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The minimum-uncertainty coherent states empirically provide an approximation to the motion of a classical
particle. This can be understood conceptually. One can obtain a relationship between the WKB approximation and
the definition of the minimum-uncertainty coherent states. This definition is in terms of the "natural" quantum
operators, which connect only adjacent energy eigenstates. The classical form of these operators is also related to the
WKB approximation. In the Appendix we comment on the origin of "exact" WKB results.

I. INTRODUCTION

X, =A(E) sin~, t,
P, =m(u, A(E) cos(g, t,

where

(1 2)

P =mxX' =pX,'. (1.3)

Our notation is y =dy/dt, y' =dy/dx. The variable
X,(x) is the solution (with appropriate boundary
conditions) to
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In this series of papers' we have investigated
generalizations of the concept of "coherent states"
to quantum-mechanical systems characterized
by anharmonic potentials. ' ' We have reviewed'
the origins and methodology of coherent states
for the harmonic oscillator and discussed other
generalizations, these generalizations having
been applied mainly to systems with equally
spaced levels. Our method, the minimum-un-
certainty coherent states (MUCS), is motivated
by Schrodinger's original emphasis' on quantum-
mechanical wave packets that follow the motion
of a classical particle. From this point of view,
a natural name for our states might be "quasi-
classical states, " but we have chosen to retain
the name coherent states to emphasize the con-
nection to other work.

In the MUCS method one first finds those
"natural" classical variables X, and P, that vary
sinusoidally with the classical angular velocity
(uc:

Observe that the substitution X, A sin&(x) relates
X, to the angle variable

For a complete period this integral is proportional
to the first-order WEB approximation to the
quantum-mechanical density of states.

The next step in the MUCS procedure is to con-
vert the classical variables X, and P, into quan-
tum-mechanical operators in the usual way

(s, -x, P, ihd/d-x, E-H). In this process it
may be necessary to adjust H by a zero-point
contribution and to symmetrize the operators
appropriately. The resulting (Hermitian) quan-
tum-mechanical operators will obey a commuta-
tion relation

[X,P7=iG, (1.7)

where G will generally not be a c number.
Note that, in every example to which this method

has been applied, the operators X and P have
nonvani shing matrix elements only between ad-
jacent energy eigenstates. That is, these na-
tural quantum operators can be written as the
Hermitian sums and differences of raising and

lowering operators. For convenience we shall call
this the "off-diagonal property" and note that
although x and P are off-diagonal for the harmonic
oscillator, and X and P as defined above are
off-diagonal for anharmonic potentials, x and P
are not off-diagonal for anharmonic potentials.

The last steps in the MUCS procedure begin
by finding the three-parameter set of states
(minimum-uncertainty states) that yields an
equality for the uncertainty relation defined by
Etl. (1.7):

2(E —V) ' 2(E —V)
(1.5) (&X)'(AP)') —,

' (G)'. (1.8)
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It is a consequence of the off-diagonal property
that the ground-state wave function is a minimum-
uncertainty state (corresponding to special values
of &X/&P, (X), and (P)). We specialize the
minimum-uncertainty states by choosing the
ground-state value for &X!&P, thereby obtaining
a two-parameter set of minimum-uncertainty
states that includes the quantum analog of a clas-
sical particle at rest. These are the "minimum-
uncertainty coherent states. "

In papers II (Ref. 2) and III (Ref. 3) of this series
we applied our MUCS formalism to a collection of
exactly solvable one-dimensional examples. Paper
IV (Ref. 4) contained the generalization to multi-
dimensional systems and discussed exactly solv-
able three-dimensional cases. These papers also
discussed other coherent-states formalisms that
we could generalize to anharmonic potentials.

Paper V (Ref. 5) was devoted to numerical stud-
ies of the time evolution of our minimum-uncer-
tainty coherent states and examined their approxi-
mation to the classical motion and their coherence
properties. 5' Our intuitive preference for the
MUCS formalism comes from its physical basis in
the approximation to the classical motion. But fur-
ther, the numerical studies"' revealed that the
MUCS have coherence properties as good as or
better than those obtained with other formalisms,
for any given system.

In this concluding paper we discuss some points
raised by our work. They amount to asking why

the method works in the first place. Specifically,
why do the natural quantum operators obtained
from the natural classical variables have the
off-diagonal property? Why does this property
lead to a set of MUCS which approximates the
classical motion? Finally, can this classical
motion of our MUCS wave packets be understood
in terms of the %KB approximation'?

II. CLASSICAL AND QUANTUM FREQUENCIES

The WKB method is well known as an approxi-
mate quantum-mechanical. technique that bridges
the gap between classical and quantum treatments;
hence the alternative name, semiclassical ap-
proximation. (We list a, selection of the huge
literature dealing with these topics in Refs.
10-18.)

The fact that our MUCS simulate the classical
motion very well suggests that there should be
some connection between these coherent states
and the WKB approximation. Before dealing with
this question we remark in this section on the
connection between the classical frequency and the
WKB approximation to the quantum frequency.
This discussion is stimulated by the work of

Klein, ""Weldon, "and Li."
These authors consider a bound-state system

with eigenenergies E(n) and define a frequency by

dE(n)
dn

(2 I)

(u(n) =s),( E(n)) . (2.4)

Furthermore, defining the difference approxi-
mation to the classical angular velocity by

1 & E(n) E(n+1) —E(n)
a(n) -=— (2.5)

these authors also obtain, for large n,

A(n) = (g, ( E(n) ), (2.6)

n=-8+2. (2.'t)

Equation (2.5) is correct to order n '.
In our series of papers we have studied six

exactly soluble quantum-mechanical systems:
(i) the harmonic oscillator, (ii) the "harmonic
oscillator with centripetal barrier" or "isotonic
oscillator, " (iii) the symmetric Poschl-Teller
potential, (iv) the symmetric Rosen-Morse po-
tential, (v) the Morse potential, and (vi) the radial
hydrogen atom. For each of these systems we
have verified that Eq. (2.4) gives the exact clas-
sical frequency

~(n) =(g, (E(n)), (2.8)

where &,(E(n)) is the angular velocity of a clas-
sical particle with energy E(n) in the appropriate
potential. Note that our result is that Eq. (2.8) is
exact fox all n, not just for large n (see Table I).
Further note that although this result might be
expected for the harmonic oscillator, for which
the WKB method is exact, it is surprising that
it holds for some examples, such as the hydrogen
atom for which the WKB series does not terminate.
In this sense it is less surprising that, as also

They then prove" that "as n-large it is this
quantity +(n) which is the classical frequency
[&u,(E(n))] entering into the Fourier analysis of
Newton's equation for a. periodic motion. " This
result is not surprising. Classically, the period
r(E) is given exactly by2g, ) a

"~ ch7(E)= —

(E)
=(2m)' '

[E y( ))„,. (2.2)

Also, the WKB approximation states that

' (n+ ,')h =2(-2m)'~' J" [E—V(x))'~'dx.
«r.

Setting E =E(n), taking d!dn of Eq. (2.3) and com-
paring this result to (2.2), yields
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shown in Table I, Eq. (2.6) is exact (for all n) in
every example except the hydrogen atom (for
which it is correct to order n )

We will find these results useful in the following
sections. (In the Appendix we will comment on

why first-order %KB calcuLations can yieM exact
results for certain systems. )

IH. CONNECTION BETWEEN THE CLASSICAL
AND QUANTUM MOTION

X, =i X' =P,/m
I' =-mz, 'X .

(3 1)

(3.2)

The corresponding natural quantum operators are

X X,(x),
$s cP =- —X' —+ —X'
2 dx ch

(3.4)

They satisfy {by definition) the first quantum
equation of motion

X= —' [X,a]=I y~. (3.5)

Now let us digress to consider a pair of (Her-
mitian) operators X and I' that have the off-dia-
gonal property:

X ln& =x„
l
n -1& +x„'in+ I&, (3.6)

I ~n&= f(P-„ln 1& P„l .1&), (3.V)

where x'„and P'„are real and assumed known. If
X and P are related by Eq. (3.5) then it follows
that

Pd =y —(E E )xd (3.8)

Using this and the approximate WKB result from
Sec. II one can examine the second quantum equa-

One of the most striking results to emerge
from our study is the off-diagonal property of the
natural quantum operators X and P. Why do the
natural classical variables defined in Sec. I always
yield quantum operators with the off-diagonal

property?
Although we do not have a formal proof of this

result, it is true for our solvable examples. Its
physical basis is made clear by the following
discussion, which yields some insight into the
connection between classical and quantum mech-
anics and the often used semiclassical bridge, the
WKB approximation.

Because the natural classical variables are
sinusoidal with the classical angular velocity ~„
one has [EIIs. (1.1) and (1.2)J
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tion of motion:

P~n& =- —[P, ff] n&

=- —,[[X,e],e]~n&

+(S„„-S„)'x„'n+»] (3.9a)

m-[Q'(n —1)z„~n —1) +0'( n) x'„~ n+»] (3.9b)

——m(u 2(E(n))X n). (3.9c)

Therefore, in theWKB approximation, Hermitian
operators with the off-diagonal property and re-
lated by Eq. (3.5) will obey the classical equations
of motion.

Observe that this means that one can, in prin-
ciple, obtain the natural classical variables (and
hence a solution to the classical problem) from a
complete solution to the quantum problem: One
constructs the off-diagonal operators related by
Eq. (3.5) and finds their classical analogs. This is
related to the empirical observation, especially
familiar from one-dimensional examples, that
often those problems solvable in closed form
classically are also solvable in closed form quan-
tum mechanically (and vice versa).

The above off-diagonal property of the natural
quantum operators is a map from q-number ob-
jects (the natural quantum operators themselves)
to nondiagonal c-number objects (the x'„and the
P'„). The construction of the "classical" MUCS
depends on the existence of these maps. This
mapping is reminiscent of the quantum methods
of Klauder, "and Schweber, "which were applied
to specific systems by Hammer, Shrauner, and
De Facio." There the idea was to use Feynman's
path-integral formalism in the space of rais-
ing and lowering operators with Gaussian mea-
sure.

Finally, recall that the MUCS minimize the
uncertainty relation defined by the natural quan-
tum operators X and I'. But in the WKB approxi-
mation & and I' follow the same equations of
motion as do the natural classical variables X,
and P,. Therefore it is not surprising that the
(initially highly localized) MUCS themselves
follow the classical motion.

&0 fXio& =&0 Pio& =0.

Then

(4.2)

(4.3)

(4.4)

(G), =-f&O([X,P]~0)= -(E, -E,)(x;('. (4.5)

Thus Eq. (4.1) is satisfied by the ground-state
wave function, and the three-parameter set of
minimum-uncertainty states that satisfy Eq. (4.1)
can be restricted to the two-parameter minimum-
uncertainty coherent states by choosing the value
of the parameter 2 &G&/(4P)' to be the ground-state
value

(G& nx
2(n P)' nP rn(E, —E,) (4.6)

The discussion above has been in the context
of one-dimensional problems, for which Eq.
(3.5) holds. These results agree with the cal-
culations of papers II and III as listed in Table I.
For the three-dimensional problems discussed
in paper IV the operators X and & are not related
as simply as in (Eq. 3.5); that is, P is not simply
mX. Instead, there is an additional x dependence
(r dependence) in the relation between X, and P„
namely, '

a'(&.,L.) &e
c

———
m f2 (4 'I)

In the quantum version one has

X =:[X,ff] = ~( 1/r', P}. (4 8)

sical particle at rest.
The states that minimize the uncertainty rela-

tion (I.V) are given' by the solutions to the eigen-
value equation

X+ ———,P g= &X)+ — ——
3 g. (4.12(&P)' ~ ~ 2(»)'~

%e want to show that the ground-state wave
function satisfies this equation. X and I' have the
off-diagonal property given by Eqs. (3.6) and (3.7),
from which it follows that their matrix elements
are related as in Eq. (3.8). In particular,

IV. THE GROUND STATE AS A COHERENT STATE

Given the off-diagonal property of the natural
quantum operators, the fact that the ground state
belongs to the set of MUCS follows. This is an
important fact because it means that the MUCS
set contains a quantum representation of a clas-

This means that P'„ is not related to x'„by a simple
energy-dependent factor as in Eq. (3.8). This
alters Eq. (4.4), but the factor ~s,

' ' remains
and the result still holds that the ground state
can be made into a coherent state by taking &X/
n. P to be (n X),/(&P), . The explicit factors are
calculated in paper IV.
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V. UNDERSTANDING THE CLASSICAL MOTION
/

Ideally, one wants coherent-state wave packets
that (i) are well localized in position and momen-
tum, with mean positions (x(t)) that move (ii) with
the classical angular velocity &o,(E) and (iii) with
the classical amplitude A(E), and (iv) that change
shape as little as possible.

As we have discussed, especially in papers 1 (Ref.
1) and V,s it is only for the harmonic-oscillator
coherent states that all these properties are per-
fectly realized. Even for the harmonic oscillator
with centripetal barrier (isotonic oscillator}, ' a
system with equally spaced levels, these pro-
perties are only partly achieved. For example,
the shape of the packet changes with time but is
restored at the end of every classical period
because the eigenfrequencies are multiples of
each other.

For more general systems with unequally spaced
levels the component frequencies of the wave
packet are incommensurate so the packet must
spread and ultimately lose coherence. As a re-
sult, the coherent states cannot follow the clas-
sical motion perfectly for all time. One seeks
states that, by some measure, maximally ap-
proach all of the desirable properties (i)-(iv).
Obviously an arbitrarily chosen wave packet (how-
ever well localized) cannot achieve this because
not only the intial shape of the packet but also
the phase information (velocity) must be cor-
rectly chosen.

The MUCS are one way of approaching the stated
goals. In some situations, certain other coherent
state prescriptions have been observed to ap-
proximate very closely the classicality of our
MUCS. ' There may be a broad range of such
approximate classical states. In certain situa-
tions, however, the MUCS succeed when alterna-
tive approaches fail' and we know of no instance
in which other definitions of coherent states pro-
duce better results than the MUCS. For the above
reasons and the fact that the MUCS method is
physically based on the classical motion, we
have preferred it.

Having obtained these states which act so clas-
sically, one can ask how they can be prepared
and used in real physical situations. ln paper I (Ref.
1}we have already mentioned possible applications
to quantum-field theory, '2~ to which we have
added the references in Sec. III."'" Our original
motivation for this study (see the first article in
Ref. 7) was the fact that some molecular physicists
find that classical calculations of the interaction
of radiation with molecules do much better than
they had reason to believe a Priori. Finally,
nuclear physicists may find coherent states useful

to describe collective motions. '"" Thus, these—
states and their properties are of potential use in
studying coherent physics in real physical situa-
tions, not to mention the understanding they shed
on how quantum mechanics can be made to mimic
classical mechanics.
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APPENDIX: COMMENTS ON EXACT WKB
CALCULATIONS

In this paper we observed that an intuitive
physical understanding of our results can be had
through the WKB formalism. As discussed in
Sec. II and listed in Table I,

(u(n) -=&u (E(n))
1 dE(n)

dn
(A1)

for the potentials we have considered. Further,
for these same potentials, Krieger" "and
Hosenzweig"'" have observed that if one writes

V(x) =V(s)+V (x), (A2)

where V&(x) is a well-defined analytic function,
then WKB energies obtained from the formula

h(n+q) =2(2m)' JI [E—V(s)]' dh
xl

(A3)

are exact. Also, the second- and third-order
WKB corrections are zero.

Finally, Dashen, Hasslacher, and Neveu'" '
have developed a semiclassical WKB approxi. -
mation for field theory based on the formalisms
of Gutzwiller ' and Maslov. '4 In particular, they"
and Luther" demonstrated that this formalism
yields exact spectra for the quantum sine-Gordon
theory.

Can one understand why all these particular
problems can be made to yield exact answers in
the WKB approximation? We observe that, if so,
the pertinent phrase seems to be"~' "exact in-
tegrability. " For the sine-Gordon system, " "In
order to display the canonical structure of the
sine-Gordon equation, Faddeev and Takhtajan"
and McLaughlin" have shown that if one writes
the nonlinear problem as a Hamiltonian system,
one can show that it is integrable. That is, the
linear eigenvalue problem of the inverse scat-
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V(z) =A e2ax+Be~ex (A4)

which is a system they knew is not analytically
solvable. However, later'4 they discovered that
this is not the case.

Recently, Abraham and Moses" have discussed
the potential

V=zm(u2z +4hcug(P -z),
z = (m(o/I)'12m,

(A5)

(A6)

tering method is interpreted as a canonical trans-
formation which takes the original Hamiltonian
system to an 'action-angle' form. "

For the classical quantum-mechanical potential
problems discussed by us' ' and Krieger" '4 and
Rosenzweig, "'"exact integrability can be ex-
pressed as the simple statement that z,(t) can be
given exactly in terms of transcendental functions,
not just as an implicit integral.

A further justification for this intuitive specu-
lation is to look at two systems where WKB does
not give exact answers. In Ref. 1.3, Rosenzweig
and Krieger thought that they could obtain exact
WKB eigenvalues for the potential

e~
n''~' erfc(z)

'

This potential has the same eigenenergies as the
harmonic oscillator, but with the ground state
removed:

E„=Ra)(n+—2), n=1, 2, . . . . (A8)

However, the classical problem has not been
solved analytically. Even so, it has been shown"
by both analytic approximation and numerical
techniques that the classical angular velocity is
dePendent on energy. Therefore,

a d
1 dE(n)

(A9)

Because +,(E) is dependent on energy, this also
means that the Kreiger -Rosenzweig technique
cannot yield the correct eigenvalues, except by
the trivial artifice of removing the second term
in (A5).

The above arguments are intuitive, and may not
be exact. However, they do serve as a reason to
see if other systems can yield exact WKB results
only if they are exactly integrable.
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