex ionization point
of the&1'model is estimated tobe at Pc =1.12.
The maximum of C reflects the increase in entropy
associated with appearance of the new degrees of
freedom of the ionized vortices.

Figure 2 shows the specific heat C vs P for an
SU(2) lattice gauge theory. This curve was ob-
tained from data on the average energy E calculated
by Monte Carlo methods. To be specific, fetcher and
%eingarten25 have computed Efor a 120element dis-
crete subgroup of SU(2) for an 8&&8X8X8 lattice;
the values of ~ vs p for this system are very sim-
ilar to those found by Creutz for the continuous
group SU(2), at least over the range of P shown in
Fig. 2. The specific heat C is obtained from E
by differentiation with respect to P. The statisti-
cal error in E is sufficiently large so that in
order to obtain a valid estimate of C it is neces-
sary to fit a smooth curve to the computed values
of E and find C from the smooth curve. In this
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problem the coupling constant g and inverse tem-
perature P are related by P =4/g . The volume
0 of the system is taken to be the number of pla-
quettes of the lattice (=6x 8 ). It can be shown
that the low-P form of C is C --,'P as P-o, and the
high-P form is C-—' as P -~.

The overall qualitative features of the curve in
Fig. 2 are similar to the &Y-model curve. The
scales of the C and P axes in these figures are not
particularly meaningful because of ambiguities in
the definitions of P and 0 for the two systems.
The scales have been chosen such that the low-P
forms of the curves are the same. There is a
broad peak in the specific heat of the gauge theory
around P = 2. It should be noted that the specific
heat is quite different for gauge theories with
phase transitions such as a 4D U(1) gauge theory
or a 5D SU(2) gauge theory '; there C is singular.

Monte Carlo computations of the string tension
y as a function of P for SU(2) lattice gauge theories
have also been carried out. ' ' It is found that y
is nonzero for all P considered, and that the de-
pendence of r on P changes abruptly, but continu-
ously, from strong-coupling dependence for small

I'(x, y) = (4P)"'"' e """'"', (2.23)

where $ is a density parameter and the energy H
is

n+ '

H = -,'K' e,e,,G(x, -x,,), (2.24)

where I(. is the "charge" of the vortex and e), and
x, stand for

~

~

~

+1,x) for A=i, i=1, . . . , n,
-1,y,. for A=n+g, j=1, . . . , n'.

V'G(x —x') = &'(x —x') (2.28)

with the boundary condition that G vanishes at
x =x'. The function G can be written

,

I'"'dpi' dp2 cosp x —1
2& 2'tl' 4 —2 cospga —2 cosp2a

(2.27)

(2.25)

The potential G(x —x') is the Green's function of
the lattice I aplacian

y -- Ink/4 (2.21a)

it is well approximated, even for small x, by its
large-x asymptotic form

to weak-coupling dependence for large P

w 6 l

r - e px— (}3- 2)11 (2.2 lb)

G(x) =-—In - —,|xi
2w 7'p

where

(2.28)

The transition from strong to weak coupling oc-
curs over precisely the interval in 0 around P = 2

where the peak in C is located. Thus the transi-
tion from weak to strong coupling is accompanied
by an increase in available degrees of freedom as
indicated by a peak in 8S/BP. The similarity of
the curves in Figs. 1 and 2 indicates that the be-
havior of the specific heat does not contradict the
idea that this transition might involve some kind
of ionization of topological configurations, like
the vortex ionization of the XF model.

Finally, a 20 model will be considered that has
a transition from a phase with bound vv pairs to
an ionized vortex phase —the 20 Coulomb gas of
vortices. This system is formulated on a 2D
lattice with lattice spacing a in order to eliminate
ultraviolet singularities. The treatment to be de-
scribed follows that of Ref. 12.

The partition function is

Z= P xqy
ff tent~

' '
Xg to ~ ~ flag
pg ~ ~ ~ ~ tg~&

(2.22)

where x, (i=1, . . . , n) andy, . (j=l, . . . , n') are
vortex and antivortex lattice positions. The prob-
ability distribution P(x, y) is

2' (2.29)

and y =0.577 is Euler's constant. The approx-
imation (2.28) shows the usual logarithmic 2D
Coulomb potential. The potential is attractive for
a vv combination, repulsive for vv or vv. In
continuum notation the partition function ~ is
written

Qft +tt

z= „„ntn'1
-n tt

2x
'

d2y ~-6H

)=1
(2.30)

The loop integral W is, in a.ccordance with Eq.
(2.11),

~nW
Z ~

l l~fd2

(2.31}

It might be asked at this point what the relation
is of the parameters in Eqs. (2.23) and (2.24) and
the coupling constant g . If this 2D model could
be derived from the full 40 theory, a flux-quan-
tization condition might lead to the identification
of the vortex charge K as K=7f/g. In addition, the
density $ would not be an independent parameter
but would also be determined by g as $ = a f(g).
The inverse temperature p introduced in Eq. (2.23)
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P, =~ (1+1.3v )a ) .

The behavior of the expectation value of the
'loop integral W is now studied for the two phases
of the system using natural approximations.

The large-P phase, which P &P„ is studied in
the following approximation. ' vortices and anti-
vortices are bound in vv pairs, and interactions
between vortices in different pairs are ignored.
This approximation is sensible if the density $ is
sma11. Then the partition function becomes

Z =g, ,n! „„d'x,d'y, e~ a "& '&', (2.32)

where the extra factor nI is the number of pair-
ings of v and v. Thus

Z = exp g2 I d x cPy e~ a + "'~~

Use of the approximate form of G in Eq. (2.28)
gives

(2.33)

2 (P2Z=exp g Aero
~

—1
(4m

where again 0 =f d x. The specific heat C is

(2.34)

is somewhat extraneous since P and 2 appear only
in the combination Pd. Of course, it is not clear
that the vortex sector of the 2D effective theory
(2.1) is really as simple as this model.

The following heuristic argument is used to sug-
gest that this system has two phases. The energy
of an isolated vortex is

1 L&= ——ln —,
2 2 77 Vp

where L is the linear size of the system. The
phase space available to a vortex is the number of

. lattice sites (L/a) so the entropy is

S=ln(L/a) .
The free energy E= E —(1/P)S is

2l L-lin-
4v P& a

apart from finite terms independent of L. For
large P the free energy is positive and divergent
as L - so vortices do not occur as free vortices
but bound in vv pairs. For small P the free energy
is negative and free vortices are preferred. The
critical value of p, which is identified as the ion-
ization point, is

P, = 8m/2 .
A more accurate estimate of P„which takes into
account interactions of vv molecules, is

(2.35)

as

1g=Z-2p

p = (p cos&, p sin&),

(2.3V)

fO Oe

Nfc C (p)W = exp —4m $ J~ p dp e""
ro

x Jt d g Jt —Ec(x, y)
t d8

(2.38)

The integral over e, 8 is the same as in Eq. (2.19)
and can be evaluated in the limit L(8Z)-~ as in
Eq. (2.20) with the result

W-exp —L(BZ)4$ ro
~

——
I . (2.39), (Px'

' (4m 2)
Thus W obeys a perimeter law in the large-P
phase, as expected for a phase in which vv bound
pairs dominate the partition sum. The difference
between this model and the perfect gas of vv pairs
considered earlier is only that the separation of
members of a pair is not fixed at a single value l
but has the Boltzmann probability distribution
exp(-P 2 lnl).

In the small-0 phase, 0 &P„ free vortices oc-
cur. It might be expected that S' would have an
area-law behavior as for a perfect gas of vor-
tices. However, the vortices cannot be treated as
a perfect gas because of their long-range Coulomb
interaction. This interaction produces a Debye-
screening effect. The Debye effect can be taken
into account with a technique used by Polyakov,
namely by rewriting the theory in the form of a
sine-Gordon field theory.

The sine-Gordon form of the theory is derived
from Eq. (2.30) for the partition function by use of
the following identity of Gaussian functional inte-
gration. '

The increase of C as P decreases reflects the in-
crease in entropy from fluctuations of the sepa-
ration lengths of the pairs. The singularity of C
at' P =4m/2 is not real because that value of P is
less than P„so there the system is in the ionized
phase in which the approximations leading to (2.35)
are invalid. C is nonsingular at the transition
point P, = 8m/~'.

The loop integral W, in the approximation ex-
pressed by Eq. (2.32), is given by

W=exp -2$ J~ dxdye ""'&c(x,y)
Isa

(2.38)
where Ec(x, y) was defined earlier [see Eq. (2.19)].
The integral can be rewritten by change of vari-
ables of integration from x, y to z, p, where

X=Z+ pP,
1
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P

JI dy(x)exp --,'c
r

d'x(vy}' exp i d'xj(x)rp(x) =Det '"(-cv') exp —— d'xd'yj(x)G(x-y)j(y)2c
elt

(2.40)

where y(x) is a lattice scalar field. If this iden-
tity is applied to Eq. (2.30) with

j (x) = Q e„5'(x-x„),

l

mizes Sc (92); that is, write P = yc + X and exPand
Sc(y) up to terms quadratic in Ji. In that approxi-
mation the formula for W is

(2.41) W=e g "~ W,

where

(2.49)

then Z can be written

Z=e '" Det" — dy x e '"', 2 42

where

S(q) = d'x .,(gp} +2)(1- cosy) . (2.43)
2P (2'

Similarly, the sine-Gordon expression for W is

ts=
J

de («)e f dV(«)e (2.44)

where

s, (v)= f d'«I- ~(vv)'

+22(1-eee(t+«2, )]I (2.45)

and the function &c(x} is defined in Eq. (2.6).
For P small the gradient term in the action S(y)

forces y to be smooth. It makes sense to expand
the cosine in Eq. (2.43) and keep terms only of
order y . In that Gaussian approximation the
partition function becomes

Z=e "Bet ' —:vDet ' —:v+21).

(2.46)

W =Det' ' — z V + 2
pm'

I

&&Det '~' — V +2) cos(pc+))gc)
Ia

(2.50}

1s, = . I.(az)e —
[ +2(1.(az)~.

6)
(2.51)

This is minimized by the choice

(2.52)

where

The field yc(x) that minimizes Sc(y) is not
known to me. However, a qualitative picture of

y~ can be obtained by the following simply con-
siderations. The gradient term in Sc(y) is small
if q is a slowly varying field; the other term is
small if y=-~~~. If Z is a large region then the
balance between these two terms will produce a
field y& equal to -m inside Z, equal to 0 outside Z,
and with a smooth transition from -m to 0 over a
region of thickness & around the boundary 8Z of

The action of that field, as a function of ~, is
approximately

The free energy is

1
PF =- —lnZ0

d2p p2 + 2 )P)( (2.4V)

&D (kP~) '"——
,

and for that value of & the action is

s, (q, ) =1.(az)2m(g .

(2.53)

(2.54)

and the specific heat C is

C=E
4m

' (2.48)

The linear increase of C with P implies a constant.
rate of incr ease of entropy as P decreases.

The loop integral W is evaluated in a similar
way by making a Gaussian approximation of the
functional integral in Eq. (2.44). Here it is neces-
sary to expand y around the field y& that mini-

The approximations leading to this estimate are
valid if the region Z is large compared to the
length &o. The length Q might be called the Debye
length of the 2D plasma of vortices. It is the
characteristic limiting distance over which fluc-
tuations of the densities of vortices and antivor-
tices can extend.

To complete the estimate of W it is necessary
to consider the factor W. The logarithm of W can
be written
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1
InW=-~ Tr ln — +V +2) cos(&pc +&ac)

+-,'Trln — V'+25
~

1
P

1
2 « I F-[p(E) p-(&)], (2.55)

where P(&) and p, (&) are the densities of states
of the differential operators. A reasonable quali-
tative estimate of S' can be obtained by using the
Thomas-Fermi approximation for p(&) (Itef. Sl):

dp ( pd x j (2 )z5iEp(&) =

This gives

—2(cos[q, b)+~6c(~)]
~

(2.56)

d p p +2(p2
(2v)' p'+2$P(P cos(pc +v8c) '

(2.57}

The function cos(yc + m8c) is approximately equal
to 1 unless x is in the region within the distance
& of 8Z; in that region the cosine is && and might
be approximated by zero. Thus, qualitatively
lnW is

where the terms that have been dropped are of
higher order in Pd, which is assumed small.
Comparison of lnW to Sc(qc} shows that lnW is
smaller by a factor of order P2 lnPK . Thus to
lowest order in P2 the factor W can be ignored,
and W is, for L(SZ}» &D,

-LQc)2ggkg (2.6o)

Because of the Debye screening 8' obeys a peri-
meter law in the smal1-P phase of the 2D Coulomb
gas.

In the limit lN-0, W must approach the area
law Eq. (2.14) associated with a perfect gas of
vortices. In the limit P-0 the Debye length X~

The perimeter law (2.60) holds for a loop
8~ large compared to X~. More generally, it is
expected that

e '""' for l(Z) ~ X, ,
gLQchg) f l(Z)

apart from constants, where l(Z} is the linear
size of Z. In the limit P -0 the region over which

InW=-,'L(BZ}&
J 2 ~ In( 1+ ~ (2.56)

d2p t' 2)PP&
2w' ( p'

The momentum variable p is restricted by ~p ~

& ~/
a because of the lattice (which has been suppres-
sed up to now}, so

ln W = L(6Z)—', $X P IP[1 —In()a P IP) + ' ' ' ], (2.59)

the area law holds becomes infinite as &D -, and
in this way the area law of the perfect gas of vor-
tices is recovered.

Debye screening reduces the topological dis-
order created by the ionized vortices. Fluctua-
tions of v and v densities are limited to regions of
size ~&&. Thus for Z large compared to X~ the
vortices that affect V are those that lie within a
distance &~ of 8Z. This leads to the perimeter
law Eq. (2.60).

To summarize, in statistical-mechanics models
of the 2D vortex contribution to the loop integral
8' it is found that an area-law dependence W- exp(-&(Z) }is associated with existence of free
vortices, and perimeter law W-exp(-L(8Z)) with
dominance of correlated vv pairs. The correla-
tio'n needed to give perimeter-law behavior need
not be as strong as requiring every vortex to be
bound to an antivortex; Debye-screening correla-
tions are sufficient. The distinction between area
law and perimeter law measures topological dis-
order.' a vv pair contributes weakly to W because
the long-range vortex and antivortex fields cancel,
leaving just a short-range field and no topological
disorder.

III. LONG-RANGE VACUUM GAUGE FIELDS

In Sec. II the expectation value of the Wilson
loop integral W is examined for several models of
the vortex sector of the effective two-dimensional
theory with probability distribution P2(rp, ) defined
in Eq. (2.1). The purpose of the present section
is to consider the effective three-dimensional
theory with probability distribution Ps(y, ) derived
from the full 4D theory by an equation analogous to
(2.1). To be specific, the effect of long-range
magnetic monopole fields in the SD theory, and
their role in creating vortices in the 2D theory,
will be discussed. In addition, a brief descrip-
tion of operators dual to the loop operator W, such
as the dual operator defined by 't Hooft, will be
presented in the context of the effective 3D theory.

The reduced probability distribution P, (A,) of
the 3D theory is the distribution of the field con-
figurations &,'(x) (i= 1, 2, S) on the SD subspace
with x4 ——0. It is defined by the path integral
[compare Eq. (2.1)]

P,g.') = J ~:"(x)e-'&"'&„.. .„,6[~.'(x) —~."(x, O)],

(S.l)

where again the gauge-fixing terms and Faddeev-
Popov determinant have been suppressed.

The partition function Z can be written in terms
of P,g.*) as
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dA.'(x)P, (A.') . (3.2)

P2(e, ) = dA.'(x)P, (A!)„, 6[q. (x,) A", (x,, O)],

(3.4)

where xi is the position in the (12) plane and o.'

takes the values 1, 2.
The probability distribution Ps(A. ,) can be inter-

preted as the square of the Schrodinger wave func-
tional of the vacuum state

P, (A.') =q" (A.'),

where

e(A.') =(A,'
~
o)

with ~0) the vacuum state and ~Ag the eigenstate
of the gauge-field operator with eigenvalue A,'(x).
The identification &3 ——+ can be derived from the
path-integral formula (3.1) in the manner describ-
ed in Ref. &4. The distribution of vacuum fluctua-
tions of the gauge fields P, (A',) will be referred to
as the vacuum functional.

The full 4D theory is needed to understand the
vacuum functional P~(A', ); and P~(A,') in turn deter-

mines the distribution of 2D fields Pq(y, ) from
which W is found. By this successive reduction
of dimensions, the topological configurations of
each dimension derive from those of one higher
dimension. In this section, 3D monopole fields
are considered as the origin of 2D vortexlike con-
figurations. Of course, there are other SD fields
that would produce vortices in the 2D subspace
x3 ——0; for example, 3D vortex loops. However,
monopole fields may be the most economical way
to create the topological disorder in the 2D theory
that is associated with the area law W-exp(-A(Z) }.

The study of the 3D monopole sector to be de-
scribed follows the earlier study of the 2D vor-
tex sector. That is, the integral f dA,'(x) is re-

The expectation value of the loop integral W, for
a surface Z in the x4 —0 subspace, can be written

))'= Z '
J( d)).'(x)J'e(A')-,' TxJ' exp(~ )g &I debug. }."ec

(s.s)

Thus Z and W are determined by P~(A,'). Also,
the effective 2D theory can be obtained from P3(A,'):
the 2D probability distribution P2(y, } is

I

placed by integrals over just monopole coordi-
nates, and several simple models of the distribu-
tion of monopoles are used to study the influence
of monopoles on W.

The monopole field X (x) in an Abelian gauge
theory is the Dirac monopole field

1 x,
Am(x)

2 3(j ( + )
) (3.5)

where r = ~x ~
and the monopole is centered at x

=0. This field is singular along the negative x3
axis, which is the position of the Dirac string.
It obeys the Dirac magnetic-charge quantization
condition

27Tdo' (vxA )=—,
+ S

(3.6)

where S, is a spherical surface surrounding the
origin minus an infinitesimal cap of radius &

around the negative x, axis. Equivalently, the
flux of V&&A carried into the origin by the Dirac
string is 2m/g.

The string singularity in Eq. (3.5) is along the
x3 axis. Alternatively, it can be directed along
any other curve from x =0 to infinity. Since mono-
pole fields with different string positions are
gauge equivalent, there is no loss of generality
in letting the string be along the negative x3 axis.
Polyakov has shown that monopole fields with
quantization condition (3.6) arise naturally in
Abelian lattice gauge theories. The string is un-
observable because in the lattice theory A' ap-
pears only in the operators exp(ig fL&ds A) where

represents an elementary plaquette of the lat-
tice; the contribution of the string part is exp(i2m)
=1, so is irrelevant.

A 3D monopole creates a 2D vortex. The field
A' (x) on the x~ =0 subspace is precisely the vor-
tex configuration y„(xi} in Eq. (2.4):

1 xpA:(x,, o) = —e.„2g x1.
(3.&)

where & = l. , 2. In particular, the Dirac magnetic-
charge quantization condition leads to the vortex
flux quantization (2.5) needed to make the loop
integral 8'=-1.

The monopole A' (x) is centered at x = 0. More
generally, if the monopole center is c, i. e. , the
field is A„'(x —c), the value of the field on the

x, = 0 subspace is

1 xy cp
A~(x). —c)g c3) — ~() ( )p [( )z z]lfz ~ 2 (s.s)
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Cc(x)(=g ds A„(s —x) =g da' B(cr —x)
ac 4 g

(s.e)
and again the loop BZ is taken to lie in the (12)
plane. Since I c(x) is the magnetic flux through
Z due to a point monopole at x, it can be written

C c(x)= -,'(uc(x), (s.lo)

where (uc (x) is defined as the solid angle at x sub-
tended by the surface Z. In Eq. (3.10) the mag-
netic flux of the Dirac string has been dropped
since it is 2m8(- xs) and thus contributes nothing
to e' ~, which is what appears in S'. The solid
angle cue (x) cannot be evaluated analytically for
arbitrary Z and x. Some qualitative features of
(dc(x) are as follows. For x near Z, i. e. , xieZ
and xs « l(Z) (=—size of Z), the solid angle ~c(x)
=2m,' then e' ~=-1 as for a 2D point vortex. For
x far from Z, i. e. , ~x

~

» l(Z), the solid angle
(dc (x) is asymptotically

(d, (x) - . cose,A(Z) (3.11)

where (r, &, p) are the polar coordinates of x. Fi-
nally, if Z is a disk of radius' centered at the
origin of the (1, 2) plane and x is on the x~ axis,

(()Q (Op 0) xg) —27T
)
1 g p g/g

~

~

xs
Z+x, (3.12)

Thus ~~ varies from 0 for x3»R to 2r for x3«R;
this shows the role of xz as a scale parameter.

In the Abelian theory an antimonopole field is
defined as -&' (x). Also, multimonopole fields
are obtained by superposition, ' the general field is

n'

2'(x)=/A'(x-x, ) — A'„(x-),), (3.)8)
)=i

where x, and y~ are the positions of n monopoles
and n' antimonopoles. The loop integral of this
field is

n n

ac ]el

(s.14)

This field has some of the same character as the
point vortex (3.V) with its center shifted to ci; but
it has also the qualitative difference that it de-
pends on the additional parameter cs. In the 2D
field, c3 is a scale parameter. That is, A is
asymptotically of the form (3.7) and c~ sets the
scale of the asymptotic regime. '

A -(I()„(xi—ci) for Ixi ciI »cs.
It follows that the loop integral g g, c ds A ap-
proaches m only for B~ large compared to c3.

The loop integral for a monopole centered at x
will be denoted 4c(x):

A .(x)= —~„,~ .
g x (3.15)

These configurations create point vortices when
restricted to the 2D subspace xs ——0 just as in the
Abelian case; and the resulting non-Abelian vor-
tices satisfy precisely the flux-quantization con-
dition (2.5) needed to make

i
—,
' TrP exp] ig ds Ag, [=-I .

&c )
Also, an SU(2) monopole field A'„,(x- c) centered
at c creates an SU(2) vortex with scale parameter
c3 in the 2D subspace, as described above.

The loop 'integrals of the SU(2) monopole fields
(3.15) and (3.16) are equal because the fields are
gauge equivalent, and given by

—,'TrP exp ig ) ds'A„', (s-x)t, =cosmic(x),
8C

(3.1V)

where x is the monopole position and Cc(x) is de-
fined in Eq. (3;9). For ~x~«l(Z), where l(Z) is
the linear size of Z, cosC ~ --1; thus the Wu- Yang
monopole field obeys the charge-quantization con-
dition needed to have a large influence on 8'.
Note, however, that for adjoint-representation
generators T, of SU(2) the loop integral is

3 TrI exp ig ds +~7 ~ I
= cos2@'g q

which approaches 1 as l(Z)-~; the monopole field
does not have a large effect on the loop operator
in the adjoint representation.

Presumably there exist multimonopole configu-
rations in the non-Abelian gauge theory, analogs
of the Abelian field in Eq. (3.13), with additional
degrees of freedom corresponding to relative glo-
bal SU(2) orientations. It is not known to me how

to construct a general multimonopole field. In
the simple models of the monopole sector con-
sidered below, the Abelian formula Eq. (3.14) is
used for the loop integral of a multimonopole
field and the degrees of freedom associated with
a monopole are just its position. Such a model

There are monopole field configurations in non-
Abelian gauge theories. First, the Dirac mono-
pole field A' (x) can be embedded in the SU(2)
gauge theory by defining

A'.(x) = 2ng„'(x),

where n, is a constant unit vector, n, = 1. This
field is singular on the Dirac string of &'(x). On
the other hand, there exists an SU(2) gauge trans-
formation that eliminates the Dirac string and
yields a nonsingular field which is just the Wu-
Yang monopole configuration '
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fl tel

Z = Q, „J ' cPx,d'y, P(x, y .)

and the Loop integral S'
tl Ill

W=g g. .. J d x&d y&P(xy )„,„.ntn'f

(3.1s)

is probably a poor excuse for a description of
multimonopole fields in a non-Abelian gauge the-
ory. Still, it may be that the statistical mecha-
nics of a gas of Abelian monopoles is a first step
toward a theory of the influence of long-range
gauge field.

Statistical-mechanics models of the monopole
sector of the theory are obtained by replacing the
functional integral f dA. ,'(x) by integrals just over
monopole coordinates. The partition function Z
becomes

logs of both W and I will be defined.
The quantity ~ could be defined in the full field

theory as the expectation value of exp(-,'ig f ~& do
' (vxA)) where the surface integral f,'v is over
the boundary surface 8 V of V minus an infinitesi-
mal surface around each Dirac string. M mea-
sures the magnetic flux through the closed sur-
face 8V, whereas W measures the flux through
the open surface Z.

The discussion of the influence of monopoles on
8' will begin with a perfect gas of monopoles. The
probability distribution is taken to be

P(x, y) =p"'"', (3.22)

where p, which has units {length), is the density.
Since P(x, y) is independent of the positions x, and

y, , the monopoles are uncorrelated. The partition
function is

(s.19)
z 2pQ

7 (3.23)

Here xi and y& are monopole and antimonopole
positions, the factor 1/n! n'! is the Boltzmann
counting factor needed because fields that differ
only by interchange of x, 's or y,. 's are identical,
and P (x, y) is the probability distribution of mono-
poles. The integrand of S' is the loop integral of
a multimonopole field, Eq. (3.14). The function
P(x, y), which might be derived in principle as the
probability distribution of multimonopole fields in
the full functional integral, will here be chosen
ad hoc for a few simple models.

Before discussing'these models it is useful to
introduce another quantity ~ that is similar to the
loop integral 8'. Let I be defined by

~=Z-', „x,. X,I'x,

where now fl = f d x is the volume of three-space,
kept finite for the moment.

The Loop integral 8' is

W= exp - 2p, d x[1-cosCc (x)]
4

(s.24)

W= exp(- R 2pK), (s.25) .

where & is a numerical factor of order 1 defined
by

For simplicity, the surface Z mill be taken to be
a disk of radius R centered at the origin in the
(12) plane. Even for this case the integral in Eq.
(3.24) cannot be evaluated analytically. However,
by dimensional analysis the integral is proportion-
al to R'. .Thus

-iH (jt' &xe ~ e
d'x[1 —cos-,'(ug(x) j, (s.25)

(s.2o)

where V is a finite region of the 3D space and the
function e~(x) is defined as

if xgV,
v(x)

p g gy (s.21)

The quantity M is interesting for various rea-
sons. First, M is more specifically related to
the monopole fields than W: M depends on m~~

which is m times the number of monopoles in V,
while 8' depends on C~, the flux of V&A through
the 2D surface Z. Second, ~ is the generaliza-
tion to the 3D monopole models of W in the 2D
vortex models: compare their definitions Eqs.
(3.20) and (2.11). Third, the dependences of M on
V and lV on Z are related, and either can be used
as a measure of topological disorder. Finally,
in the discussion of the XF model in Sec. V, ana-

where &uq(x) is the solid angle at x subtended by a
disk of radius 1 at the origin; ~q(x) decreases
sufficiently rapidly as ~x ~

-~ so that K is finite.
Equation (3.25) is an interesting result. The

loop integral decreases exponentially as R, i. e. ,
more rapidly than an area lam. The topological
disorder created by a perfect gas of monopoles is
even greater than what is needed to satisfy the con-
confinement criterion W-exp(- R ).

The origin of the R dependence in Eq. (3.25)
can be explained as follows. The monopoles cre-

. ate 2D vortices with all values of scale param-
eter x3. The positions and scales of the vortices
are uncorrelated. Roughly, vortices mith scale
less than R contribute to the loop integral as point
vortices, and those mith scale greater than R do
not affect the loop integral. Thus, W= exp(- )R'),
where ( is the density of vortices with scale less
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where dQ, = sin~;d~, dy, and p' is the density, thus

Z=8
The loop integral in this model is

(3.29)

S'=exp —p' z, 1 —cos 4~ x —4~ y
(' dA

4m

(3.30)

where x and y are the m and m positions associ-
ated with mm coordinates (z, 8, y}:

x=z+ 2p,
yy=z ——,p

(3.31)

and the polar coordinates of p are (l, 9, p). When
the region Z is large compared to the separation
l, the integrand in Eq. (3.30} is small unless one
of x and y lies near Z; this only occurs if z lies
in a tube of diameter l around the boundary B~ of
Z. Thus, for &» Z the quantity W is of the form

W-exp[- L(BZ)p'ml K'], (3.32)

where &' is a numerical factor of order &. Thus
+' has perimeter-law behavior in this model. The
origin of the perimeter dependence of W is the
strict correlation of vortices in the 2D slice of
the theory. ' vortices are combined in vn pairs
with positions x, y and scales x3, y3 such that
[{x—$) + (xg $3} ] =I. Lack of topological dts-

than R, $= pR; so W-exp(- pR~).
Next the quantity M is considered. For the per-

fect gas it is

M = exp(- 4p V}, (3.27)

where V= f d x &„{x)is the volume of the region
V. This dependence of M on the volume V is like
the dependence of W on the area A(Z) in the case
of a perfect gas of 2D point vortices [Eq. (2.14)].

If the region ~ is a disk and V a sphere both of
radius R, then both W and M decrease as exp(-R ).
This follows from the similarity of the two func-
tions Cc(x) and v&v(x). To be specific, Cc(x) is
approximately equal to v if ~x

~
sR, and decreases

rapidly to 0 as ~x ~/R-~; the function ve) (x) takes
those 'values exactly. This similarity justifies the
remark that either 8' or M can be used to measure
the topological disorder of these models.

The next model that will be considered is a per-
fect gas of monopole-antimonopole bound pairs,
with the separation of m and m in a pair fixed at
l. The degrees of freedom of each pair are the
position z of the center of mass, and the angular
orientation described by polar angles (&, q&). The
partition function of this system is

z=Z', "-'...I d'*, JI' ",", (B.RS)

order yields the perimeter. law (3.32).
In this model the quantity M is

M=exp —p' z —1 —cosm 0& x —~& y
4m

(3.33)

The integrand in Eq. (3.33) vanishes unless exact-
ly one of x and y lies in the volume V. Thus M is
again analogous to the quantity S' in the 2D model
of a perfect gas of vv pairs [Eq. (2.17)]. It can
be shown that in the limit in which the size of V

is large compared to l, M approaches

M - exp(- Sp'8 l), (S.s4)

where 8 is the area of the surface BV that is the
boundary of V. The strict correlation of m and
m positions reduces the dependence of M on the
region V from the volume dependence Eq. (3.27}
of a perfect gas to surface-area dependence Eq.
(s.s4).

To summarize the models considered above, it
can be said that the dependence of either 8' on Z

or M on V distinguishes between topological order
and disorder. The effect of the long-range mono-
pole field on S" and M leads to dependence of these
quantities on the volume B3 or V. In contrast,
the short-range mm dipole fields affect 8' and M

only if the dipole lies near the boundary of Z or V,
which leads to dependence of W on L (&&) and M on
S.

The final model that will be considered is a 3D
Coulomb gas of monopoles and antimonopoles.
There are probably strong correlations of the col-
lective coordinates of long-range vacuum fluctua-
tions in confining gauge theories, but the correla-
tion must be less than that of models in which
monopoles are bound in mm dipole pairs. In the
3D Coulomb gas, the interaction of monopoles
produces correlations of monopole positions inter-
mediate between that of the two models consider-
ed above.

The probability distribution of a Coulomb gas of
monopoles is

&(,v)=p"'" *y(-0!I —,* ', ), (& Ã)
xx xx )

where (e„,x„) stands for (+1,x,) for &=i = 1, . . . , n,
and stands for (-1,y~) for &=n+j, j=1, . . . , n'.
The parameter tc should be identified with 2&/g,
the Dirac magnetic charge of the monopoles, ' p is
the density. The Coulomb interaction (3.35) is
attractive (repulsive) for mm (mm or mm) com-
binations.

The Coulomb interaction produces Debye
screening in a SD plasma. The Debye length Q
ls
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S(q) = d'~ — p(Vq)'+2p(1- cosy) . (3.88)
1

Similar derivations lead to expressions for the
quantities W and ~ in the sine-Gordon theory

W= d(p(x)e c " dy(x)e ""', (S.S9a)

(3.85)

In analogy with the 2D problem [Eq. (2.31)] it is
expected that the correlation of monopole posi-
tions responsible for Debye screening reduces
the topological disorder in comparison with a per-
fect gas, and thus reduces the rate of decrease of
8' or M as A, the linear size of Z or V, tends to
infinity.

The Debye screening can be treated by a method
used by Polyakov. ' The starting point is to trans-
form the system to an equivalent sine-Gordon field
theory, in the same way as for the 2D Coulomb
gas. That is, the 3D form of the Gaussian func-
tional integral formula Eq. (2.40) is used to derive
a formula for the partition function Z in terms of
a scalar field p(x}:

g 2PQ D t&/2 ~2 I

d~ e-~((I[])

p

2D surface, namely, BV and Z. Because of the
discontinuity, ~ and W decrease exponentially as
the area of 8 V and Z.

To study the quantity I, the integrals J dy(x)
will be evaluated in the Gaussian approximation,
which is valid for P)( small: I et y, be the field
that minimizes S»((p), shift the integration variable
from ('p(x) to ]('.(x) = ()()(x) —p, (x), and expand S» up
to terms quadratic in X. The quantity I becomes

(8.41)

where

I=Det — ' +2p
pw

xoet '",— +2p cos q +7tH~ . 3.42

A qualitative understanding of the dependence of
~ on the region V can be obtained by an analysis
that parallels that carried out earlier [Eq. (2.49)]
for the 2D Coulomb gas. For V large compared to
the Debye length &~, the field y, (x) that minimizes
S»((p} is approximately equal to -m for x in V, to
0 for x not in V, with a transition from -m to 0 in
a region of thickness (v/2)&~ around the boundary
surface (]V of V. The action of (p, (x) is approxi-
mately

where S» (p, ) = S2mpX~, (8.4s)

s, (q)=I d'x( ~(vq)'

+2p[)-cos(q +e,)]j; (3.$9b)

where again 8 is the surface area of 2 V.
The quantity ~ can be estimated from the Thom-

as-Fermi approximation of the density of states
[compare Eq. (2.56)] as

d'p & ~ p'+2pP)('
(2m)~ J p'+2pp](' cos(y, + m&»)

'

I= dy(x)e '»'"',
] dq(x)e "",

4I

(S.40a) (3.44}

The cos((p, + me») can be approximated by 0 for x
in the shell of thickness (v/2)X~ around d V, and by
1 if x is not in that region, ' thus

+2p[) - cos(q +w+, )]j . (3Aob)

The 3D Coulomb gas of monopoles [Eqs. (3.37)-
(3.39)] has been described by Polyakov. ' ICe de-
rived this system from the (2+ 1)-dimensional
Georgi-Glashow model, an SU(2) gauge theory with
Higgs fields; the monopole solutions that occur in
that model play the role of instantons, and Eq.
(3.18) for Z originates as an expansion in instan-
ton coordinates.

Equa, tions (3.89) and (3.40) show that the quan-
tities I and W are similar. The crucial point of
similarity is that the functions ve»(x) and Cc(x)
that define ~ and W are both discontinuous over a

(s.45)

lnM =S4pkD a
(s.45)

apart from terms of higher order in a/&D, which
are small if PtP

The origin of the ultraviolet divergence of the
integral in Eq. (8.45) is the singularity of the
Coulomb potential 1/

~ x), —x,' ~
at x, =x,'. If the

potential were cut off at some small range ro,

This integral diverges linearly at large ~p ~, so
it is necessary to introduce an ultraviolet cutoff
~/a, which would arise naturally in a lattice the-
ory, the result is
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i. e. , made finite for x, -x~~ &vo, then the high-
momentum states with ~p~ ~v/ro would be sup-
pressed in the integral (3.45) and xo would replace
a in Eq. (3.46). This singularity is associated
with the point monopole field.

Comparison of Eqs. (3.43} and (3.46) shows that
lnM is smaller than Sv{q,) by a factor PP/a, and
this holds true for arbitrarily large V since both
S~ and lnM are proportional to the surface area S.
In the first approximation the factor M can be ig-
nored, so

(3.47)

As expected, the reduction of topological disorder
associated with Debye screening leads to depen-
dence of M on just the surface area S of BV, in
contrast to the volume dependence (3.27) that oc-
curs for a perfect gas.

The surface-area dependences M - exp(-S) of
Eqs. (3.47) and (3.34) are similar in that both re-
sult from correlations in monopole positions. But
they are different in that in the Coulomb gas (3.47)
the correlation distance ~& is dynamical while in
the mm dipole gas (3.34) the correlation distance
l is imposed by definition of the model.

Debye screening is a consequence of the long-
range nature of the Coulomb potential. If the in-
teraction of monoyoles were a Yukawa potential,
for instance, ~ would depend on the volume V as
in Eq. (3.27) for V sufficiently large.

The expression (3.47) holds in the limit R» X~,
where R is the linear size of V. More generally,
it is expected that

exp(- R'p&~) for R» &~,
exp(- R'p) for R s &~

apart from numerical factors. In the limit P2
-0, which corresponds to the strong-coupling
limit g -~ if the identification ply =(2m/g) is
made, the Debye length &~ - so the region over
which the R dependence holds becomes infinite.
In this way the perfect-gas result is restored for
PP=0.

The loop integral S' is expected to depend on the
area A(Z} of Z by the similarity of W and M. The
quantities W and M measure the magnetic flux
through the surfaces Z and 8V. In the limit in
which Z and BV become infinite, the distinction
that Z is an open set while BV is closed should be-
come irrelevant. Then W should depend on the
area A(Z), in accordance with the dependence
(3.47} of M on the surface area of sV, aside
from effects of the boundary BZ of Z which should
be proportional to L(RZ).

Polyakov described the dependence of W on Z- in
Ref. 10. In analogy with Eq. (3.41) W may be es
timated as

8'= e (3.48)

Ilm[ec(xi, x~) —ec(xi, —x~)] =2v&c(x.),x3"0

where ec(xi) is equal to 1 if xiEZ, and to 0 if xi
gZ. Thus, for the field p=-ec the first term in
S~ is infinite because of the singularity of V4~
at Z; the action is proportional to A(Z)&/p~,
where A is a momentum-space ultraviolet cutoff.
On the other hand, the first term in S~ is mini-
mized by set;ting y=0. For this field the action
is proportional to pR where R is the radius of Z.
The full action S~ is minimized by a field p, that
balances these two terms. y, is roughly equal to
-C~ but with the discontinuity across Z smoothed
out over a distance comparable to the Debye
length &~. For such a field the ultraviolet cutoff
A is not needed and is effectively replaced by

These remarks, and the more explicit
treatment due to Polyakov, lead to the result

S, (q, ) = Cp~, A(Z), (3.49)

where C is a numerical constant and terms pro-
portional to the perimeter &(8Z) are ignored.
Thus W obeys an area law in this system.

The result (3.49) can be illustrated qualitatively
by considering instead of S& the approximation S~
obtained by expanding the cosine in Eq. (3.39b):

S ' x V'q +p p+C 350

S& is minimized by the field

& }3e"*en(p) -~+2 -i, (3.51)

where ec(p) is the Fourier transform of ec(x).
Thus cp,

' is roughly equal to -4~ but with the high-
momentum components, those with p &~&, sup-
pressed; in particular, the discontinuity on Z is
smoothed out. The minimum of S& is

S", {q.")=p
(2 },~e, {P}~' .,2, . {3.52)

It can be shown that in the limit Z-, or equi-
valently Q -0, Sc'(y, ) is asymptotically

S,"(&,")-W2"pgA(Z), (3.53)

which illustrates the dependence on A(Z) in Eq.

where p, is now the field that minimizes Sc(y);
the factor W due to small fluctuations of y away
from y, is neglected. The field y, is not known
to me but its qualitative behavior can be guessed
from the following arguments. The second term
in Eq. (3.39b) for Sc is minimized by setting y
=-ec. Now ec(x) is discontinuous on Z: the dis-
continuity of C c across the x, =0 plane is [see Eqs.
(3.9) and (3.10)]
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(3.49).
The area law (3.49) shows that the correlations

measured by W are intermediate between the two
earlier cases, (3.25) and (3.32).

The result (3.49) holds for & large compared to
&» more generally,

UIA& = IA+ (3.54)

where A, (x} is the vector potential of a magnetic
flux loop around C with flux &/g. That is, A, (x)
has the property that for any closed curve C',

dl'A, = —n(C', C),
C'

(3.55)

where n(C', C) is the number of times C' winds
around C; in particular, if C' and C are planar
then

if C' and C are linked,
0 if not.

An explicit formula for A, (x) is

A, (x)= —v&& If dl, -),'g JC 471~x

the corresponding magnetic field is

(3.56)

(3.57)

PAAR for g ))
e' for R- &, ,

where R is the radius of Z. Thus Debye screen-
ing produces the area-law behavior associated with
linear confinement. In the limit P -0 the Debye
length &R -~ and the perfect-gas behavior (3.25) is
recovered.

The loop integral S' does not depend directly on
3D monopoles, but rather on the vorticity in the
2D subspace x3=0. The Debye length Q is the
correlation length of fluctuations of magnetic
charge. If the region Z is large compared to Q
then 8' sees effectively a gas of uncorrelated point
vortices with 2D density g =.p&D; these are the
vortices created by monopoles within a distance
&~ in the x& direction from Z. This leads to the
area law W-exp(- &R ) =exp(-pA~R ).

The final topic to be discussed in this section
is the definition of dual parameters for the quan-
tities W and M. For simplicity the dual param-
eters will be described for the Abelian gauge
theory. The discussion is formulated in the op-
erator-field theory with the gauge choice Ao ——0,
the temporal gauge.

The operator dual to the loop integral exp(igg zr,
x ds A) is constructed in the following way. "'"
Let lA) be the eigenstate of the gauge-field opera-
tor with eigenvalue A(x). The dual operator U,

which depends on a simple closed curve C, is de-
fined by its action on lA):

vxA, (x) = — dl 6'(x- I),
g c

(3.56)

U=exp i ) d xE(x}.A, (x) (3.60)

where E is the canonical momentum of A. Thus
U is the creation operator of a loop of magnetic
flux around C.

The interesting point is the commutation rela-
tion of U and the loop integral:

U DU= e' ' 8'
7

where

(3.61a)

tV=exp ig ds 'A
ac

(3.61b)

If the curves C and BZ are not linked then U com-
mutes with the loop integral; if C and 8Z are link-
ed then these operators anticommute. The com-
mutation relation (3.61) justifies calling U the dual
operator of the loop integral W'. This duality in-
volves also intercharge of electric and magnetic
fields because @' creates a loop HZ of electric flux
while U creates a loop C of magnetic flux.

't Hooft has shown how to generalize the opera-
tor U to a non-Abelian gauge theory. ' Again
U is defined as the operator that transforms A,
by a gauge transformation singular along a closed
curve C; and it transforms the loop integral
p exp(if qr ds '&) according to a relation analogous
to Eq. (3.61).

The implications of the relation (3.61) have been
discussed by 't Hooft. It is argued that this rela-
tion implies the lack of declustering (0 l

WU l0)
&(Ol WlO)(0

l UlO) even in the limit of infinite sep-
aration of the curves BZ and C. The failure of
declustering can result from the existence of
massless excitations, photons or gluons; but if
there are no massless excitations then one or both
of the expectation values (Ol WlO} and (Ol UlO)
should decrease according to an area law exp(-A)
where & =area enclosed by 8~ or C.

Since the magnetic field VXA, vanishes except
on the curve C, the vector potential A, is a pure
gauge field singular on C. That is, A, = v'A,
where the gauge function A, (x) is multivalued and
ill-defined on C. As an explicit example, suppose
C is the x, axis; then the gauge function is A, (x)
= my/g, where the polar coordinates of x are
(~, e, q).

It follows from Eq. (3.54) that the operator U

transforms A by the singular gauge transforma-
tion ~, '.

U'AU=A+ vA, . (3.59)

Since U is a shift operator of the gauge field A, it
can be written as
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The dual operator U' can thus also be used to
distinguish between topological disorder and or-
der.' if (0~ U~ 0) does not decrease as exp[-A(C)]
then the loop integral W must obey an area law,
indicating topological disorder. The connection is
that U creates a loop of magnetic flux when it acts
on the vacuum state ~0). If the overlap of U~O)

with ~0), that is (0~ UFO), is not small, then evi-
dently the vacuum is not changed much by the
presence of the additional flux loop t-". Then there
must be topological disorder, so the loop integral
5' is small. To make this connection more expli-

cit, consider the path-integral formula for (0
~
U~0):

U( )=exp i d xE(x) A (x —c) ~.
)

(3.62)

The commutation relation analogous to Eq. (3.61)
is

U'(c)M U(c) =e'"~"'M,

where
I

z
M=exp -g dg' V&A

4aV

(S.6Sa)

(s.6sb)

and f~v is the surface integral over BV minus in-
finitesimal surfaces around every Dirac string.
The operator U(c) can also distinguish between
states of topological order and disorder. For in-
stance, if the vacuum contains uncorrelated mono-
poles then the state obtained by creating an addi-
tional m and m at c and c', namely U(c) U (c')

~ 0),
has a nonzero overlap with

~ 0) that does not de-
crease rapidly as the distance ~c- c'

~

-~; but
if there is no topological disorder then (0

~
U(c)

x U (c') ~0) decreases rapidly as ~c —c'~ -~.
Although U(c) is defined as a dual operator for

~, its commutation relation with S' is also rele-

&0~ U~O) =~ dA'(x) dA'"(~)e ""',
~P(AIA+A l

C

where fP&„,„,+& indicates integration over the set
of paths A„' (x) that begin at A'(x) at Euclidean time
f =-~ and end at A'(x) +A,'(x) at time t =+~. If
(0

~ U~ 0) is not small, then there is a contribution
to the path integral from paths in which a magnetic
flux loop is created. Those paths produce vortices
in the effective 2D theory P2(y ) [Eq. (2.1)] be-
cause a magnetic flux loop sliced by a 2D plane
creates on the plane a point vortex and antivortex
separated by a distance of the order of the size of
C. The flux»/g implies that the vortices satisfy
the quantization condition (2.5). Thus a large
value of (0~ U~0) implies topological disorder in the
effective 2D theory and area-law behavior of W.

Finally, an operator U(c) dual to the monopole
operator I is the operator that creates a mono-
pole field centered at c.'

vant:

U'(-) WU(-) =e"c' W (s.64)

Both of the dual operators U and U(c) create mag-
netic flux and thus have nontrivial commutation
relations with the parameter that measures mag-
netic flux 8'.

IV. MONOPOLE IONIZATION

In Sec. ID the influence of monopole vacuum
fields is discussed in terms of some simple mod-
els of a gas of monopoles. In these models the
Wilson loop integral 8' indicates the topological
disorder created by the monopoles. The purpose
of the present section is to review some ideas
about the origin of monopole field configurations in
Abelian and non-Abelian gauge theories.

The path-integral formula Eq. (3.1) for the vacu-
um functional shows how monopole vacuum fields
are created by paths A,"(x,xq) in the space of field
configurations that are monopole fields at time
x4 ——0. Two examples of such paths will be con-
sidered here. monopole loops and, in a non-
Abelian gauge theory, merons. The contribution
of these paths will be discussed in terms of mod-
els obtained by analogy with instanton calcula-
tions. These models imply a transition from
bound mm pairs to free monopoles in the effective
3D theory described by the vacuum functional, the
monopole ionization referred to in the title. The
interesting question is how these two mechanisms
of production of monopoles differ.

The discussion of the monopole loop applies to
an Abelian gauge theory. The theory must be con-
structed as a lattice gauge theory to avoid ultra-
violet divergences. However, the topological
field configurations being considered can sensibly
be treated in a continuum approximation because
they spread over many lattice sites and vary slow-
ly compared to the lattice spacing a. For my
purposes the details of the construction of a lat-
tice theory can be ignored; the finite lattice spac-
ing is mainly needed just to provide an ultraviolet
cutoff for otherwise divergent integrals.

The monopole loop is a path in the space of field
configurations for which a monopole and antimono-
pole are created at some time 7 &, separate along
trajectories c(x4) and c'(x4), and annihilate at a
later time 7&. The creation and annihilation occur
at zero separation so c(x4) = c'(x4) at x4 =7', and &z.
The field corresponding to this process is the
monopole loop

A'(x, x4) =A' (x- c(x4))-A„'(x- c'(x4)), (4.1)

where A„' is the Dirac monopole field (3.5). This
field creates an mm pair in the 3D subspace at



990 DA1V IKL R. STUMP

x4 ——0, with m and m positions at c(0) and c'(0).
8 the contribution of monopole-loop paths to the
path integral is limited to loops of characteristic
size l, then the resulting mm pairs will have separa-
tions ~/. Free monoyoles will exist if arbitrarily
large monopole loops contribute to the path inte-
gral.

The process described in the previous para-
graph can also be viewed as a magnetic current
loop C in 4D space. Let C be a loop defined by
the equation x, =z„(e) where e is an angular
parameter, 0 & 8 & 2v and z, (0) =z„(2v). The
curve z" (8) is related to the m and m trajectories
c (x4) and c'(x4) in the following way: Let 8(x4) and
&(xq) be the two solutions of the equation x4=z4(e);
then the trajectories are c(x4) =z[e(x4}]and c'(x4)
=z[&(x4)].

The curve & is a loop of magnetic current. The
current density is

u„(x)=~ && dz„a'(z-x),
"c (4.2)

where v=2vjg is the monopole charge. The
charge density at time x4 is

y, (x, x4) = ~e(7.~ —x,)8(x4 —~,)

x[8'(x- c(x4))- 8'(x- c'(x ))] ~ (4 3)

The fields associated with k„(x) are defined by

~v+0 v (4.4)

Il„„is the dual of the electromagnetic field tensor
E,„since k„ is a magnetic current density.

The obvious way to solve Eq. (4.4) is to intro-
duce a dual field &„defined by

&„(x)= d'y D(x y)u, (y), — (4.5)

where &(x) is the inverse of the 4D Laplacian

-8„8„D(x)=8'(x),

and write E„„as
(4.8)

(4.7)

However, the path integral (3.1) is an integral over
the gauge field A„(x) not the dual field 2„(x). Thus
it is necessary to construct a gauge field of the
magnetic charge following Dirac. The construc-
tion involves introduction of a singular surface 4,
the surface swept out by the Dirac string as the
monopole moves along &; the boundary of 6 is
C. Let a be defined by the equation xv =y„(e, $)
where 0& 8&2m and 0& $ &~; the boundary of 6
is at 5=0 so y" (e, 0) =s" (&). The Dirac monopole
field is

Av (x) = K do ~E„„~B„D[x—y(o)] . (4.8)

The corresponding field tensor is

F„„=8,A„-a~„
1= 3 ~vvnPaa+ Gv v s (4.8)

where F,~ obeys Eq. (4.4) and G„ is a singular
field that is nonzero only on b,:

G, „(x)= x da, „5'[x—y(o)]. (4.io)

Ao(x) =0,
A, (x)=A„'(x) A.'(x c).

(4.ii)

Thus the 4D monopole loop creates a SD mnz pair
with separation comparable to the loop size.

The position of the singular sheet 6 can be
changed by a singular gauge transformation of
A, (X}. Since 4 is not gauge invariant it should be
unobservable. The magnetic charge obeys the
Dirac quantization condition (&=2m jg This i.m-
plies that the singular field Gv„(x) is unobser-
vable in a lattice gauge theory in which A, (x)
appears only as exp(egg ds A) because then G„„
occurs only as exp(igG) =exp(f2v)

The contribution of the monopole-loop field
(4.8} to the path integral depends on the action of
this configuration. H the action is defined as in
Eq. (1.3) as the integral of F, then it is infinite
because of the singular sheet L. However, it can
be argued that the unobservability of ~ implies
that the action appropriate for monopole fields is
the Dirac action

S=—,
' d x(Fv„- G„,)(F G, „)

d xFv„F„„ (4.i2)

for which the singular field ~,„ is removed. Pes-
kin has shown quite explicitly how the Dirac action
arises for monopole loops in a lattice gauge the-
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The action (4.i2) is

S=2 d xd yk~xk~ y&x —y, (4.13)

or, by Eq. (4.2) for k„(x) the action is the double

To see the connection between the monopole loop
field A, (x) and the 3D monopole field A'(x) in Eq.
(3.5), consider an infinite loop G defined by the
trajectories of two static monopoles located at
c =0 and c'=(0, 0, l). The surface 6 is an infinite
strip in the (xs, x4) plane defined by -~ & x4 &w
and 0- x3 ~ l. The corresponding Dirac field
A, (x) in Eq. (4.8) is
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line integral

d=-,.'-z ]l dz" $ dz ))('"zz').
C C

(4.14)

of points z' such that ~z -z'~ - z. Then the action
8 is the sum of a divergent term So and a term
8, that is finite as &-0,

The Green's function D(x) of the 4D I aplacian is s=s, +s, .
The divergent term is

(4.18a)

L)(x) =
4

. z . (4.18)

The integral (4.14) is divergent because of the
singularity of D(z —z') at z =z'. It must be ren-
dered finite by excluding the small segment of &'

L
~0=4„z ~ ) (4.16b)

where L is the length of the curve C. The finite
term is, in the limit &-0,

, n(z) (z-z')
[&(&n(z) ' (z' —z) —N&(z)(z ' —z),], (4.18c)

where n(z) is the unit outward normal to the curve
C at z. 8, is dimensionless and finite, ' if ~ is a
circle then S, =-2/4. In general, S, depends on
the shape of the curve C but not its overall scale
L.

The L-dependent term So depends on the cutoff
This shows the necessity of an ultraviolet cut-

off. In a lattice theory a cutoff ~ would occur
naturally and would be of the order of the lattice
spacing a; a rigorous treatment of the lattice
theory is needed to identify the correct value of
&, but eventually I shall simply set & equal to a.
Ln the continuum treatment, the divergence of S
as ~-0 derives from the fact that the monopole
field has a point singularity at the position of the
monopole center. The divergence could be eli-
minated by smearing out the source of the mono-
pole field &„(x) into a charge of finite extent.

The contribution of monopole loops to the parti-
tion function Z will be discussed under the as-
sumption that the path integral (1.4) is dominated
by field configurations A„(x) of the form

A„(x)=2„(x;Xq, . . . , g) + (I()„(x), (4.17)

where &„(x;&q, . . . , Q) is a multiloop field with
&& the collective coordinates needed to specify the
ith loop, for which the fluctuation y„of &„away
from &„ is small. Then the path integral fdA„(x)
can be replaced by integrals over the collective
coordinates f m, dX,.and small fluctuations fdy (x).
The action can be written

S(A„)=s(4, . . . , g)+S(v „), (4.18)

where S(&q, . . . , Q) is the action of the multiloop
field &„; the term linear in q„vanishes because
&„obeys the Euclidean field equations B„E„„=0,
and S(y~) is the quadratic action (1.3) since (]()„ is
small. The small fluctuations p, do not interact
with the background field iK„(x) because of the
quadratic form of the action, ' physically this cor-
responds to the fact that photons, which are the

l

quanta of the small fluctuations p„(x), are not
charged. This separation of A„ into a monopole
loop plus small fluctuation leads to factorization
of the partition function. Z =Z()Z where Zo de-
pends only on the fluctuations ~It)„and Z is the
partition function of a system of monopole loops

s(x„. . . , ](„)=g s(]].,) . (4.2O)

Further, the factor f(&q, . . . , g) is taken to be

f(Ag, . . . , z).„)=, f(A)) . (4.21)

These approximations are valid if the partition
sum is dominated by configurations with a small
density of monopole loops. Then Z„becomes

Z„=ez)( die ''d(&)) .
4

(4.22)

The action S(&) is the sum of a term So[i(&)] that
depends only on the length l(&) of the loop X and a
convergent term S,(&). Thus Z can be rewritten

Z„=exp) — dl e 0 'P(l) (, (4.23)

where P(l) is the distribution in length

l ())=f dze f(z)ez[!-!(zl]. (4.24)

(4.19}

where f(&q, . . . , Q) is the volume in the space of
fields y„(x) of fluctuations that are identical to
fluctuations of the collective coordinates X,

To proceed it is necessary to assume that the
monopole loops are independent. That is, inter-
actions between elements of different loops are
ignored and the action S(&q, . . . , &„) is taken to
be the sum of the actions of individual loops
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The lower limit of integration of the length l is
identified in Eq. (4.23) as just the lattice spacing
a,' this is somewhat ambiguous, but since it is
the large l limit that is of most interest, the am-
biguity is unimportant.

The distribution P(l) is essentially just the total
number of loops of length l; this is modified
slightly by the quantity e &f in Eq. (4.24). The
loops are confined to a lattice. The number of
links in a loop of length l is l/a. Since the loop
can be located at any point in the 4D space, P(l)
can be written

(4.26)

where 0 is the volume of four-space and p(l) is
the number of loops of length l constrained to
pass through the origin. The number of curves
that begin at the origin and have l/a links is (2d
—1)'"where d =4 is the number of dimensions.
Not all of these curves are loops, but the domi-
nant factor in P(l) should be (7)' ". Thus it may
be estimated that p(l) is of the form'

tion is made g =PIP/4m; the critical value of
g is then g, :

~ =lnV. (4.29)

This estimate is subject to several ambiguities
that could change the value of g, , though not the
fact that there is a phase transition. The obvious
ambiguity is the treatment of the cutoff E in 80,
Eq. (4.29} was obtained with the simple choice
& =a. Other possible sources of error in (4.29)
are the assumption that h(l) is dominated by exp(l)
in Eq. (4.2V), which might be invalid because of
the contribution of rapidly fluctuating loops for
which (4.16) is a poor approximation of the action;
and the assumption that interactions between ele-
ments of different loops can be neglected.

If the unknown factor h(l) in Eq. (4.2V) is ig-
nored, then & can be evaluated explicitly. An
interesting derived quantity is the specific heat
C. For g near g, and g & g, , and for the infi-
nite-volume limit of the system, the specific heat
ls

(4.26) C=~g 1. — —

& exp -~+ (4.3O)

4~
—lnV (4.28)

The magnetic charge is v=2'/g and P can be ab-
sorbed into the definition of g, so the identifica-

where the factor h(l), which derives from the re-
quirement that the curve return to the origin, is
less important than the first factor. The import-
ance of the lattice spacing a in the treatment of
monopole loops is evident in Eq. (4.26).

The partitio~ function becomes

PP l'
Z =exp a 0 ' dlh l exy — -lnv-

"a 4 a

(4.27)

Here the ultraviolet cutoff & in Q is identified with
the lattice spacing a. This choice is uncertain
and affects the estimate of the phase-transition
Point given helot. More generally, it should only
be said that e is of order a.

The partition function S of the monopole sector
obviously predicts a phase transition. At large
PtP the exponential in the integrand of (4.2V} cuts
off loops at a size comparable to a(P~/4v'- ln7)
At sufficiently small PIc the integral over l is un-
bounded and the approximations leading to Eq.
(4.2V) break down; presumably then loops of arbi-
trarily large length l contribute significantly to
Z . The expression (4.2V) for Z implies that the
critical value of PtP where the phase transition
occurs ls

Here again the identification g =PI/4m has been
made. Thus the specific heat of this system di-
verges at the transition point g =g, . In contrast,
Eq. (2.35} shows that the specific heat is not sin-
gular at the vortex ionization point P, =8m/IP for
the 2D Coulomb gas of vortices. The reason for
this difference is that in Eq. (4.27) for Z„ the in-
tegrand tends to infinity exponentially as l-~ if
g &g, ,' thus all thermodynamic quantities diverge

2 2.

atg =g, . In contrast, in Eq. (2.33) for the par-
tition function of the 2D Coulomb gas, the inte-
grand diverges only as a power as ~x -y

~

-~
since the potential G(x —y) is logarithmic, ' thus
some quantities, e.g. , the specific heat, remain
finite at the transition point P,

The monopole-loop phase transition described
above implies a monopole-ionization transition
in the effective 3D theory defined by the vacuum
functional P3(A',). For g & g, only monopole loops
with size of order a contribute to the path integral;
these create in the SD subspace mm dipoles with
separation of order a. The short-range dipole
fields do not disorder the system, so the loop in-
tegral W has the perimeter-law behavior of a non-
confining theory. For g & g, arbitrarily large
monopole loops contribute, and these create free
monopoles in the SD theory. In this phase 8' may
decrease more rapidly as Z-~ than a perimeter
law,' e. g. , N' may have the area-law behavior of
a confining theory.

The monopole ionization can also be discussed
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precise treatment of these ultraviolet effects pro-
bably does not affect the nature of the phase tran-
sition, which involves the large loops.

The monopole-loop field is the path in field-con-
figuration space that creates a 3D monopole pair
appropriate to an Abelian gauge theory. This field
can obviously be embedded in a non-Abelian gauge
theory. However, in a non-Abelian theory there
is another kind of path that creates a 3D monopole,
namely, the meron configuration. Meron con-
figurations are solutions to the Euclidean gauge-
field equations, except at singular points. Their
role in the path integral has been discussed in
Refs. 13 and l4.

The meron configuration in an SU(2) gauge the-
ory can be written in the temporal gauge, i. e. , the
gauge

choicest,

=0, as

in terms of the dependence of the quantity ~ on
the region V in SD subspace. M is the expecta-
tion value of exp(ivy~) where n~ is the number of
monopoles in V [see Eq. (3.20)]. A monopole
loop affects this quantity if of the two points of in-
tersection of the loop with the 3D subspace x4 ——0
one is inside V. In the phase with g &g, , only
loops near the surface 8V of V affect I; then
M -exp(- S) where S is the area of BV. In the
phase with g &g, , there are arbitrarily large
loops and these need not lie near 8 V in order to
affect V; then I may have a different dependence
on V than in the ordered phase.

The results of Sec. GI show that the dependence
ef W on Z and of ~ on V in the large-g phase de-
pends on the density of monopoles and, more im-
portantly, on their effective interactions. It ap-
pears to me that in order to determine these quan-
tities, it is necessary to go beyond the simplest
estimates, Eqs. (4.16) and (4.26), of the action
S(&) and distribution of loops P(&); the nondomi-
nant terms like S,(&) and h(l) are needed.

For a lattice gauge theory, the relevance of the
monopole sector may be rather limited in the dis-
ordered phase g &g, . For g sufficiently large,
the strong-coupling expansion is presumably valid.
The lowest-order approximation to the strong-
coupling expansion g =~ corresponds to com-
plete disorder. ' for P = 0 all field configurations in
the partition sum are equally probable. Then the
partition sum is no longer adequately described
as a sum over just monopole loops and small
Gaussian fluctuations. The monopole sector is ap-
plicable for only a limited range of g when g &g, .

Th).s picture of monopole ionization is not incon-
sistent with the results of the Monte Carlo study
of the Abelian lattice gauge theory of Creutz.
Specifically, he finds a phase transition at g, = 1
such that (1) the loop integral W changes from
perimeter law at g &g, to area law at g & g, ,

2 2

and (2) the specific heat C is apparently singular
at g, since the average energy & does not con-
verge to a single value at that point.

This naive description of the contribution of
monopole loops to the path integral is meant to be
heuristic. The basic idea is the separation of
field configurations into monopole loops and small
fluctuations. To make an exact separation of this
kind requires a precise treatment of the lattice,
to account correctly for large-momentum fluctua-
tions. To be specific, a monopole loop for which
the curve & is rapidly varying might be described
alternatively as a loop field for which & is smooth
plus large- momentum fluctuations. However, the

A.(xi x4) = ~.~/ - 1+ ~-' z~i// ~ (4 31)

This field tends to zero as x4 =~ and to a pure
gauge field as x4-~. At x4 ——0 it is precisely the
Wu-Yang monopole field A„',(x) in Eq. (3.16).

The meron in Eq. (4.31) is centered at x = 0
and x4 ——0. More generally, a meron centered at
x= c and x4 ——c4 creates the, following monopolelike
field in the 3D subspace x4 ——0:

1 (x —c)g. C4
Aa(x s 4) ~sf/

( )2 [(~ ~)z + c z]&//

(4.32}

This field is similar to the Wu- Yang fieldA~, (x - c)
centered at x=c. However, it depends on the
additional parameter c4 which has the character
of a scale parameter. A.,' approaches the mono-
pole field in the limit

~
x —c

~

» c4.
The action of the meron configuration is loga-

rithmically divergent because of both the singu-
larity at x = 0 and the slow decrease at large dis-
tances. The point singularity at x =0 is irrele-
vant; it could be smoothed out in a continuum for-
mulation of the theory, and it is eliminated by the
finite lattice spacing. But the slow decrease of
A,'(x, x4), i. e. , as ~x~ as ~x~ -~, is crucial if
the meron is to produce a long-range 3D monopole
field. The divergence of the action implies that
the single meron configuration does not contri-
bute to the path integral.

The meron-pair field configuration, which
creates a pair of monopoles in the 3D subspace,
has finite action. If the meron centers are both
located on the x4 axis, say at c =(0, T) and c'
= (0, 7'), then the meron-pair configuration can
be written in the temporal gauge (A, =O) as

(4.33)

I

1 x x +(x~- T)(x4- T')
g(xg x4) = g)/ J [~'/. + ( T)z]1 l[ / /P ( Tl)z]1/2 (
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If the separation
~

T —T'
~

of the merons is large
then for x4 near T or T' this field is approximate-
ly equal to the meron field in Eq. (4.31), at least
over distances small compared to ~T-T'~. On
the other hand, the 3D field at x& ——0 is not of long
range but is of order ~~xj~as ~x~ -~, like a SD
dipole field.

The meron-pair configuration is related to the
instanton solution of the SU(2) gauge theory. In
particular, both have Pontryagin index fd xFF
=1. The meron pair can be regarded as a defor-
mation of the instanton field.

The temporal-gauge form of a meron-pair con-
figuration with meron centers c and c' not at the
same point in three-space (c 0 c') is not known to
XIle.

The action of a meron-pair configuration de-
pends only on the separation in four-space (c —c') .
It can be shown that the action is

Sv' (c —c')' + (c, —c4)'8= ~ ln p +~, ,g a (4.34)

where a is a small length that arises either from
smearing out the point singularities of the field
at c and c', or from the finite lattice spacing in a
lattice theory; and S, is finite in the limit (c —c') /
a -~. The interaction of merons ie proportional
to the logarithm of their separation. The action
of a single meron, found by considering the limit
(c —c') -~, is divergent for an infinite-volume
system, but only logarithmically. For compari-
son, the action of a monopole string, i. e. , a looy
field where the curve & is an infinite string,
which creates an isolated 3D monopole, has ac-
tion that diverges linearly in an infinite volume.

There are two obvious differences between the
contributions to the path integral of monopole
loops and of merons. In the first place a mono-
pole loop of size l creates a pair of point mono-
poles in the 3D subspace separated by a distance
of order l. In contrast, a meron pair with meron
centers c and c' creates a pair of 3D monopoles
separated by a distance of order

~
e —c'

~

and
which depend in addition on scale parameters c4
and c4. The scale parameter determines how

large an effect the monopole has on the order
parameters ~ or W; if c4«R then a monopole
acts like a point monopole, but if c4 ~R its effect
is reduced. As seen before in Sec. DI, this ad-
ditional scale parameter changes the nature of the
monopole sector as compared to a system of point
monopoles.

In the second place the action of a monopole
loop of size I is proportional to 1/a. In contrast,
the action of the meron-pair field is proportional
to In

~

c- c' ~/a. Thus the Boltzmann distribution
exp(-8) suppresses monopole loops exponentially

in l, but suppresses meron pairs only as a power
of ~c —c' ~. In addition, the entropies of these
configurations are very different. A monopole
loop has one degree of freedom for each point on
the loop, giving an entropy proportional to l. In
contrast, a meron pair has only one degree of
freedom, the relative position of the meron cen-
ters, giving an entropy proportional to ln~ c —c' ~.

The logarithmic interaction (4.34) between mer-
ons and their logarithmic entropy suggest that
there is a phase transition in which meron pairs
ionize, in the manner of the vortex ionization of
a 2D Coulomb gas of vortices. Meron ionization
would imply a monopole-ionization transition in
the effective 3D theory defined by the vacuum
functional P~(A,'). At small g the action is large
and only meron pairs with (c —c') of order a con-
tribute to the path integral; in the effective 3D
theory monopoles are combined in pairs with sepa-
ration in both space and scale parameter of order
a. At large g the suppression due to the action is
small and meron separations can be large com-
pared to a. In the 3D theory free monopoles oc-
cur, although there are probably interactions be-
tween monopoles that produce some correlation
in separation and scale parameter.

The usual estimate of the phase-transition point
g =g, , obtained by equating action and entropy,
ls

g Sm-

4m 16

This value is very different than the value of g at
which the transition from strong- to weak-coupling
behavior is observed in Monte Carlo studies of
SU(2) gauge theories, ' namely the much lower
value P =4/g = 2. This naive treatment of meron
ionization is not an adequate description of the
transition. Nevertheless, it is possible that a
better treatment of the meron contribution to the
path integral, including complete identification of
meron degrees of freedom and interactions, and of
the influence of the fluctuations of the gauge fields
away from the meron configuration, woul. d imply
monopole ionization in the effective 3D theory and
describe the transition from strong to weak coup-
ling. An attempt to provide a better treatment of
the meron contribution has been described by
Laughton.

Monopole loops may also play a role in the tran-
sition. However, there are some reasons to think
that merons are more important. For example,
in the small-g phase, the fluctuations of large
meron separations are suppressed only by a pow-
er, whereas large monopole loops are suppressed
exponentially. Also, these configurations should
not be counted separately because that would in-
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troduce some double counting.
A characteristic feature of .an ionization transi-

ration of field configurations into just monopole s plus
teraction is that the specific heat C is nonsingular
at the transition point, as described earlier. For
example, C is nonsingular for the ionization tran-
sition of a 2D Coulomb gas [see Eq. (2.35)], which
supposedly explains the behavior of ~ for the X~
model (Fig. 1). In contrast, C diverges at the
transition point of the monopole-loop system. The
specific heat of an SU(2) gauge theory is found in
Monte Carlo studies to be nonsingular (Fig. 2).

The 3D monopoles in the disordered phase g
&g, , can explain the area-law behavior of the
loop integral W. However, for g large compared
to the transition value g, , the strong-coupling ex-
pansion is an accurate approximation. The sepa-
ration of field configurations into just monopoles
plus small fluctuations is probably not adequate
in that range of g', for a quantitative description
of the area dependence of W.

Finally, the real problem of quark confinement
in non-Abelian gauge theories is to understand the
cause of the area-law behavior of W in the s mall-
g region, g &g, . The strong-coupling expan-
sion cannot be used because the expansion is not
convergent for exactly this range of g . Indeed
the strong-coupligg expansion is expected to
break down for g beyond a radius of convergence
at which any kind of transition occurs. Also,
since the 3D monopoles are bound in dipole pairs
for g &g, , the contribution of the monopole sec-
tor to W is expected to give a perimeter law.

The crucial difference between non-Abelian and
Abelian gauge theories is that the small fluctuations
of the fieldA, '(x, xg away from the classical topologi-
cal field configurations that minimize the action do
not decouple in the non-Abelian case, but interact
with the classical field. Physically this corre-
sponds to the fact that gluons carry color charge
while photons carry no electric charge. Thus the
factorization into monopoles and small fluctua-
tions does not occur as in Eq. (4.19) in a non-
Abelian theory. Instead, the meron contribution
to the partition function is schematically of the
form

g — — g etf
tl gg ei ~ ~ ay&

where c~, . . . , c„are meron center positions de-
fining the classical configuration &, and the effec-
tive action S,«g) is

-S~f~Q) d
- S(Q+y)

The nonlinearity of S implies that S,«pf) is not
just Sg) as it would be in an Abelian theory.

A possible explanation of the area-law behavior
of W(Z) when g is less than g, is as follows. The
gluon fluctuations renormalize the charge by the
replacement of SQ) by S,«g). It may be that the
effective monopole charge is a running charge w

=2m/g(R) that depends on the size R of Z in the
calculation of W(Z). Then even if the bare charge
g is in the range g & g„ the effective charge g(R)
would increase as the scale R-~, as expected by
asymptotic freedom, and become greater than g,
for R sufficiently large. Then W(Z) would see
free monopoles and obey an area law. Further
work is needed to find out whether this mechanism
does operate.

V. THE XY-MODEL ANALOGY

H=-J s x sx', (5.2)

where J is a coupling parameter and (x, x') stands
for nearest-neighbor pairs; each pair is counted
once. The partition function is

Z = d8(x}e-'&'&, (5.3)

where the action is

S(8) =K P i1- cos[8(x) —8(x'6 (5 4}
(x tx' &

and K =PJ'; the functional integral notation fd8(x}
denotes II„f ', d8(x)/2v

A quantity of special interest is the correla-
tion function &(R) defined by

~(R) =Z ' d8(x)e '"'e""."'*'
4

(5.5)

where R = ~x —x' ~. The importance of A(R) is
that its asymptotic behavior as R-~ distinguishes
between two phases of the model. If K is large,
A(R) decreases as a power of R as R-~:

(5.5a)

In this final section the classical XF model is
discussed in a way that emphasizes analogies with
earlier discussions of gauge theories, particular-
ly the topological order-disorder transition.

The &Y model describes the statistical mecha-
nics of classical two-component spins in a 2D
lattice space with nearest-neighbor interactions.
Lattice sites are denoted x=(xq, x2} and the lat-
tice spacing is a. At eachgite there is a spin
s (x) with fixed magnitude s =1; the spins can be
specified by an angle variable 8(x) as

s(x) = (sq(x), s2(x))= (cos8 (x}, sin8 (x)) . (5.1)

The energy is
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where c is a constant and the exponent p depends
on &; the phase characterized by this behavior
is called critically ordered. If K is small, A(R)
decreases exponentially as R -~:

A(R) -ce '"' (lf(Z.), (5.6b)

where c and p are constants; this phase is called
disordered. The phase transition separating these
phases occurs at a critical value K, of the param-
eter &.

The function A(R) can be written

d(Z)=z ]I de(x)e ''exp(q]l de'pe), (4.7)
r

where I' is a path from x' to x and R = ~x —x'
~
.

The line-integral operator depends on &(x) only
along the one-dimensional (1D) subspace I'. If
I' is linear then A(R) is determined by an effec-
tive 10 theory. Let ~ be a segment of the xa axis.
Define the reduced probability distribution Pg('p)
of a 1D angular field p(x) by

Pq(qe} =Z ' f de(x)e *"'
4(qe(«) - 4(«; 0)] .

The special significance of the kink field is that it
makes exp(i f dx d()q)/dx) =-1 and that it is of long
range and so contributes equally for arbitrarily
large I'. Thus the kink field is the analog of the
long-range vortex field with flux v/g in Eq. (2.4).
An antikink configuration can be defined as —y), (x)
and multikink configurations by superposition, '

the general configuration is
n'

qe(«) 24=4( ««I) —I, qe. («- q;), (4.)4)
~=1 &=1

where x, and y& are the positions of n kinks and n'
antikinks. The line integral of y is

w ~ ~

exp i dxdp/ dx~ = e'+r~('e '+r'"~ . (5.15)
j V~

A heuristic analysis of the effect of kinks on
A(R), in the spirit of the analysis of the effect of
vortices on W in Sec. II, can be carried out by
considering models of a gas of kinks, in which the
functional integral f dy(x) in Eqs. (5.9) and (5.10)
is replaced by integrals over just the kink coordi-
nates. Z and A(R) become

(5.8)
The distribution Pq(q) defines an effective 1D
theory in which the partition function is A(R) =Z-' g

(5.16)

dq (x)Pi(e)

and the correlation function A(R) is

(5.9)
, , dx, dy,.I' x, y e'~r~&'e '+r"~'.

4rg

(5.IV.)

A(R) =Z '
dq («)Pe(p) exp(i ) d«dp/d ). «

r

(5.10)

q, (x) =v8(x), (5.11)

where &(x) is the conventional & function. The
effect of a kink on the line integral in Eq. (5.10) is

This reduction of dimensions to an effective 1D
theory is analogous to the reduction to a 2D theory
in the gauge theory [compare Eq. (2.1)j; the
function A(R) is the analog of the Wilson loop inte-
gral W [compare Eq. (2.2)J.

To give a discussion of the XI/" model parallel
to the earlier discussions of gauge theories, it is
necessary to identify the configuxation of the 1D
field y(x) that is the analog of the 2D point vortex
discussed in Sec. H. The relevant field is a point
kink configuration defined by'

Simple models of the distribution P(x, y) are con-
sidered.

For a perfect gas of kinks, i. e. , the choice
P(x, y) = P " where t is the density, the partition
function is

g 2&0 (5.18a)

A(R) =e"", (5.18b)

where R is the length of I'. A perfect gas of kinks
yields the exponential decrease of A(R) as R-~
associated with the disordered phase.

For a perfect gas of kF bound pairs, with mem-
bers of each pair separated by l and density f',
the partition function is

n n

z P ",";;I=d.. g—'—;
nt ",g g.~a

where 0=fdx is the volume of the 1D space. The
correlation function is

exp i dxdp& dx =e

where the function Br(x) is defined by

1 if x+1',
e, (x) =

(5.12)

(5.18)

(5.19a)

here the degrees of freedom of a kk pair are the
center of mass z; and orientation o, which is +&
for kF or -1 for Kk. The correlation function
A(R) is, for R) l,
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A(R) =e"" (5.19b)

8,(x) =tan ' —'.
X1

(5.20)

The circulation of a contour C surrounding x=0
in this field is

ds ' +8„=2%.~
~

C
(5.21)

An antivortex field, with circulation -2&, is de-
fined as -8„(x). Multivortex fields are obtained
by superposition, the general configuration is

P(x) =Q 8„(x—x,) —Q 8„(x—y, ) .
~=1 g=1

(5.22)

A perfect gas of k%' pairs yields a constant non-
zero value of A(R) as R-~, as in an ordered
phase.

The correlation function A(R) is the analog of
the, loop integral S' in the gauge theory. It is used
to measure the disorder of the system. Further,
the distinction between exponential decrease of
A(R) as R-~ and slower decrease indicates the
special topological disorder associated with un-
correlated &D kink configurations. This suggests
that the phase transition of the XF model is a top-
pological order-disorder transition that has the
effect of liberating kinks in the effective 1D the-
ory. Thus the problem is to determine the origin
of the kinks.

The nature of the phase transition of the &Y mod-
el has been described by Kosterlitz and Thouless. '
The starting point of their theory is the sugges-
tion that the partition sum is adequately approxi-
mated if two kinds of configurations are included,
long-range vortices in the spin field and small
spin-wave fluctuations away from the classical
vortex configurations. The phase transition,
which occurs in the vortex sector of the system,
is a topological order-disorder transition in which
bound vortex-antivortex pairs dissociate.

The field of a point vortex centered at x=0 is

is imposed to avoid lines of misalignment of the
Sp Uls.

Vortices of the spin field 8(x) create kinklike
configurations in the effective 1D theory. The 1D
field y(x) produced by a vortex centered at c is

y(x) = 8„(x—cg, —c2) = tan
X C1

(5.22)

8(x) = 8(x) + X(x), (5.24)

where P(x) is the multivortex field (5.22) and g(x)
is a small spin-wave fluctuation, replacing the
functional integral f d8(x) by integrals over the
coordinates x& and y. of 8 and the spin-wave fluc-j
tuation X(x), and treating X(x) in the Gaussian ap-
proximation. The multivortex field 8(x) is a solu-
tion of the field equations, except at the singular
points of vorticity, so the action becomes S(8
+y) =S(+8+S(X) for small X(x). The vortices and
spin waves do not interact in the first approxima-
tion, so the partition function Z and correlation
function A(R) factorize into separate terms from
the vortex and spin-wave sectors: Z =Z~Z„and

The vortex sector has the partition
function

in accordance with Eq. (5.8). This field approach-
es 0 as (x —c,)-~ and m as (x -c,)- -~, like the

field of an antikink. The parameter c1 describes
the position of the antikink. The additional pa-
rameter c2 is a scale parameter that determines
the size of the region over which p changes by m.

The 2D topological condition Eq. (5.21) ensures
that the kink y(X) obeys the 1D condition p(~)
—p(-~) =v.

Thus the vortex field in the &Y' model is the
analog of the monopole field in the description of
the gauge theory in Sec. IH: each of these fields
creates the topological fluctuations responsible for
disorder in the effective theory of reduced dimen-
sion.

The contribution of vortices to the functional
integral f d8(x) is obtained as usual by writing the
integration variable 8(x) as

The vortex field has a topological significance.
The spin vector s(x) corresponding to 8„(x) by Eq.
(5.1) varies slowly over the entire lattice (except
at the singular point x=0); locally, the spina
s(x) are almost aligned. But globally the spine
vary over the entire range of directions; the
direction of s(x) rotates through 2m as the path
C is traversed. The quantization condition
fcds ~ V'8=2vn, as in Eq. (5.21), which implies
that any discontinuity of 8„(x) is a multiple of 2n,

where x& and y,- are the v and v coordinates of the
multivortex configuration H(x).

The spin-wave sector prevents long-range order
in the large-& phase of the system: A~(R) has
the power-law dependence on R in Eq. (5.6a) for
all K. However, it is the vortex sector that pro-
duces the phase transition to the disordered small-
ft phase, i. e. , the exponential decrease of A(R)
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in Eq. (5.6b).
The vortex sector of the model is equivalent to

a 2D Coulomb gas of vortices. The action S(~) is

the gauge theory.
The contribution of the vortex sector to the cor-

relation function A(R) is

S(P) =~K Q e,e,,G(x„—x„,), (5.26) A.=z„l, „J1',d'y, p(*y't,
„,„n!n'! y;

where G(x) is the lattice Green's function Eq.
(2.26) and (e„,x,) has the same meaning as in Eq.
(2.25). Comparison of S(P) with the Hamiltonian
of the 2D Coulomb gas used in Sec. II [Eq. (2.24)]
leads to the identification &=Pe. The density
parameter $ is just 1/a, but in what follows it
will be left arbitrary.

The expression (5.26) is only valid if n=n' If.
n~ n' there is an additional term proportional to
(n —n') lnQ/a related to the divergent self-energy
of a vortex; in the infinite-volume limit Q/a -~
this term forces the number of vortices and anti-
vortices to be equal. However, in the ordered
phase only vv bound pairs occur so the constraint
n =n' is satisfied dynamically, ' and in the disorder-
ed phase the v's and v's are relatively uncorre-
lated so the precise equality of n and n' is not im-
portant. The requirement n =n' can be ignored.

The 2D Coulomb gas has already been discussed
in Sec. II. There are two phases, an ordered
phase for && K,. in which vortices are bound in
vv pairs, and a disordered phase for E & E, in
which free vortices occur. The phase transition
at &=&, is due to ionization of vv pairs. The
ionization is responsible for the behavior of the
specific heat C observed in a Monte Carlo study
of the &Y model, "shown in Fig. 1. As P decreas-
es, the fluctuation of vortex-antivortex separation
increases and so the specific heat C increases;
but C remairs nonsingular at the transition point
[see Eq. (2.35)] because the vv potential is loga-
rithmic.

In Sec. II the vortex ionization was described
in terms of its effect on the lpop integral W de-
fined in Eq. (2.11). In the &Y model the quantity
W is the expectation value of operator exp( —,'i p, cds

VF) involving the circulation of 8Z. Thus & is
more directly related to the point vortices than is
A(R), which depends only on the fluctuations in
the effective 1D theory. In this way 8' is, for the
&F model, the analog of the quantity I defined
in Eq. (3.20) for the monopole sector of a gauge
theory. Also, ~ and A„are similar. ' the line
integral that defines 8' measures the change of ~
around the closed curve BZ whereas A„measures
the change of & along the open segment I'. The
difference between an open or closed curve can
be important even in the limit R-~ because of the
long-range nature of vortices. Either W or &„
can be used to identify topological disorder in the
&~ model, just as either ~ or W can be used in

(u„(x)= ds v8„(s —x), (5.28)

is the angle subtended by the line segment I' at
the point x. The distribution P(x, y) is the Boltz-
mann distribution e

Before considering &„ for a 2D Coulomb gas, it
is interesting for comparison purposes to look
once again at spme simpler models. Consider
first the perfect gas of vortices, P(x, y) = P'"; for
this system A„ is

A,y
—exp —2 d x 1 . cps(dz x

4
(5.29)

The integral diverges logarithmically; this infra-
red divergence is due to the slow decrease of

as x -~:
&r (x) (R/r) sing for r»R,

where (r, y) are the polar coordinates of x and
8 = length of I'. It follows that &„ is of the form

(5.30)

A.„=exp -R In~m, Q'I
(5.31)

where Q = f d x. The disorder of a perfect gas of
vortices make A, vanish in the infinite-volume
limit for any nonzero R. The kinks in the effec-
tive 10 theory corresponding to this system are
completely uncorrelated in both position and scale.
8 only kinks of scale ~R contributed to &„ then the
effective 1D density of kinks would be f = $R and
A„would have the behavior A„-exp(- $R ). How-
ever, the contribution due to kinks with scale
&R is sufficiently large to produce the. lnQ infi-
nity.

Consider next a perfect gas of vv pairs with
separation l. The partition function is given in
Eq. (2.16). The correlation function is

~ de3, =exp — g —1-cps ~ x —4)q x

(5.32)

with x, x' the v, v positions in Eq. (2.18). The in-
tegrand is small unless exactly one of x and x' is
near I'. In the limit &»l this only occurs if the
vv pair is located within a distance l of one of the
end points of I'. This leads to the estimate

x e'"r "&'e '"r "~', (5.2q)

where cu„(x), which is defined by
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A.„-exp(- $'4]]l ) for R»l. (5.ss) Eqs. (2.44) and (2.45)]

Because the vv pair field is of short range, it does
not produce the topological disorder needed to
make &„-0as R-. The corresponding kinks
in the effective 1D theory are strongly correlated
in scale and position.

&„remains nonzero as R-~ for this system,
whereas the loop integral W tends to zero as
exp(-L (~~)) [Eq. (2.20)]. The difference isthat the
contribution of a vv pair to the line integral along
I' is significant only if the pair is near an end
point, but it contributes to the integral around BZ
if the pair is anywhere along BZ.

Finally, &„must be considered for the 2D Cou-
lomb gas in the approximations used previously
in Sec. H. In the ordered phase for large K, the
partition sum is dominated by configurations in
which vortices are combined in vv pairs and inter-
actions betmeen vortices in different pairs are
ignor ed. Then &„becomes

A„=exp — x y e "~+ "'

x() —cos(rcc (c) —rc, ()r))]I,

(5.34)
where the replacement &=P]( has been made.
This should be compared to Eq. (2.38) for the
loop integral W in the same approximation. The
expression (5.34) is simplified by use of the ap-
proximate form (2.28) of G(x) and the limiting
form (5.33) of the integral over position and ori-
entation of the vv pair at x, y, in the limit R-,

A„-exp — 8 I dl exp — ln —)'P )i'

m &o)t'0

= exp —4% f'p - 222 4P~
4m

(5.35)

Thus A„approaches a nonzero constant as R-~,
showing the expected topological order. Note,
however, that A„(R=~) tends to zero as PK /47(-2.
This is an indication of the phase transition at
P)( /4&=2. To be specific, the transition from
the critically ordered to the disordered phase is
identified with the change in the asymptotic form
of A(R) from power-law decrease to exponential
decrease. The power law A(R) -R~ comes from
the spin-wave factor A (R) for all P)( . The vortex
factor A„(R) tends to a constant for P2/4v &2 and
decreases exponentially for P)( /47( & 2. A sign
of the transition is that lim~ A„(R) tends to zero
as P~'/4w- 2.

In the disordered phase for small K= PiP, the
method used to calculate &„ is to transform the
theory to the equivalent sine-Gordon theory. The
sine-Gordon form of A„ is derived to be [compare

A„= j~ dp(x)e r"'
jl dy(x)e "",

where the action Sgp) is

s, (s)= Jl s's{s& (ss)'

(5.36a)

+S([1-cos()row„)]I. (5.SS1)

The analysis of Eq. (5.36) proceeds in analogy
with the analysis in Sec. D. of the sine-Gordon
form of W. In the first approximation A„ is esti-
mated to be simply [compare Eq. (2.49)]

(5.sv)

where p, is the field that minimizes 8& and the
factor 8 coming from the small fluctuations of p
away from y, is ignored.

The field y, is not known to me. It can be ana-
lyzed qualitatively in the manner of the discus-
sion of Eqs. (3.48)-(3.53). Briefly, p, is approx-
imately equal to ~ (x) where ~„(x) is smooth; but
a&r(x) is discontinuous across I".

lim [(d„(x„~)—(u, (xg, —~)]=2»„(xg),
8 ~0

and for y, this discontinuity is smoothed out over
a distance comparable to the Debye length ~~
=((PE) ' It foll. ows that as R, the length of I',
tends to infinity, Sr (9),) is asymptotically

Sr (()(),) = C)J]()R (5.38)

where & is a numerical constant. Therefore, &„
decreases exponentially as R-, as anticipated
for the low-P phase of the X& model.

The quantities A„and W are similar in a system
of vortices, as described earlier. In particular,
both A„and W decrease as exp(-R) where R is the
length of I' and 8&, in the 2D vortex plasma. The
similarity of these functions is analogous to the
similarity of W and I in the 3D monopole models.

The analogies between the vortex sector of the
XF model and the monopole sector of a gauge
theory are summarized in Table I.

The final topic to be addressed is the definition
of dual parameters of the order parameters A(R)
and W.

The dual parameters for the monopole sector
of a gauge theory mere defined in Sec. GI as oper-
ators that create magnetic flux in a 3D subspace.
The analogous dual parameters of the XF model
are operators that create vorticity in a 1D sub-
space. Let U(c) be the operator that creates a
1D kink at c~ with scale c2, it may be written
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TABLE I. Table of analogies.

Gauge theory XF model

Topological configurations

reduced dimension

full dimension

2D vortex
3D monopole

meron
monopole line

meron pair
monopole loop

1D kink

vortex

vortex-antivo rtex pair

Correlation functions

reduced dimension
full dimension

il'(c)axp i ds Ve)V(c)=e' ""sap[i ds Ve),~r r

(6.40)

where the function &ur (c) was defined in Eq. (5.28).
In particular, if c,=0 then (()r(c„0)=w8r(c, ); the
operators commute if c,g I' and anticommute if
c,H F. This commutation relation is analogous
to Eq. (3.63).

The operator U(cq) creates a 1D point kink at cq.
An operator that creates a kink-antikink pair at
the end points cq and cq of a segment I' of the xq

axis is U(1') = U(cq) U (c(). The commutation rela-
tion involving this operator is

cr'(p) p(i
"dd ve)p(i)'

~r

r
=e' '"'sxp i ds ' Ve), (6.41)

where

if I', I" partially overlap,
0 otherwise.

The dual operators U(c) or U(1') can be used to
examine the topological disorder of the system,
according to arguments precisely like those given

U(c)=sap i d«e («cc, ce)C/e»(«, P))

(6.39)

where 8„(x) is the classical vortex field and the
spin field 8(xq, 0) is thought of as a quantum opera-
tor The a. ction of U(c) on any functional of 8(xq, 0)
ls

U(c)F[8(x~, 0)]=F[8(x, 0) + 8„(xq- c, —c2)] .

The commutation relation involving U(c) and the
line integral along I' that defines A„ is

at the end of Sec. HI for the dual parameters of
the monopole sector of a gauge theory.

VI. SUMMARY

The thesis of this paper is that the functional
integrals over field configurations of gauge theo-
ries can be approximated by keeping just two kinds
of configurations. classical configurations of
topological origin, and small Gaussian fluctua-
tions. The topological configurations can be con-
sidered in various dimensions —vortices in two
dimensions, magnetic monopoles in three dimen-
sions, merons in four dimensions-and are the
long-range fields that have a significant effect
on the%ilson loop integral W. In this paper, ex-
plicit statistical-mechanics models of the contri-
bution of these fields to the functional integrals
are studied in order to try to under stand their in-
fluence on the large-distance behavior of the%il-
son loop integral O'. This approach is meant to be
heuristic. Further work is needed to make more
precise the connection between the model calcula-
tions and the full field theory.

The results of these models show the impor-
tance of the interactions between 2D vortices or
3D monopoles. For example, in the disordered
phase of the 2D Coulomb gas of vortices, the cor-
relations of vortex positions responsible for De-
bye screening imply that W obeys a perimeter
law, not an area law as would result if the screen-
ing were ignored. In addition, an additional dy-
namical coordinate, the scale of the configuration,
arises when the configuration derives from one
higher dimension, ' the scale parameter can signi-
ficantly change the nature of the system, compared
to a system of point fields.

In several of the models an ultraviolet momen-
tum-space cutoff is needed to render the results
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finite. The ultraviolet divergences are associated
with point singularities of the vortex or monopole
fields, and can be eliminated by making the mono-
poles have nonzero spatial extent. Alternatively,
the ultraviolet cutoff is provided naturally in a
lattice theory. However, the interesting ques-
tions concern the large-distance behavior of the
system, and this may be insensitive to the method
used to treat the ultraviolet singularities. In par-
ticular, the long-range nature of the topological
configurations implies that they vary slowly and
can be described by a continuum approximation.

Ionization of monopole pairs in the effective 3D
theory may explain the transition from weak to
strong coupling in gauge theories: At large P = 1/g'
the system is ordered and only small fluctua-
tions of the gauge fields, gluon fluctuations plus
mm dipole pairs, occur. At small P the system
is disordered; for P =0 all field configurations are
equally probable. Monopole ionization carries the
system from large-P to small-P behavior. This
suggestion might be studied by considering quan-
tities like M [Eq. (3.20)] or the dual parameter
U(c) [Eq. (3.62)] that are directly related to mono-
pole fields. Also, the Monte Carlo studies of
gauge theories may provide a laboratory for test-
ing models of this transition. The specific-heat

curve in Fig. 2, for example, seems particularly
interesting. The models considered here are not
good enough to reproduce quantitatively the Monte
Carlo results, but they do indicate some of the
qualitative features.

If it is true that monopole ionization is the ori-
gin of the transition from weak to strong coupling,
then calculation of S' involves an interesting and
complex interplay of id as from topology, classi-
cal field theory, and statistical mechanics' The
last aspect of the problem is emphasized in this
paper. Other aspects, such as the problem of
identifying all the degrees of freedom that speci-
fy a monopole configuration in a non-Abelian the-
ory, are ignored.

Finally, the &F model is interesting as a simp-
ler analog system in which ideas about topologi-
cal order-disorder transitions can be tested.

ACKNOW( LEDGMENTS

I am pleased to thank D. H. Weingarten, M.
Creutz, and 8. Shenker for conversations and.
suggestions about this work. I am especially in-
debted to D. N. Petcher for giving me access to
the results of his Monte Carlo studies of SU(2)
gauge theory prior to their publication This work
was supported by the U. S. Department of Energy.

D. R. Stump, Phys. Rev. D 20, 1002 (1979).
D. R. Stump, Phys. Rev. D 20, 1965 (1979).
D. R. Stump, Phys. Rev. D 21, 2370 (1980).
T. T. Wu and C. N. Yang, in Properties of Matter Under
Unusual Conditions, edited by H. Mark and S. Fern-
bach (Interscience, New York, 1969).

C. M. Bender, T. Eguchi, and H. Pagels, Phys. Rev.
D 17, 1086 (1978); K. Cahill and D. R. Stump, ibid. 20,
540 (1979).

6S. Mandelstam, Phys. Rep. 23C, 245 (1976); Phys. Rev.
D 19, 2391 (1979); in Proceedings of the &97& Intenza-
tional Symposium on Lepton and Photon Interactions at
High Energies, Eennilab, edited by T. B.W. Kirk and
H. D. I. Abarbanel (Fermilab, Batavia, Illinois, 1979}.

~S. D. Drell, in the Goldhaber Festschrift (unpublished).
K. G. Wilson, Phys. Rev. , D 10, 2445 (1974).
K. Cahill and D. R. Stump, Phys. Rev. D 20, 2096
(1979); L. S. Brown and W. I. Weisberger, ibid. 20,
3239 (1979).
A. M. Polyakov, Nucl. Phys. B120, 429 (1977).
C. G. Callan, R. F. Dashen, and D. J.Gross, Phys.
Lett. 63B, 334 (1976).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973};J. M. Kosterlitz, ibid. 7, 1046 (1974).
C. G. Callan, R. F. Dashen, and D. J. Gross, Phys.
Lett. 66B, 375 (1977); Phys. Rev. D 17, 2717 (1978).
D. R. Stump, Phys. Rev. D 20, 2592 (1979).
R. Balian, J. Drouffe, C. Itzykson, Phys. Rev. D 11,
2098 (1975).

SA. M. Polyakov, Phys. Lett. 59B, 79 (1975); T. Banks,
R. Myerson, and J. Kogut, Nucl. Phys. B129, 493
(1977); M. E. Peskin, Ann. Phys. (N.Y.) 113, 122
(1978); E. Fr adkin and L. Susskind, Phys. Rev. D 17,
2637 (1978).

~J. Kogut, R. Pearson, and J. Shigemitsu, Phys. Rev.
Lett. 43, 484 (1979).

SM Creutz, Phys. Rev. Lett. 43, 553 (1979); Phys.
Rev. D 21, 2308 (1980).
S. Samuel, Nucl. Phys. B154, 62 (1979).
C. G. Callan, R. F. Dashen, and D. J.Gross, Phys.
Rev. Lett. 44, 435 (1980).

2iG. 't Hooft, Nucl. Phys. B138, 1 O978); B153, 141
(1979).
Construction of non-Abelian vortex configurations is
described by Samuel in Ref. 19.
See, for example, P. Minnhagen, A. Rosengren, and
G. Grinstein, Phys. Rev. B 18, 1356 (1978).
M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. Lett.
42, 1390 (1979); Phys. Rev. D 20, 1915 (1979); C. Reb-
bi, Brookhaven report (unpublished}.

25D. N. Petcher and D. H. Weingarten, Phys. Rev. D
22, 2465 /980).

SJ. Tobochnik and G. V. Chester, Phys. Rev. B 20,
3761 (1979).
V. L. Berezinskii ~ Zh. Eksp. Teor. Fiz. 59, 907 (1970)
[Sov. Phys. -JETP 32, 493 (1971}];J. V. Jose, L. P.
Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev.
B 16, 1217 (1977).



1002 DANIEL R. STUMP

For comparison with the notation of Ref. 12, the charge
q used there is q = m /4m.
See Eq. (26) of Ref. 12.
A. Luther and I. Peschel, Phys. Rev. 8 12, 3908
(1975); A. Luther and D. J. Scalapino, Qig. 16, 1153
(1977); P. 8. Wiegmann, J. I hys. C 11, 1583 (1978);
S. Coleman, Phys. Rev. D 11, 2088 (1975)„see also
8. Simon, Eunctional Integration and Quantu~ Physics
(Academic, New York, 1979), Sec. 23 and references
therein.
I.Q. Landau and E. M. Lifshitz, Quantum Mechanics.
Non-relativistic Theory, 3rd edition (Pergamon, New
York, 1977), Secs. 48 and 70.
G. 't Hooft, Nucl. Phys. 879, 276 (1974); A. M. Polya-
kov, Pis'ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP
Lett. 20, 194 (1974)].

Here cos4 z in Eq. (3.17) and exp(iC z) in Eq. (3.14) are
equivalent because only the real part contributes.

34K. Huang, lectures at "Ettore Majorana", International
School of Subnuclear Physics, Erice, 1978, MIT Re-
port No. CTP 729 (unpublished).

35P. A. M. Dirac, Proc. B. Soc. London A133, 60
(1931); Phys. Bev. 74, 817 (1948).
This estimate is also described by Banks et aE. (Ref.
16).
V. de Alfaro, S. Fubini, and G. Furlan, Phys. Lett.
658, 163 (1976); 728, 203 (1977).

3 D. G. Laughton, Can. J. Phys. 58, 845 (1980); 58,
859 (1980).
Perhaps this field should be called a half-kink, because
the spins rotate by n along the x~ axis, not 27t I,Eq.
(5.») j.


