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SU(3j gauge field configurations in static, external sources

D. Horvat and K. S. Viswanathan

(Received. 23 September 1980}

Classical SUI3} gauge theory with a static external source is studied numerically for finite-energy non-Coulombic
solutions. Spherically symmetric, time-independent solutions are found for a class of sources described by two

parameters. We have found a number of solutions that bifurcate at a critical source strength, as well as solutions that
end at a critical point. Stability of these solutions is briefly discussed.

I. INTRODUCTION ppv tv

Recently, several authors' ~ have discussed
solutions to classical Yang-Mills equations in the
presence of static external sources. Jackiw,
Jacobs, and Rebbi, ~ and Jackiw and Bossis have
studied spherically symmetric solutions in the
presence of a static source of the form p, (x)
= (x'/r)q(r) for the SU(2) theory. The most inter-
esting features of the solutions obtained by them
numerically are the following: (a) These solutions
have finite-energy content. (b) There are two
types of solutions which are both non-Coulombic.
(c) One type of solution has a critical source
strength above which the solutions bifurcate and no
solutions exist below the critical point. (d) The
upper branch with higher-energy content can be
shown to be unstable while the lower branch shares
the stability properties of the solution at the bi-
furcating point. (e) The solution at the bifurcating
point is absolutely stable under radial oscillations.
While these results have been obtained for a spe-
cial choice of the source strength g(r}= Q&(r rg-
(&-shell source) their qualitative features are
characteristic of the nonlinear equations of mo-
tion. In spite of the very interesting features
these solutions possess, their quantum signifi-
cance is as yet unclear.

In this article, we study SU(3) gauge fields in the
presence of static external sources. There are
two good reasons for such a study. (1) If these
solutions have quantum significance, then, SU(3)
being the gauge group of quantum chromodynamics
(@CD}, its solutions may correspond to the reality
of strong interaction. (2} SU(3) gauge theory
should possess a larger class of solutions than
SU(2) and hence many more bifurcating solutions
may exist. This expectation is confirmed by our
study.

II. SU{3)GAUGE FIELDS IN THE PRESENCE
OF STATIC EXTERNAL SOURCES

The Yang-Mills equations in the presence of an
external source J"(x) are given by

where

~ =&" +ig[&', ] (2)

is the covariant derivative and J„(x)=(p(x), 0, 0, 0)
is the static external source. We use the matrix
notation

and

(4)

where $X,) are the SU(3) generators.
Following several authors" we define a source

to be maximally spherically symmetric if

[i+T,p]=0, (5)

where J generates spatial rotations and T gener-
ates the SO(3) subgroup of SU(3). In other words,
of the two possible embeddings of SU(2) in SU(3)
we choose the isospin-1 embedding, namely, the
SO(3) subgroup generated by X„-X„and X2. It
can be shown that the most general source that is
maximally spherically symmetric is of the form

x' q, (r) ~Ix~2 &.,) q, (r)
Psb abc r g2 r2 3 l g2

=Zg, +

Our notation is as follows. p is a 3 x 3 traceless
Hermitian matrix and thus the antisymmetric part
corresponds to X„-A.„and X2 while the remain-
ing term arises due to the fact that with respect
to these three generators, the remaining X ma-
trices transform as a quadrupole moment opera-
tor. From Eq. (1) it follows that Ab satisfies the
condition of parallelism:

P0 p]=0.
The general ansatz for &, thus turns out to be

x' f, (r) x.x, 1
~ f,(r)

(3)O, ab abc & g2 &8 3 ab

The most general ansatz consistent with spherical
symmetry for && can be shown to be of the form
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x x, () 1
k~ab fb & &a &

The equations of motion reduce to coupled ordin-
ary differential equations in the radial coordinate:.

3 ~ 0

-G "(r)+ 2 [G2(r) —ljG(r) ——~(f,'+f22)G(r) =0.

Here f"(r) df/=dr' etc. The energy of these solu-
tions takes the form

de Tr E2+B~

1 ~ 0
0.5

FIG. 2. G(x) for type-I family, for various values of
Q. R is fixed at 12.0. Starting from the lowest curve
these correspond to Q=O, 4.0, 12.0, 20.0, and 36.0.
Here x=r/'(1+ r), where ~ is the radial variable. Q is
located ate=3 and R is located at@=3.

1.0

dr 2,'r +6 2r + C'r
0

Regularity at the origin requires that

infinity. We have not succeeded in obtaining ana-
lytic solutions to the above equations for any
choice of the source strength described by two
functions q, (r) and q, (r). We have, however, ob-
tained several interesting numerical solutions
below. We have chosen for the source strengths
q~ and q2 a &-shell,

while finiteness of energy implies that

G (~) =+1 implies (A,. „)- 0 at infinity while G (~)
=-1 implies ((i,. „)goes to a pure gauge at spatial

&-shell potentials are easy to handle when doing
numerical calculations and are nonpathological.
Our source is characterized by two parameters
Q and R. For obvious reasons we will call Q and
A "monopole" and "quadrupole" parts of the
spherically symmetric SU(3) source, although,

. in the decomposition (8), the two terms are not
separately gauge invariant. Nevertheless, the
Casimir invariants of SU(3) for the particular

6.0

G-i .0

2 ~ 0

0.5

FIG. 1. G (x) for type-I solutions for various R. Q is
fixed at 12.0. Starting from the lowest curve these
correspond to R= 0, 0.5,-1.0, 1.5, and 2.0.

0.5

FIG. 3. f&
and f2 for fixed R and different Q.

1.0
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1 ~ 0

G(x)
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FIG. 8. G(x) for the type-II, ou p- o y.
a . Q=O, 12.0, 20.0, and 30.0.
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FIG. 9. G(x) for the type-II — ' . ise type-II, group-two family. R is
e a 2 and for different values of R.
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FIG. 11. G(x) for the type-II
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FIG. 12. All six solutions for G(x) belonging to the
type-II family. All six are for the same combination of

Q and R; R = Q = 12.0.

cal R values are different for the two branches and
solutions simply terminate as R =R, (see Figs. 10,
11, and 12). In groups I and II we came across a
bifurcating point called in the mathematical litera-
ture as a secondary branching point. But in the
present case there exists both a primary and se-
condary branching point. '

Q, is a secondary
branch point (bifurcation point), but R, is a
primary branching point. Solutions do not exist
for R(R,. At R„however, the upper and lower
branches do not come together. Moreover, R,'s
are different for the upper and lower branches.
Figure 13 is a schematic drawing that illustrates
these features. Energy vs (Q, R) is plotted in
Fig. 7 for all three groups of type-II solutions.

FIG. 13. Schematic drawing of energy of the third
group of type-II solutions.

IV. STABILITY

Jackiw and Rossi' showed that in the case of the
bifurcating solutions, the upper branch is unstable
under linear deformations. Further, the lower
branch shares the stability properties of the solu-
tion at the bifurcation point. Their analysis does
not depend on the gauge group. We have verified
that the solution at the bifurcation point is abso-
lutely stable under small radial oscillations.
Namely, there exists no normalizable solutions
to the linearized equations for radial deforma-
tions of finite energy. In this respect the solu-
tions we have found share the properties of fluc-
tuations of the Prasad-Sommerfield monopole
solutions in flat space-time for SU(2) gauge
fields" and in curved space-time. "
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