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Inequivalence of the classes of classical and quantum harmonic potentials:
Proof by example
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There are an infinite number of potentials whose classical angular velocity co, is independent of energy. There are
also an infinite number of potentials whose quantum eigenenergies are equally spaced, Ace . If co, = co, , then in the
%'KB approximation these classes are the same. ICertain specific potentials belong to both of these classes exactly. )

However, w'e show by a different specific example that in general these classes are not equivalent.

I. INTRODUCTION

7,(E) = 2tt/&u, (E),

is independent of energy,

(E) = const = (d = (d .

(1.2)

The quantum analog of Eq. (1.3) is that the quan-
tum eigenenergies are equally spaced:

(E„„-E„)/h =- ~,(tt)

= const -=~, = &u, n = 0, 1, . . . . (1.4)

Equation (1.4} is the quantum analog of the har-
monicity in (1.3}for the following reason: In any
potential having equally spaced eigenenergies, a
wave packet, no matter what its shape, will return
to its original t =to shape whenever

t=t, +2'/(u, , j=integer.

This can be seen by decomposing any time-depen-
dent state into eigenstates,

4(x, t) =g tt„~&„(x)exp[-icd, t (n +-,')],

and observing that the equal spacing of the levels
means that

e'(x, i/+(x, t,) = e*(x, t =2'/~, +t,)

x+(x, t=2tjt/~, +t,).
Further, for the harmonic oscillator one can

construct a particular set of states, called the

The simple harmonic-oscillator potential,

V(x) =-,'m~'x',

is perhaps the most studied potential, for both the
cia,ssical and quantum problems. Its special pro-
perties are many. For instance, its classical
angular velocity &u, (E) or, alternatively, its period

"coherent states (of the harmonic oscillator), "
which follow the motion of a classical particle as
well as possible. ' These states have expectation
values (x(t)) given by the values x,(t) that a classi-
cal particle with energy

would have. Also, these states have wave packets
that do not change their shapes with time. (They
have the shape of the ground-state Gaussian, only
displaced. )

There is another exactly solvable system which
also has many of these properties. This is the
"harmonic oscillator with centripetal barrier"
(HOCB) or "isotonic oscillator" potential, 2'

8 Q
g

2m

Here the classical angular velocity is also inde-
pendent of energy,

(d = 4$ v/5,

and the eigenvalues are equally spaced,

(1.10)

(u, (tt) = (E„„—E„)/I = (u, = (u, . (1.12)

The "minimum-uncertainty coherent states" '4'
for this system have been studied. &3 They have
many of the classical properties of the harmonic-
oscillator coherent states, even though these co-
herent states do change their shapes during an
oscillation. (They must, since the potential is not
sytntnetric about ttx = 1.)

As we will discuss later, there are an infinite
number of confining classical potentials whose

E„=S,v(4tt +3+2K —2v), n =0, 1, 2, . .. (1.11)

so that
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angular velocities &, are independent of energy. '
We call these generalized classical harmonic
Potentials. There are also an infinite number of
quantum potentials whose eigenenergies are
equally spaced with dE„/I=(d, . We call these
generalized quantum harmonic Potentials. The
question we ask is, when ~,=~, are these two
classes of potentials the same'P

Each of the two potentials above belongs to both
of these classes. Further, as will be shown in
Sec. II, the two classes are the same in the WKB
approximation. However, by particular exaznple
we will demonstrate that they are not the same in
general. W'e will show that there is a potential
which exactly has equally, spaced quantum eigen-
values, but which does not have a classical angu-
lar velocity that is independent of energy. This
potential is the one obtained by Abraham and
Moses' (AM) using the Gel'fand-Levitan forma-
lism. ' (By itself the Gel'fand-Levitan formalism
can be used to generate an infinite number of po-
tentials whose quantum eigenvalues are equally
spaced. ) In Sec. III we give our demonstration by
example, and close with a discussion.

which yields (2.3) since V„=O. For the V„=O
HOCH potential, one has that

1. E )'&'
ax~~= 1+—4U, & 2 U, &

(2.5)

so that

g ~1/2 ( 2g j/2
za U, (m~,

(2.6)

(n+-')5=2(2m['I f [E-'V(x ]'~[dx (2.'I)

Setting E=E„, taking d/dn of Eq. (2.7), and com-
paring this result to (2.1) gives'

Lastly, Eq. (2.1) allows us to show that in the
WKB approximation the class of generalized clas-
sical harnenic potentials is the saxne as the class
of gener alized quantum harmonic potentials. This
follows since in the WEB approximation

II. GENERALIZED HARMONIC POTENTIALS

The classical period in any potential with a sin-
gle minimum is given by

, (z& LE
L

(2.1)

""'=Id"1 dE„

Thus, for equaDy spaced levels, with

„E=K&o,(n+ const)

one has

&o,(E„)=(d, = const,

(2.3)

(2.9)

(2.1O)

' r.(E)dE
xz(V) -x~(V) =

( )», J (V E)„,. (2.2)
~m

if r, (E)= r, = 2v/&o, is independent of energy, then

/2)»3 2
x„(E)-x,(E)=i —,i „(E-V„)"'.

C

(2.3)

There are an uncountable number of potentials,
~ which satisfy this formula. It is simple to
verify that among them are the two exact special
cases we have mentioned. For the simple har-
monic oscillator,

where xz, z(E) are the classical turning points for
energy E. Allowing the minimum value of the po-
tential, V, to be away from the origin, the analy-
sis of Landau and Lifshitz' shows that

and the two classes of potentials are the same in
the WEB approximation.

IH. THE EXAMPLE

z =ax, a= (m(d, /K)~~2,

V=Su) v, E„=g„lw, ,

(3.1)

(3.2)

Using the Gel'fand-Levitan formalism, ' one can
consider a confining potential, re@eve any parti-
cular bound state corresponding to a particular
eigenvalue, and leave all others unchanged. In
particular, one can start with the harmonic-oscil-
lator potential and rerreve the ground state. This
is what Abraham and Moses (AM) have done ex-
plicitly. ' (Observe that in this way alone one can
generate a countable infinity of generalized quan-
tum harmonic potentials. One first removes the
ground state, then the first excited state, and so
on. )

Using the dimensionless variables

(2E»2
mM

C

(2.4}
the AM potential is'

8 =Vp+Vg ~ (3.3)



MICHAEL MARTIN NIETO AND VINCENT P. GUTSCHICK

1 2vp=gz

vi = 4$ (P g )
«g2

n'/merfc(g) '~(g) =

(3.4)

(3.6)

(3.6)

a power-series expansion about the minimum gives

v(g) =v +0+-', v"(g„)(g -g„)'+ ~ ~ ~, (3.14)

where

v" (g) =1+16[(-,'g -g')(f + (-2+ Vg')y'

where erfc(g) is the complementary error function -12g&f& +6/ ], (3.16)

erfc(g)= „, e "dt. (3.7) so that

v'(g ) = 1.16173 . (s.i6)

1
=6+ p) 6 = 1~ 2~ ~ ~ (s.8)

As explained in AM, the eigenvalues and normal-
ized eigenstat;es of the problem can be derived from
the Gel'fand-Levitan formalism as

This by itself shows that the AM potential is not
a harmonic classical potential. For large z the
AM potential approaches the harmonic oscillator,
which in these units means

(2 )x/2
X„(g)= tj„(g) -~ —

~ g (g)4„,(g), (s.9) lim co,'(f) = v" (~) = 1 —= (u '.
«oo 0 (s.17)

where g„(g) are the ordinary harnmnic-oscillator
eigenf unctions

(g) (~&/22'�()-&/28-2/&If (g) pg 0

(s.io)

For our purposes it is enough simply to verify
that Egs. (3.8) and (3.9) satisfy the Schrodinger
equation and that the X„(g) are orthonormal. '0

We plot v„v„and v in Fig. 1. v, satisfies the
limits

However, Eq. (3.15) tells us that

(s.18)

iim ' = [v"(g.)j-'/'= 0.927 78.& (~)
T

(s.i9)

lim ~,'(e) = v"(g„)= 1.161V3 .

Thus, we have shown that cu, (e) is dependent on
energy and not equal to the constant &,=1. In
terms of periods r, =2g/~„Eq. (3.18) tells us
that

2

lim v, (g)= 4/m=1. 27324 (s.ii)

IV. MSCUSSION

By using the dimensionless form of Eq. (2.1),
the quantity

P(e) -=r, (~)/&, (4.1)

v = 0.982 68, g = -0.826 98.
Using the fact that (prime denotes d/dg)

(s.i2)

(s.is)

Numerical analysis shows that the minimum of v,
v, and its location g are can be numerically calculated for the AM potential.

This is shown in Fig. 2 and Table I. At g =v,
P(g) has the correct limiting value 0.927 V8 of
Eq. (3.19). For g&v, P(g) rises and passes unity
just before g =2. P(g) continues to rise until it
reaches a very small maximum of about 1.0015

P(~)
)l

I.OOI5

I.OOIO

l.0005

I.OO

I
2

FIG. 1. The harmonic-oscillator potential vp(z) is a
light curve, the contribution v ~(z) is a light dashed
curve, and the complete AM potential v(z) is a heavy
curve. The number eigenstates are also indicated.

.96

.94

.92—

FIG. 2. P(E) plotted as a function of e. There are two
scales for P(e). The scale for P(e) &1 is greatly expand-
ed.
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TABLE I. zL„z„, and P(&) are shown for increasing
values of &. The first row gives the numerical values of
the quantities e, z~, z~, and te' (z )]-, respectively.

ZL

Equation (4.5) implies that

d7', (E) (4.6)

0.982 68
0.985
0.99
1.00
1.25

4—= 1.273 24

1.50
1.75
2.00
2.25-
2.50
2.75
3.00

-0.82698
-0.889 39
-0.93681
-0.994 08
-1.439 26

-1.463 52

-1.660 51
-1.83142
-1.977 39
-2.108 06
-2.228 19
-2.34049
-2.446 64

-0.826 98
-0.762 96
—.0.712 05
—0.647 83
-0.038 33

0.0
0.321 79
0.605 67
0.843 65
1.050 28
1.23411
1.400 61
1.553 47

0.927 78
0.928 28
0.92932 i
0.93139
0.970 33

0.972 79

0.989 31
0.997 34
1.000 40
1.001 37
1.00149
1.001 32
1.001 06

Now applying the above to the AM potential, for
large energies the AM potential is barely con-
tained within the harmonic-oscillator potential.
This means that it has an effective k(E) slightly
larger than 2 which approaches 2 as z gets large.
From (4.6) this implies that, for large E, dred&
should be slightly negative with r, approaching un

unity as & gets large. Contrariwise, Eq. (3.19)
tells us that at low energies r, (e) is below unity.
These two observations mean that r, (g) must have
a mmrimlm above unity.

Another way to see the energy dependence of
r, (e) is to observe that Eq. (2.3) is not satisfied.
That is,

C)C+nk/(k+2)
8

From Eq. (2.8) this means that

(4.3)

or

22/r (E ) (g (@ ) ccn (2-2)/(2+2)~ (@ )(1/2-) /2)

(4.4)

c( ) (X. (1/y &)@(3/2-3/2)
dE

(4.5)

near s =2.5. (Note that Fig. 2 has two scales. )
After this P (z) rapidly approaches its asymptotic
value of unity. [At c = 8, P(e) deviates from unity
by less than one part in 10'.]

Although we have proven that the AM potential
has an energy-dependent r, (s), this dependence is
actually very slight. The ground state of this po-
tential is s,=1.5, and P(c, ) =0.98932. This
means that it is only for classical energies below
the quantum ground-state energy that P (2;) deviates
from unity by more than one percent. Therefore,
the result of Sec. II that a quantum harmonic po-
tential, in the %KB approxijmation, is also a
classical harmonic potential is not invalidated.
The imprecision of this approxinetion is small and

only significant for classical energies below the
ground-state energy.

The shape of the curve for P(s) can also be
understood on intuitive physical grounds. To do
this first observe that a particle in a symmetric
confining potential

(4.2)

will have energy eigenvalues which, in the WEB

approximation vary as

(4.7)

which can be shown from the numerical values
given in Table I."

One of the implications of our findings is that
the coherent states for this potential will not fol-
low the motion of a classical particle exactly. Be-
cause the AM potential is a quantum harmonic po-
tential with period 7'„ the coherent-state wave

packets will oscillate with period 7, for all values
of z. They mill change their shapes slightly during
an oscillation, but mill return to their original
shapes after every oscillation. Homever, since the
AN potential is not an harmonic classical poten-
tial, but has an energy-dependent 3', (z), this
means that for very large times, a wave packet
will eventually get out of phase with the position
of a classical particle with the same energy E,
= (H) —E2 and starting position (x(0))=x,(0).

In conclusion, observe that we have proven that
all quantum harmonic potentials are not classical
harmonic potentials. Whether the reverse state-
ment holds remains an open question.
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r -3z

f f ( )~z
H„(z)H~(z)dz

@„(z)H .g(z)+H„,~(z)H (z)]dz
„ferfc(z)]
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H~ (=2zH~-H~,
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