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Whether one views the lattice as merely regulatory or physically real, lattice gravity is different from continuum

gravity because the symmetry group of coordinate transformations is destroyed by the lattice. Since negative-norm

kinetic terms can no longer be removed by specifying a gauge, the functional integrals will not converge, We suggest

including a quartic potential in the action which obliges tlie action to converge regardless of the sign of those terms.

This potential must depend on a background metric in order that a number of desirable features may hold. For
example, consider the conformal factor: One needs a quartic term to cancel the wrong-sign kinetic energy. But one

also wants the theory to have asymptotically flat manifolds and to admit the flat manifold as a solution. This

requires a canceling quadratic. This in turn requires a background structure. This structure is supplied in a natural

way by the lattice itself. The approach to the continuum is examined.

I. INTRODUCTION

If one accepts the idea that functional integrals
are (somehow) limits of multiintegrals on lat-
tices,"' then it is desirable to have a lattice ver-
sion of every sector of physical theory currently
available including gravity. ~' There are three
views possible on the importance of lattices in
field theory. One, they simply represen. a regu-
lation scheme for continuum theories. ' Two,
since one does not yet know how to define precise-
ly the field-theory limit of multiintegrals, other
than perturbatively, ' "it. is not merely desirable
but absolutely essential to have a lattice version
of each theory in order to claim that one has a
well-defined theory and in order that one may ex-
amine that limit. Three, because gravitation
introduces a special scale, the Planck length, " "
there is a special lattice picked out by gravitation
which thus deserves special study, '~"""partic-
ularly in light of the renormalization difficulties
presented by that scale. The first two view the
lattice as being of transitory importance. The
third suggests a physical reality for the Planck
lattice, the one with 10 "cm spacing. In any
case, lattice gravity is worth studying.

What is unique about gravitation is that immedi-
ately upon separating the points in the derivative,
i.e. , regulating by going to a lattice, one com-
pletely destroys the continuous symmetry group
of the limit theory There ar.e some difficulties
even in gauge theories, as discussed in paper II,"
but nothing as serious as this. Since the conver-
gence of the functional integral depends essential-
ly upon the existence of this symmetry group to
reduce the degrees of freedom from ten to two,
and since that group is destroyed immediately
upon going to the lattice, we are confronted with
a situation in which the usual, naive approaches
to putting a theory on the lattice will not work.

As indicated in the abstract, consider the con-
formal factor 0,

2
g~p= 0 g~p p

detg= 1,
(detg)" '= ~'.

In order that the kinetic term for 0 converge we
introduce a quartic potential (cosmological term)
with an arbitrarily small, appropriately signed
coefficient. In order to have flat space as one
possibility we need a quartic. The two such terms
one can construct without a background metric
are inadequate. The lattice, with plausible as-
sumptions about regularity and physical limits
(small spacing, etc.), introduces such a back-
ground already. A short expansion of that argu-
ment is the following. The Euclidean functional
integral does not converge if all components of
the metric are integrated because some of them
have the wrong sign. ""

In the weak-field limit set

M~ is the Planck mass (-10"GeV). Tbe trace of

H,„has the wrong sign. for its kinetic energy since
the action is'"

+ ' f "h'")— (3)

where h = 6""H„„=trH is the trace and f„„=H „
—4h5 „ is trace free. Usually this is not a prob-
lem because one can go to the transverse trace-
less gauge for a pure spin-two particle,

0

8= 0.
Only the first term is left in Eq. (3).
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In the strong-field region the problem is seen
differently. The Einstein-Hilbert action splits as

ll, 15,16,18.

-8= d'~ O'R+6e gg&"e g .

R is the curvature scalar of g.
Clearly, the kinetic term for 0 has the wrong

sign. But, as given by Feynman and Gupta, "this
is just a self-consistently coupled power-series
expansion (in M~ }, an interacting version of the
fields which appear in the weak limit. It is still
convergent if the spin-two fields only are quan-
tized. This has been confirmed in Faddeev and
Popov's paper in which they quantize the pure spin-
two Arnowitt-Deser-Misner (ADM) structure
in a gauge; then use ghosts to get the Einstein-
Hilbert action back. Thus the general problem of
convergence is cured by the gauge invariance.
But on the lattice the gauge invariance is gone.
Each component of g must converge.

On the lattice it is possible to assure conver-
gence of the action functional for 0 if one includes
an arbitrarily small, negative 0, term in the ac-
tion integral even if the kinetic term has the wrong
sign. This term is a cosmological constant term
since"

X(detg)'~'= XQ' (6)

The reason this works is that on lattices the kin-
etic energy term is bounded by a constant times
0' because the momentum is bounded. " Thus the
quartic term will ultimately win out and cause
convergence.

Of course, introducing a cosmological constant
term wrecks asymptotic flatness and makes a con-
stant flat space (time} an impossibility. It is pos-
sible if 0 has no potential as a boundary condition
on the differential equations. If one wishes to in-
clude flat space (time) as an allowed solution to
the equations of motion, one must alter the poten-
tial for 0 so that 0, a constant, is permitted by
the equations. Because of the usual degree limits
on potentials one is motivated to look for quad-
ratic terms and, in fact, we have a number of con-
ditions we would like this potential to satisfy:

(1) be of degree four in 0,
(2) the 0 functional integral converges (for

bounded momenta),
(3) asymptotic flatness and flat space (time)

are allowed,
(4) the other functional integrals (g,„) converge

(for bounded momenta),
(5) the preferential effects are small enough to

be experimentally compatible,
(6) the action is constructed from contracted

tensors times the usual metric volume factor,

('I) the domain of the functional variables is not
bounded.

Here, 6 „ is the preferred lattice metric, which
is taken in the usual coordinates to be 5 „. It is
possible that for a certain range of A.

" one may
also be able to include a term

yll2+gPG +PLG

and still achieve convergence.
The X parameters measure the strength of the

preferential background structure. Convergence
occurs for all nonzero values of x for all compo-
nents of g, „by the same mechanism that worked
for 0 even with the wrong sign in the kinetic en-
ergy. See Sec. VI.

It is possible to relate our potential to a loosen-
ing of the usual traceless metric constraint of the
limit theory. Rewrite Eq. (8) as

Now we choose the ratio of ~'s. Thus if

~'/2~' = 4 (10)

we find the potential is

-y'vg (trg ' —4)'.
In the expansion

g "=6""+«B '
we find the potential is

-y' vga tr H.

(12)

In the limit that &' goes to infinity the exponential
integral becomes a functional 6 function which
projects out the negative-norm trace field. This
seems justified on the basis of experiment4'23 and
because the. physical vacuum will be a minimum
for flat space.

If one does not make this assumption the potential
can be replaced by a step-function domain of inte-
gration. The parameters in the potential induce a
similar characteristic large (cosmological) dis-
tance. "

Because of the very nature of lattices' descrip-
tion, we are led to consider them as embeddings
of a given original hypercubic lattice in higher-
dimensional space. The preferred metric is the
natural (flat) metric of the space to be embedded.
See Secs. II, III, and IV and below in this intro-
duction. The potential which satisfies all of these
conditions is nearly unique. It is

[-2X'+ X'g""G„—X"(g""G,„)2jv g .
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It should not be surprising that metric theories
behave differently on a lattice compared to the
continuum. The very nature of their geometries
differ. To even describe a lattice one must give
the locations of each vertex relative to (enough)
others or relative to some coordinate system.
Then the (Euclidean) lengths of the separation vec-
tors give rise to natural distances (after all, one
needs to know not merely the angles but how far
to go to locate the next point as being in the lat-
tice). There is no abstract lattice in the sense of
an abstract manifold. Indeed, a manifold is de-
scribed using equivalence classes of coordinate
charts; one need not have any concept of distance
at all. Instead, one has the option'4 of imposing
a local distance by introducing an arbitrary sym-
metric two-tensor for which arc length is defined
by

4s = g~pctg Gg

Hiemann, the inventor of the manifold, knew
these were intrinsically different. In his Habilita-
tiousschrifte he said, "In a discrete manifold the
principle of metric relations is already contained
in the concept of the manifold, but in the continu-
ous one it must come from something outside. """

Knowing that we must ultimately relate any lat-
tice theory of gravity to conventional theories, we
examine the relationship between the metric and
the lattice vectors. %e are physically interested
in only those manifolds which arise as limits of
lattices (with metric). (See Sec. II.) In order that
one have a number of desirable features such as
asymptotic flatness, regularity (the lattice equiva-
lent of isotropy), flat-space rotational invariance,
the usual number of degrees of curvature, etc. , we
are led to considering ensembles of lattices which
are hypercubical tessellationsembedded in ten-di-
mensional space. See Fig. 1. The hypercubical
tessellation of R4 is the unique tessellation by a
regular hypersolid. ~ In other words, we locate
vertices in R" by means of a function X which we

think of as mapping not merely a single lattice
Z ( R4, but the ensemble of Poincar6 relatives
of z in R'. This covers all of R4; thus we con-
sider maps from R~ into R' which have Fourier

transforms in the ball of radius v/e, with e called
the lattice spacing. This is, of course, in the
spirit of the preceding papers. The choice of ten
dimensions is motivated by the Janet-Burstin-
Cartan ' theorem we discuss below and jp Sec.
II.

Thus we shall define the metric as follows.
First, the lattice derivation of X is

(15)

Here I runs from 1 to 4; A runs from 1 to 10.
The notation is explained further in Sec. GI. I+ p,

means the location obtained by shifting I by adding
1 to the p,th component, i.e. , p, is given by

y. =(0, . . ., 1, . . ., 0), (16)

where 1 appears in the pth position. Now set

(19)

The last six coordinates are functions of the first
four. In these coordinates the curved manifold is
like a soap bubble stretching out from the plane
in which the bubble-ring lies. See Fig. 2. The
problem of defining the volume of the embedded
lattice is introduced in Sec. II.

In Sec. IV we calculate curvature, connections,
etc. for embedded submanifolds.

g =D X Dxq~~
q"s is a flat metric in R" (possibly indefinite).

In the limit as the lattice derivative approaches
the actual derivative we find

8 XAe XB~ (18)

When the number of variables in X" matches those
in g„„, ten in four dimensions, one can solve this
equation uniquely in a patch. This is the Janet-
Burstin-Cartan (JBC) theorem. " The rigidity of
the hypercubical lattice plus asymptotic flatness
essentially restricts us to one patch (all of R ).
See Sec. III.

In a special coordinate system, perfect coordi-
nates, one can write the embedding as

7

6
Y

5 IIIAGE
DI SK (Cdp)

x 2 3 4 5 6 7 8 9 l0
x

FIG. 1. A two-lattice (net) in three-space.

"Di SK

FIG. 2. Hemisphere described in perfect (x, g(x"))
coordinates.
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Next we consider the Einstein-Hilbert action in
Sec. V and discuss the effect of using X"vs g „
as variables. Because of the uniqueness of the
JBC""theorem, the only effect should be a Jaco-
bian. Then we introduce the conformal factors'
convergence problem.

In Sec. VI we go through the details of 0 con-
vergence on the lattice. We introduce the con-
straint of having a Qat solution and examine avail-
able quartic potentials with that condition (and the
others outlined above). The solution is not quite
unique. It does involve the preferred lattice met-
ric, but modifies the Einstein equations as little
as possible. An example of a theory in which
matter fields are included is written out.

In Sec. VII the structure of the action is formal-
ized and the argument for convergence ong is
described. We discuss the choice of quantum
variables. This leads us into an examination of
the Feynman-Qupta" limit of the theory and the
question of positiviiy of the action. ~ We show the
relation of our potential to the constraints for pure
spin-two gravity. These are that the limit spin-
two particle state should be symmetric, trans-
verse, and traceless. The approach to that limit
can involve the idea of functionally integrating on
coordinate transformations. These have quanta
which can be admitted on a lattice. They amount
to phonons.

There is a brief synoptic conclusion and there
are three appendices. The first defines some
needed, mathematical terminology. The second re-
views the Regge" theory of lattice gravity and in-
dicates why we have not simply used that theory,
no metric, no coordinates. The last appendix
discusses the caveats involved in claiming that
only a Jacobian arises in changing variables. ""
It also contains an amusing speculation on curva-
ture arising as a correction to a simpler theory
(somewhat in the manner of Sakharov").

II. THE ASSUMPTIONS ON THE SPATIAL
STRUCTURE

Rather than consider the most general lattices
possible, we shall make some physically reason-
able assumptions which restrict the possibilities
substantially. There exists a theory (Regge") of
curvature for general lattices. But it is not clear
how to write down the action for coupled matter
fields since no use of the metric or even coordi-
nates is made (see Appendix B). We shall make
assumptions which seem plausible for individual
lattices but are also selected so that one can
readily proceed to the ensemble. But in the end

our technical assumptions can be replaced with
one physical assumption: Space is described by
one R~ coordinate patch.

First, we assume that each cell in the four-lat-
tice has a neighborhood which can be (smoothly)
mapped onto a neighborhood of the Qat four-lattice
cell preserving the relations of the vertices,
edges, etc. Note that our "lattices" include their
vertices, edges, (etc.}. [Perhaps "net" or "net-
work'" is a more descriptive name than lattice
since vertices and links (etc. ) are included in the
structure. ] Because of Nash's'4 isometric em-
bedding theorem which says that any flat, multi-
patch four-manifold can be embedded in Fi"0 (or
R4' if it is compact), we can continue each neigh-
borhood map and view the totality as embedding
a piece of R' into a"'. (We restrict the dimension
shortly. } Second, we assume that space stripped
of matter fields is isotropic. Thus we require
that the bare lattice has cells which are identical
and regular. While you can tile a floor with
squares, triangles, or hexes, the unique tessella-
tion of R" for & ~ 3 using regular polytopps is the
(hyper) cubic one. ~ We therfore assume that the
flat lattice is hypercubic. In a sense this is a pity.
If there were a tessellation with regular simplices
it would be nicer because the cubic lattice is not
as rigid as the simplicial lattice. We shall deal
with this problem shortly. Third, in order to de-
fine scattering states we shall assume thai space
is asymptotically flat.

Our three assumptions imply that the entire lat-
tice can be described on a single coordinate patch
R4. (If one wants, one can simply take this as our
assumption. ) This implication is more easily seen
in two dimensions. The precise relationship be-
tween the number of vertices, edges emanating
from them and the nature of the two-cells "

(squares) permits only bending. The problem oc-
curs in trying to go from one lattice patch to
another. Each overlaping map must be the identity
in order that the cells in the overlap be squares
also. The fact that the overlap between one cell
and the next is the identity does the trick in higher
dimension also. Since we assume asymptotic flat-
ness, our lattice can be viewed as a map from a

embed

FIG. 3. A two-cell embedded in R3.
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hypercubical lattice which includes all of R~ (but
only one copy) into a space of higher dimension.

The most general metric on a single global co-
ordinate patch can be obtained by embedding in
R'0. This result is ihe Janet-Burstin-Cartan the-
orem. We shall restrict attention to this case un-
less otherwise indicated.

The regularity assumption presents us with
something of a dilemma since the Ith quantity in
the action sum is thus weighted by the volume of
the Ith "curved" hypercubical cell. But this quan-
tity is not necessarily well defined. For example,
in two dimensions we can ask: What is the area
of a square which is embedded in three-space
while preserving its straight edges (perimeter
embedding)? As can be seen in Fig. 3, the image
vertices form vertices for a tetrahedron. One is
then confronted with an ambiguity. Which pair of
triangular faces yields the correct embedded
area T This ambiguity does not persist if one em-
beds the innards of the square.

Three approaches are possible here. One, we

can subdivide the initial square (hypercube) into
triangles (four-simplices). Then we assign the
sum of the embedded volumes of the collection of
triangles (simplices) to the square (hypercube).
Since there is no tessellation in terms of equilat-
eral four-simplices, but instead only the cubic
one, we must find a simplicial decomposition of
the cube. The easiest to envision is the following.
In two dimensions subdivide the square by intro-
ducing a point at its center and connect it to the
vertices making four triangles. We will call this
subdivision "barycentric. '"' In three dimensions,
first make the barycentric subdivision of each face
of the cube. This yields fourteen vertices, among
other things. Now introduce one more vertex at
the center; connect it to the fourteen other ver-
tices. One finds 6 x 4= 24 simplices (tetrahedra).
%e shall call the process of introducing barycen-
tric subdivisions of the faces, then the volume,
then the hypervolumes, etc. , the sequential bary-
centric (SB) subdivision. It is evident that in d di-
mensions a, cube will be split into 2d!!/2= 2' 'd!
simplices. Thus in 2, 3, 4 dimensions we find 4,
24, 192 subsimplices. The volume of the Ith cube

'is the sum of the volumes of the 2 'dt subsimpli-
ces. However, to preserve the original cubic
structure we have matter fields only at the origi-
nal 2~ vertices for a given cube and gauge fields
only along the d2~ ' original links.

Two, instead of being quite so literal about the
concept of volume, we make the observation that
thus far we have only needed the vertices and

links, no areas, volumes, etc. Given only link
lengths for the Ith cube, one can define a distorted
cube's volume as a suitable product of its link's

lengths.
Three, we can introduce a separate conformal

field whose magnitude determines what one means
by volume.

X:R'- R", smoothly.

The curved lattice vertices are expressed as

X(&I)cR", if I = (I„.. ., I,) c Z';

(20)

(21)

we shall write

(22)

The reason that we have chosen the number ten is
that if we'define for each g

q„3 is the R' metric, with

(24)

(25)

where 1 appears in the p, th position. In the limit
as q-o,

= a„x ap. (26)

In the lattice definition an orientation is chosen by

III. THE METRIC

Lattice separation vectors induce a natural met-
ric. On the lattice a "metric" theory of gravity
should be described in terms of the lattice vectors.
We are only interested in manifolds which are lim-
its of lattices and therefore inherit their natural
metric structure. In this section we will examine
the relation between the lattice vectors and the
metric.

If we require thai the undisturbed lattice reflect
the principle of isotropy, we are led to regular
lattices in four dimensions. The unique. regular
tessellation of R' is the hypercubical lattice. " If
each "curved" hypercube has a neighborhood which
can be smoothly mapped onto a piece of a hyper-
cubical tessellation of R' (as in a manifold), the
rigidity of the structure is such that the entire
curved lattice can be described in terms of a sin-
gle global coordinate patch.

If we wish to consider all possible g „'s in the
continuum limit we can obtain them as follows.

Assume that there exists a map X from the lat-
tice z', viewed as a subset of R, into a space of
dimension at least ten. Thus let the map X be a
smooth embedding of R' into R" which contains
the lattice image
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selecting which sector goes with which vertex.
When there is a single global coordinate patch, ten
dimensions suffice to obtain all possible g,v be-
cause of the Janet-Burstin-Cartan theorem (Sec.
III).

Clearly it is a priori possible that X is a map
into R~ for p greater than 10 (we overcount g's) or
less that ten (if not all components of g are needed
physically). But ten suffices to get all of g.

It is worth noting that the continuum limit is
quite different from the lattice because of the
enormous class of maps sending the plane onto it-
self invertibly. Even if we include infinite differ-
entiability, these maps form the enormous group
of diffeomorphisms. A single lattice is clearly
not preserved under diffeomorphisms. The limit
is special in that it "develops" a large invariance
structure which is not there at any finite step.
But since our lattice will be so small that differ-
ences are approximately the same as lattice de-
rivatives, no classical experimental consequence
should be observable. Note that once one has
chosen the lattice sites, relabeling by using other
coordinates is clearly possible. The action will
be trivially invariant under this "alias" transfor-
mation.

While it is possible to view links as straight
lines in R" for an individual lattice, it makes
more sense if they are geodesics (when the ensem-
ble is embedded).

IV. EMBEDDINGS

A A
Rpv +AX l pv XAyex Jvg g e (3s)

The minimal volume or minimal hypersurface
equations are gien by varying f Wgd4x with re-
spect to X". These are soap-bubble surfaces,

0 ~A

=I X g»B lpv

s (v'ig i g»& x")
v'

I g I

Note that on a minimal hypersurface,
A egR pv= -NA+e X lv~g

= -PABX
l ueX lvgg

A B el

(30)

(31)

Introduce "perfect" coordinates which corre-
spond to a perfect splitting of X into space(time)
and "normal" coordinates. The formulas look
simpler there:

g»=X"~„q„eX ~, (induced) metric,

X [ g/e X
J

connection

P"'= n"' -X"l.g "X'„normal projector,
R „z= &»X l &» X

l &~, curvature,A B (28)

N",„=I"X l„„normal tensor,

X"=+A„„g~v normal.

The normal projector satisfies P"sX
~ ~

—0,
antisymmetrize bracketed indices.

The Ricci tensor is given by

As we did for other fields, "we will take the lat-
tice gravitational action to be a sampling of the
embedding functions on a particular lattice (in the
spirit of the "net" terminology, this is a "cast-
ing"). In this section we will therefore give the
essential equations for embedding manifolds.

Thus let X:R"- R "+~ smoothly. Let XA denote
the components and let g» be the metric in R"' .
We will actually be interested in the Euclidean
case here but will give general formulas. q» has
the following format:

X"=(x,u'),

X ~,-(5™„,u'~„),

Thus we find
a b

g g v+0
Xe a b

pv g + ie+ l pv~ab t

Pab ~ab a. p.v

a b
pevg ab I pgv3 &~ l el.83 '

(32)

(33)

Oe~ 0 '

~AB 0 ~ab (27)

A hypersurface is minimal if and only if

~a ge8 0leg

V. THE EINSTEIN-HILBERT ACTION

I-A, B d ~p, +1 & Pn- d~, d 1+a~, b d+p.

g z is the flat R" metric. g„ is the normal-space
metric. We lower indices, using p». By identify-
ing a, b with a pair of antisymmetrized indices
(nn ) —a, (PP') 5, we can give a natural metric
on the normal space: g &q &. -q & g & for g„.

Now we can list the interesting geometrical ob-
jects," e=~ R gd'x (35)

Having introduced X one must choose appropri-
ate dynamics. There are a number of questions
about this choice which we will begin discussion
of in this section.

If one starts from the Euclidean Einstein-Hil-
bert action with gravitational constant ~,
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and varies mith respect to X, the equations are
O'" = A'" ——,'Rg "'

= F~ C'""X + G""x
pv ~ Ia I pv'

So far me have only used the existence aspect of
the JBC theorem. But given appropriate initial
(boundary) conditions, there is a uniIlueness proof
also. We point out that the Cartan proof of em-

ddjng depends upon the Cartan Kghler theo
rem'6 which in turn depends on t;he Cauchy-Ko-
walewski theorem whj. ch means that the solution
is uniIluely determined by its initial (boundary)
conditions. We assume that the limits of the func-
tional integrals appropriately reflect this fact so
that only one X" to a g,„ is permitted. Thus no
extraneous solutions to EIl. (34) are allowed, only
G „=0. There is still a question of functional
Jacobian, but that should not affect the allowed
classical solutions. Some further discussion of
these points is found towards the end of the next
section and in Appendix C.

To obtain the lattice versions of the usual geo-
metrical objects, me replace the partial deriva-
tives (differences). Thus

g,„=D, X"g~~D„X~,

W'=q"'-D. X"g ~D X',8

R „8= I'A~D„D )V )X D D)~) X

given support on the intersect of the first Brillouin
zones of the lattices. This set is the ball B,I,(P)
of radius mme in momentum space.

There are three immediately apparent difficul-
ties with these choices of action: One, coordi-
nate-relabeling invariance is gone on the lattice.
Two, the action is of higher order in the (lattice)
derivatives of u' than is usual. Three, even with-
out the use of embeddings the Einstein-Hilbert
action suffers from the conformal factor prob-
lem. This problem is that the Einstein-Hilbert
action can be arbitrarily negative. ""This is a
problem in Iluantizing vgR as a kinetic term for
g. It is a problem even in the conventional theory.
If one sets

with

detg = 1,
then (in Euclidean locally R' manifolds)

(40)

(41)

The factor 0' is quadratic to preserve the metric
signature. We ignore surface terms. 8 as kinetic
energy term for g has the opposite sign to that of
whatever scalar fields there may be. Hence the
kinetic energy of 0 (the conformal field) can be
made arbitrarily large and it has the wrong sign.
It therefore appears that the functional integral
will diverge.

Another view of this problem persists even in
the weak-field limit. Take

(42)

g~ is, as usual, the inverse metrix tog „. The
most straightforward approach to gravitation is to
consider the lattice version of the Einstein-Hil-
bert action

g q'~ I'„,D,D„X"D D 'g""'g~"'

with H„„small compared mith 5 „. Let

H„„=f„„+,'eh5~„—
5~v= 0 Note tha

n=i+-,'&I =e»4

(43)

Alternatively, since the lattice theory is no longer
coordinate-transformation invariant, one might
start from a specific coordinate system. Since the
metric is nearly flat, g=j+H. , with H small, and
since perfect coordinates give a natural choice
for II= eug 8u, me mill write out that example:

8 g &&& ~ D D u+D D u&g gI:v]geI:g3

I

(39)

Since we are interested in the "ensemble" of
lattices, we will viem the action as a sampling of
the values of X:R'- R" or U: R'- R' on lattices of
R~. As in previous papers' all variables will be

in the weak-field region. That is, the trace and
the determinant are related,

detg=trg —3.

For weak fields we can see that 2=Rug be-
comes" (up to surface terms)

(45)

ly yjLVI +31I I11 + 1y IQyu1 1 I Ilk) Iv
vvIA, I)t 2 Pv I)L g vv

(46)

The trace field h has the wrong sign for the kinetic
energy. We see that only one of the modes of g„„
has the negative sign problem. It appears, at
least in the weak limit, that quantizing only the
pure spin-two (i.e. , trace free) piece of H,„elim-
inates the problem. The view that gravitation is
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a nonlinearly coupled theory on a flat background
is at least consistent with our single flat-global
coordinate patch view. This view is sometimes
called the particle or spin-two version of gravity
(as opposed to the geometric). '""

To quantize gravity one begins in the spin-two
formulation (ADM)" and goes to MgR by introduc-
ing the Faddeev-Popov" gauge determinant, etc.
Thus whatever wrong kinetic energy factors might
appear to contribute will be cancelled by the
ghosts. This cancellation depends essentially up-
on the freedom of choosing a gauge. One is not
free to do that on the lattice.

VI. LATTICES, CO%FORMAL CONVERGENCE
AND CHOOSING THE ACTION

—6~2&~ d 4~@2 (48)

Of course, this is only the leading term of the lat-
tice kinetic energy, but the same idea applies.
We use only the first term for simplicity and have
written out -8 so that functional convergence is
more apparent. Now include a cosmological con-
stant term

Qcc= tcA d g g= 6n'&~X d gA (49)

A= 6p2gA. 2 = 6W2q 2X

can be arbitrary but not zero. The other

(50)

In the previous section we found that the most
straightforward lattice extension of Einstein-Hil-
bert gravity has a number of difficulties: gauge
noninvariance, order of derivatives in the action,
and the conformal convergence problem (inherited
from the continuum version). These are com-
pounded by the problem of defining the lattice cell
volume (see Sec. II).

In this section we shall examine the possibility
of quantizing the MgR lattice action. We cannot
reduce the number of degrees of freedom from ten
to two since we do not have gauge freedom. Thus
we are once again confronted with the negative-
norm problem. ' " We treat the conformal factor
separately to isolate the difficulties.

There are two properties that we wish the con-
formal field action to have. One, we want it-to
converge. Two, we want asymptotic flatness. In
the case of a conformally flat manifold

(47)

and the kinetic term KMgR reduces to 6K 8Q' 8Q.
Because the lattice has a maximum moment;um
p'& v'/q', the kinetic piece of the action is
bounded:

-8 „=J(d xdxxA BQ&6x'lCx' fd xQ''

factors 6m' are extracted for ease, and will be re-
absorbed later in this section:

g, & 6g2&~ d4& g, 2 y2g4

(3) Q'g~"6„„=g~"6 „v g,
(4) Q2g,.5~"=g

(52)

It is important to note that in a different coordinate
system the background metric G,„=5 „will under-
go the standard Jacobian coordinate transforma-
tion. The second case (2) will not help achieve a
flat Higgs-type solution because R vanishes in that
limit. The first is an improper degree tensor
density.

If one includes gauge fields B [in SU(n), e.g. ]
coupled to matter fields P (in C", e.g. ) in the usual
way, "there is another term

Q'g""(P( +i(f& B ) (P(, iB„Q)-

But with the usual theories, its vacuum expectation
value is zero. This will not help achieve flat space
(time). Besides one would not expect to have to
add in extra field structure to achieve flatness.

Of course, if in the macroscopic limit of the lat-
tice theory, there is some remnant of the pre-
ferred lattice metric (the flat metric, that is} from
experiment it must be a very small effect. But
even the smallest quartic, negative term will make

6~ ~ y2 d4~ Q2 & g-2 2 & g-4 5]

The functional integral will now converge for every
x~0.

This is nice except that we have lost asymptotic
flatness. Once one has introduced a potential for
0, which is what the cosmological constant term
amounts to, the only way to admit solutions with
Q equal to one everywhere (in order to admit com-
pletely flat space as a possibility) is if the poten-
tial is chosen appropriately (without a potential one
simply imposes a boundary condition on the homo-
geneous differential operator). Because of the
quartic limit on potentials, we are led to consider-
ing a quatratic term in the manner of the Higgs
potential. Including an 0' term breaks coordinate-
relabeling covariance.

Let us look at the ways in which we get
terms proportional to Q. Given the fact that
we are looking at embeddings, there is the possi-
bility of using the natural (flat) metric of the em-
bedding space, not just the reduced one. Thus
we find four possibilities:

(I) Q'= (detg)'~4

(2) Q2R= MZR --,'(M~)-'~28&g 8~g,



908 KENNETH I. MACRAE

the full functional integral converge when there is
a maximum momentum. Thus we shall consider
the three obvious quartic terms for Q and g „
= V'„6„.V'„. V is the vierbein for g „;

(a) Q'=(detg)'/',

(b) (g'"5 )'=(g'"~ )'(detg)"',

(e} gvx5 gvv5 gvx5 gw5 (detg}&/2

We will require that the potential satisfy the fol-
lowing conditions (assume the usual quartic re-
striction):

(1) Asymptotic flatness and flat space as an al-
lowed solution;

(2) convergence of the Q functional integral for
the case of bound momenta;

(3) convergence of the functional integral for the
other variables;

(4) proper coordinate-relabeling covariance
(scalar density);

(5) the preferential effects are minimal;
(6) the domain of the functional variables is not

bounded.

If one does not make this assumption the poten-
tial can be replaced by a step-function domain of
integration. The parameters in the potential in-
duce a similar large (cosmological) distance. "

Up to a small quibble, discussed later [Eq. (74)],
the potential is unique:

&'Q'( g""5„„)—2X'Q' —y'( g
'"5„)'

= I~'(g"'g..—2) —x'(g""5,„)']~g.

The modification of Einstein's equation is

(55)

A „—~g„Q= -(X' —2X g '5~,)5„„
+ —,

' [X'(g"5„—2) —y'(g"5„)']g„„.
(56)

We discuss the physical limit of the A. parameters
and their relation to gauge constraints in Sec. VII.
For now we merely point out that the functional.
integral converges for all A. 's.

Thus we have been motivated to consider the ac-
tion

—8= ~t(/I[Q'8+ 6sQ ~ BQ]

-X'[A.'(2Q -Q'g "5„„)+x'(g "5„„)']}dx.
(57)

It is the discrete version of this which is to be
quantized on the lattice ensemble. We therefore
consider the following lattice version of that ac-
tion:

-6!=Q {a'e [Q'8+ 6D„QD„Qg"'] —/I'e [X'(2Q —Q'g "5 ) —y' (p "5 )']}
I I

=Q [Q'e~ft+ 6(gD Q)(eD„Q) gv" + A. 'Q'gv"5 „—2X'Q —X' (gv'5, )']
E

(58)

On the second line we use the Planck lattice spac-
ing equation

K& =1. (59) e-=Q 'y (63)
The appearance of g thereafter is for convenience
only, one could as well use

nA' = &DA' = 4'I" - 4 I ~ (60)

Inclusion of gauge fields coupled with matter
fields: One constructs them as terms in addition
to the one given above".

4-8'=g, tr(F,'„F„)gvg"'-—Q'g""(Q 4) I) 4
I

-Q'e'(~4 ['- V')' (61)

Here
( I+v

UI,„,= U(I+ t/, I)=P exp~ W"„iA„dx"
k g

(62}
FIvv = e ( I I vUI+v I+v+v I+v+v, I+v I+v, l}i

&v4 = e [U(I+ v, I)4(I+ v) —C(I)]. (64)

VII. THE LATTICE GRAVITY ACTION'S
STRUCTURE

The total action we have found consists of a sum
of terms constructed from the inverse metric and
the volume determinant. So it is informative to
organize the terms by order of g '. There are,
therefore, three kinds of terms: Mg, g~"Mg, and
g""g~'V~g types. In terms of these are of order
0', 0' and 1=O'. If we limit 0 to having a power-
series expansion (analytic as Q-O), then there

is a gauge-invariant parametrization of the fields.
We refer to these as physical variables because
they would give rise to the physical particle states
j.n a Weinberg-Salam model. Thus
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can be no further higher order four-dimensional structures.
The most general appropriately ranked gauge-invariant tensors in a gauge-coupled theory are as follows:

~, —.'~(~4 ~'- ~')'

-",g„„+P,'„„+e y~R„„-e'(@~4}t'&„4 (65)

'+~sv&n+f'+~vv6» ' 6Evv6»3 " 6(uv6»)+e "vive+; 2'ux ~vp48

5&„„5»& is the (pp), (pA) antisymmetric object, 5&„„5~,& is symmetric. We have suppressed X'and P' since
the contraction with

leads a coalescense of a terms and of p terms (and of y terms). Thus we define

x'= x,'+ x,'4+ x,'4',

P=P.+P~&,

r =r.+r4 ~

We relate some of these coefficients to each other,

P=x'j2.

For flatness, as described above,

(68)

(69)

This is included in the choice of lattice scale. Thus the Ith contribution to the action is obtained by con-
tracting the following tensor structure:

-X'-e'X(~4~' p')'

2
6„„+e'R,„-e'(S„4)~u„4 (VO)

~trav xp3 ~P„~P& 4 2+pe +vp8

The scale, power of Q, is now entirely in the g "(detg)'~' terms as we can see by rewriting with explicit Q:

-X'-e''(~4
~

q}-
Qa~gv gvu~»

~ 2 5„„+e8„„—e'D„„—e(I)„4)~ S„4 (Vl)

(vv Q) 4~2» &P

Here we define D,„entirely in terms of the logarithmic derivative of Q.. d=4 in space (time):

D„„=(d —2)(lnQ)„„+g-„„[g»(lnQ)»+(d —2)g "(lnQ)~„(lnQ)~, ],
(lnQ), „-=(lnQ)~ „„-(lnQ)

~
I'"„„,

(V2)

-81=-Q [~+he (~4i' —p)']+0'g""[A.—,'&~gv+ e "uv e (~~4) ~v4]

0 '8„0 continuum

O'DQ lattice.
From the standpoint of the behavior of 0, it is more natural to omit D „and introduce a standard kinetic
energy

(V3)

Our theoryisdefinedby thefunctional integralof thisonallfieldswith v/eboundedmomentum; +,81 averaged
over orientations. One might wish to include a Riemann-tensor-squared term. We shall not do that here.
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It is clear that the choice of X parameters given
by

x'= 2X'= 2X"

leaps out at us. It corresponds to choosing the
stationary point and zero of this potential to be the
same:

will ensure convergence of

g-"g "l~ 5r ..5»~+~'&(..5")~ = -~'g""5-g"5».
(75)

—x'Vg (g'"&„„—4)'.
When we express

(80)

(81)

-X' Wg g'"5„„—,2 )

—,2 ),2
—4 ), (78)

2x j 2A. j 2A.

the choice

2A.
,2

——4 (79)

g is itself quadratic in the vierbein" ~2 (or B„X~),

(76)

Therefore this potential term is in fact quartic in
vierbein variables which run over the entire real
axis. The g variables are positive in order to pre-
serve signature. It seems more normal to use en-
tire variables such as V'' or X" rather than lower
bounded variables. But in any case the potential
will lead to convergence of the functional integral
for V',". , the inverse, determinant-one frame fields
(vierbein), ""for the same reason that the 0 inte-
gral converged. Even if the kinetic terms have the
wrong sign, the fact of lattice momentum cut off
plus the degree of the negative potential term en-
sures it. Since this is true for the inverse deter-
minant-one fields V, , it is true for the straight
determinant-one fields.

In four Euclidean dimensions, any matrix M's
inverse is given as

M" =(detM)-. a ev e 'aiMvM~MP
vip f j 0 l ~

23~= 1,
p, v, X, p, i,j,k, l c(1,2, 3,4),

as one can readily verify by multiplication. In
the case of V, detV is one. Thus the potential is
in fact of order twelve in V' and six ing, „. It
certainly converges. While this is somewhat
shocking in its degree, one must recall that even
a conventional quartic potential for a matter field
C leads automatically to a term 0'

~

C ~' because
of the determinant-volume factor. Any potential
for C is of degree greater than four by this
reckoning. This is not a disaster on the lattice
because the Feynman-Dyson integrals are all fi-
nite without subtractions. However, an examina-
tion of the approach to the usual continuum theory
leads us to an understanding of the origin of this
potential term.

If we simply rewrite the potential in the follow-
ing suggestive form

H -6" 6 u 'u
la; l0&

tr8 = 5 uj 'u~ z& 0. (83)

Note that in general one can give a natural internal
metric for the normal space by replacing the in-
dex a by an antisymmetric pair (no'). Then give
q„as q, ,q~~ —q, ~, q 8. (One might wish to con-
sider embedding g'" instea, d. )

This suggests a way in which we can recover the
Feynman-Gupta" spin-two self-coupled theory on
a flat background in the limit. In that theory, the
Einstein-Hilbert action fdr gravitation is consis-
tently built up from a pure spin-two field. (See
the Introduction. ) In order to be pure spin-two the
metric is both traceless

and transverse

8 g =k (g iag )=0 ~

(84)

(85)

We have already used up the four coordinate trans-
formations by going to perfect coordinates (they
parametrize the metric in a perfect gauge). So in
order to achieve the transverse gauge we would
have to include four new variables. Note that
there must still be another three constraints to
reduce the theory to masslessness (these are ob-
tained by restricted transverse gauge transforma-
tions in the limit). We will not write out those
constraints, but the combination of tracelessness

we see that the functional integrand becomes a
functional 6 function for trH in the limit as ),

' goes
to infinity, ' 2

5(trH)= lim exp -X' JI d xvge tr H ~. (82)
~ co )

continue

Note there is a mass M~ =~'e'. Because tr8 is
related to the sum of squares of derivatives of the
variable (positive definiteness in Euclidean space),
it will not vanish in the Euclidean sector unless
the derivatives of all the fields vanish. Therefore
we cannot impose the limit ~'=~ in Euclidean
space. After contours have been rotated to Min-
kowski space, one can take that limit. The prob-
lem is that only the zero vector in Euclidean
space is null whereas the entire light cone is null
for Minkowski space. For the embedding we have
given in the small-field limit
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plus the three constraints needed to project out
(+1,0) from the spin-two are there as long as the
field is massless (the functional integral does this
automatically in the limit}.

Let the transverse coordinates be ~ . So we
write the gauge condition in barred (transverse)
coordinates as

—ne
— g =0.

Rx

Introduce the coordinate-transformation matrix
V„and its inverse V',

(86)

(87)

det -~ 40 everywhere.
Bx

This means the map is invertible and differentiable
everywhere. x is in fact a diffeomorphism. If
we could functionally integrate over these fields
x while imposing-this condition we could simply
insert the appropriate lattice version of the weak-
ened ' 5 function into the functional

lim J(5[d x ] exp -q gv g(D,g )(D„g~)6„, ,
g ~ OO I
Q~Q

conti nu e

Note that x is a field of x". By weakened we mean
that g is not infinite. This gauge constraint in
the infinite -q limit requires transversality of g.
Now we calculate our field theory with g'2 and q
finite and then rotate to Minkowski space and
finally take the limit. One must be careful to en-
sure that the right number of independent mass-
less fields persist in that point. One may wish to
include an independent mass for the pure spin-two
vector which goes away in that limit. In that limit
the flat vacuum will be the physical vacuum. Of
course before the limit is taken the vacuum may
appear (in lowest order) to be turbulent due to both

Now express the transverse gauge condition as a
set of four differential equations for the four
fields

0=(6 i")Vg
= V"V, B„(V„V,g }

g 0 + V
&

V tR g x4 + V v V & +AP

(88)

The difficulty with this relation is that the inverse
of the derivatives V" of the fields x' must be used.
This requires that

the trace field and longitudinal tensor components'
negative-norm contributions. Imposing the con-
straints will have left us with a Feynman-Gupta~e
action for gravity. That can be rewritten in con-
ventional form by using Faddeev-Popov 0 ghost
fields.

The trouble is that there is no easy way to para-
metrize the diffeomorphisms x or the determinant
condition. There are two ways out of this that
may not be too bad. One, just let the vacuum be
what it is~' and use the perfect gauge in which all
integrals are straightforward. Two, on the lattice
one can replace the differential with a difference
constraint. The diffeomorphisms play the role of
phonons.

As long as we are dealing with lattice deriva-
tives we can do the following: Introduce u by

=5„x"+u (x). (91
u is called the lattice deformation vector or
phonon field. The lattice equivalent of our deter-
minant condition is

detD„x' =det(5„D+„u")00. (92)
Since u can be zero the determinant condition can
be interpreted as a bound on the magnitude u by
noting that D„u can never cancel out the identity
matrix if it is sufficiently small. Recall that

DvQ il 6 (BI~p flI ) ' (93)
Our restraint must hold everywhere, for all u .
%e can only insure this totally if the components
of uP never exceed e/2 in magnitude, for then their
difference will not exceed e. Ne impose this as a
constraint on the functional integrals of the u .
But of course if they are inserted in the obvious
way into the lattice potential there will be an ef-

.fective damping of the higher magnitude u 's
along with the u"s. This would motivate dropping
the potential and dropping assumption o' by impos-
ing cutoffs on the functional variables much as one
does for gauge field variables in the compact ver-
sion of lattice field theory. Or we could more or
less get the desired effect by requiring that X' be
enough greater than a ' that the 1/e damping from
the potential squelches the probability of such a
field. The cutoff on &" is not necessarily indepen-
dent of the effective (or real) one for M'. Indeed
the power series in ~ expansion of the action
which underlies the Feynman-Qupta viewpoint may
not converge if the factor

eH, „—D,X D„X-g„„ (94)

contains components of order 1. This would tend
to support the cutoff domain of functional integrals
(no on 6) idea for consistency.

Now the gravitational functional integral we are
interested in has (in the limit) severe restraints.
It is not the most general asymptotically flat mani-
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fold. One R patch suffices. This view coalesces
with the Feynman-Gupta'9 view when the series
converges but should yield an extension when the
E H series does not converge. Note that going to
Feynman gauge coordinates by means of the u
when they are constrained can be arranged if the
u' are sufficiently small.

It may not be necessary to go to the Feynman
gauge since the advantages to it are as follows.
One, the particle has the usual spin-two proper-
ties: It is transverse, traceless, massless. Two,
the action is manifestly convergent to leading or-
der in E. These advantages may be outweighed by
the facts that one, for the perfect gauge the par-
ticles have a natural parametrization in terms of
the scalar u' which avoid some of the difficulties
of functionally integrating the coordinate-trans-
formationfields, u . Three, if the positive-energy
and action conjectures" are right the action is
bounded from below and flat space is the ground
state. Viewed from the perturbative standpoint of
propagator plus interactions, proofs of these con-
jectures seem unusual. They rely on rates of
growth and asymptotic flatness. " The results are
clearly nonperturbative. While the next term may
not work, the summed series does. If they are
true, no constraints need be imposed except that
the conformal problem must be dealt with. " We
introduce the soft 5 functions to study the pertur-
bation limit. They are probably necessary as long
as one is on the Euclidean lattice but become less
significant in the small-lattice-spacing limit and
after rotation to Minkowski space.

As everyone knows there are only two true de-
grees of freedom for the massless spin-two field.
Where do the six degrees of freedom in u' go ~

The answer is that in the Minkowski continuum
limit there are four restricted gauge conditions
(also called dynamical gauge conditions) which re-
duce the number of degrees of freedom from six
to two. Another way of looking at these extra con-
straints is that they arise from integrating out
the nondynamical degrees of freedom, as one does
for Ao in electrodynamics, in which integrating A,
leads to a & function. ' The extr'a degrees of free-
dom that are removed are those corresponding to
the trace and (+1,0) parts of the spin-two field in
the perturbative theory. This is only easy to see
in the small-field limit. We have included the
soft 5 functions because it appears that these
spurious degrees of freedom are present if one is
on the Euclidean lattice. (Indeed the trace had
better not vanish in Euclidean space. ) We will
omit writing an explicit 5 function to remove the
other spin components.

Finally, we comment that in perfect coordinates
the natural relationship between the first four co-

ordinates of X and the coordinates for the initial
allows us to readily construct the Poincare

average as in previous papers.

VIII. CONCLUSION

In this paper we have begun an analysis of lat-
tice gravity. " Whether one views the lattice as
merely regulatory" or physically real, '""one
is obliged to analyze quantum field theories there,
if one uses functional integrals. ' ' One important
difference between lattice gravity and continuum
gravity is the complete destruction of the contin-
uous symmetry group found in the continuum limit.
This poses some unique problems for lattice grav-
ity functional convergence which we have an-
swered by proposing a "quartic" potential depen-
dent on the preferred lattice metric 5,„, which
makes the lattice functional integrals converge
even if the kinetic terms have the wrong sign. (It
is quartic only in Q.)

The regular flat hypercubic lattice is preferred
above the others for reasons analyzed in Sec. II
(e.g. , it is the unique tessellation of R~ by a regu-
lar hypersolid). " Because of the very nature of
lattices (to describe the vertices requires de-
scribing their locations and thus giving a dis-
tance)"" we are led to view physical space as an
embedding of the hypercubic lattice in R', but we
still have the possibility of using the unembedded
lattice's natural, flat structure as a way of con-
structing the potential.

We went on to discuss the relationship of our
potential to the transverse-traceless -symmetric
spin-two field approach. One can achieve pre-
cisely that theory by including limits of soft func-
tional 5 functions related to those constraints.

Performing a transformation to the transverse
gauge involves using coordinate-transformation
fields which satisfy unusual constraints. [See Eq.
(90).J We found that they could be included on a
lattice if they did not correspond to large devia-
tions of lattice position.

lf the positive-action and energy conjectures are
true, then the fields converge for global, nonper-
turbative reasons and one does not need potentials
except to take care of the conformal problem. "
Still there are advantages for weak-field perturba-
tion theory in going to a gauge.
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APPENDIX A: MATHEMATICAL TERMINOLOGY

General lattices can be thought of as being a
connected subset of links and vertices contained
in a simplicial complex. See Fig. 4. A simplicial
complex is a set built by gluing together building
blocks which are n-dimensional triangles, sim-
plices. An z-simplex is any convex set in R"

whose vertices V, , form pg linearly independent
vectors (V,,„—V,) for any V, in fV,.). Such a set of
m+ 1 vectors V,. are called convex independent. "
To be precise, if S is a (closed} simplex with ver-
tices V,. we write

[S] = [V, . ",V.]
n tt

= V V= a, V&,a,. ~0 and g,.=l,
g=o j=0

(Al)

then (S,) = (S,}. (A2)

(K2) means that the faces of adjoining simplices
are identified (are the same). Note that a triangle
with a line attached at a vertex is a complex. See
Fig. 4. The building blocks need not all be of the
same dimension. Such complexes therefore rep-
resent a generalization of what is available in the
theory of manifolds. It is intuitively obvious (and
there is a theorem') that any compact manifold
can be smoothly approximated by a simplicial
complex. For example, the sphere S', can be ap-
proximated by the tetrahadron. The topology of
these manifolds and their simplicial approximant,
in the guise of cohomology theory, is identical
by de Hham's theorem. '

APPENDIX B: REGGE GRAVITY

A theory of curvature on complexes built from
simplices of fixed dimension was proposed by

Regge. " It exploits the proportionality of the
Gauss and Riemann curvatures in two dimensions.
One views the complex as being built up from yg-

simplices which are joined along (g —2)-dimen-
sional hinges, ""e.g. , triangles attached at ver-
tices, tetrahdera at faces, etc. The sum of the
angles will not yield in general. This defect of
angle multiplied by the area of the (z —2)-dimen-
sional "hinge" summed over all hinges is the

where (S) will denote the open simplex. A line
segment is a jk. -simplex; a triangle is a 2-sim-
plex, etc.

We can define a simplicial complex K, as a set
of simplices joined together in such a way that
the following conditions hold:

(Kl.) If (S) cK, then all open faces of [S] are in K,
(K2) If (S,) and (S,) cK and (S,) (l (S,) & Q,

COhlPLEXES

NOT GOMPLEXES

FIG. 4. Some simplicial complexes. Dots denote
vertices.

integral of the curvature over the mani. fold approx-
imated by the complex. This is most readily seen
in an example of a two-surface. Take the ico-
sahedron. The triangles are equilateral and five
are joined at hinges (vertices in this case). The
angle of defect 5, is 360'—(5 x 60') = 60'= m'/3. As
shown in the references, one finds

f ii~gO's iso Oimsnsions,
(s1)

C
Rv gd'x four dimensions.

~
' ' 16mgQt

The factor of —,
' arises because the Gauss (sec

tional) curvature" is half of Riemann's. Such a
relationship exists only in two dimensions" since
many two-dimensional sections are available in
higher dimensions. 2,. d'enotes the "area" of the
fth hinge in four dimensions (a hvo-dimensional
object). Unfortunately, there is no way to obtain
the action for matter fields without the introduc-
tion of a metric. So we pursue this technique no
further.

APPENDIX C: HIGHER-ORDER CORRECTIONS
AND THE POSSIBILITY THAT GRAVITY

MIGHT ARISE FROM THEM

In this appendix we discuss the well-known curv-
ature scalar corrections to the action when there
is internal curvature and examine the possibility
that this may be an origin of space-time curva-
ture. This idea has a dissimilar formalism, yet
kindred spirit to Sakharov's ' proposal for gravi-
tation. While we find it unlikely, for reasons
which become clear below, it is still an intriguing
concept. We mention it because we need to intro-
duce the general framework of such corrections
anyway in order to discuss the change of function-
al-integral-variables problem. The idea comes
along as a sort fo corollary possibility.

Numerous physicists' ' have pointed out that the
action

(CI)
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has curvature scalar corrections if g is a function
of g. Here a, p are some internal indices and p, , v

are (flat) space (time). These correchons can be
viewed in several ways: as due to operator order-
ing ambiguities, as due to modifications needed to
make Feynman's transition amplitudes obey the
expected Schrodinger operator, or as due to mod-
ifications required to make a consistent, regu-
larized theory when not using dimensional regu-
larization ""

The coefficient of the correction is currently
under debate depending on the choice of path used
in calculating the transition amplitude. If the paths
are geodesics the factor is —'; if they are general
it is -'."""We will use the latter, more re-
cently derived, number. "

Since the corrections are "quantum" we will
keep track of L Thus the action is

det —= (detg )
' ~ '8@

(G6)

where

gaff @
I 0~ i&@Ig

is the new effective metric, making the action
naively

(GV)

e
naive ak n84 i nf I v (G6)

But once again there are corrections, and so the
actual functional is

-8= —'g ~ ~ 5~" —-@ I'~ I'~ g~~ 63 0 2 d

(G9)

On the lattice the action is a sum

-8= d x —'g )„~),& "+ —,'@'R 6' 0
-8=+ 'g &D i' —D„g~e (G10)

25 de lndetg54 0,
will be subsumed in the functional measure in the
usual way.

The object [5a(0)]a has a heuristic derivabon as
(1/d'x)a, one over the spatial lattice volume
squared. To derive it one applies the Aber s and
Leea approach to field theory (as an infinite ap-
propriately coupled quantum mechanics functional)
to the one-dimensional correction found by Cheng,
DeWitt, and others. ""

The factor [6'(0)]' is zero only in dimensional
regularization. Bui note that in the only widely
considered nonconstant internal g-, case, the non-
linear sigma model, R is a constant inversely
proportional to the radius of the constraint sphere
squared. It drops out without bothering about reg-
ularization.

It should come as no surprise that even if one
starts with a Lagrangian, with flat internal met-
ric, but goes to a nonconstant metric through a
change of variables, one would get a similar term.
That is, let the action initially be

which has no 5'R term. But change variables to
from C ',

8@,fdC'=4' dQ = dP'.Ie (G6)

There will be a functional Jacobian

(G2}

& is the curvature scalar computed from g (iti) with

P as variable. The other term,

In the one-dimensional case one can quickly see
that using the difference of fields is different
from using the Feynman procedure of evaluating
the integral of the action along the classical
path'"

-~. = z -'A. (e)fe'(+1)-0 ()]
~ fe'(i+ 1) -e'(f)]~ ',

-e....= Z 'f «Z,-(eIe e'
Xg

It is the second one of these which leads to the
5'2 corrections. The first has no such correction.
However, once one goes to a field theory it is
necessary to introduce a regulation scheme. The
dimensionally regulated zero-& limit of the
second theory has no 5' term either. It is there-
fore the regulated limit of the theories which
should be compared for physical consequences.
They concur. Since we are using the lattice for-
malism, we will not encounter any 5'2 terms which
must be removed. The ambiguity in choice of lat-
tice variables results only in a choice of Jacobian.

. It is worth noting that the Jacobian for the Ein-
stein-Hilbert functional was calculated by Faddeev
and Popov' by starting from the two spin-two
components in the ADM formalism. " No one has
published the 52 correction. Because dimensional
regularization is so widely used, there is hardly
much urgency in doing such a difficult job.

But if we wanted to compare the unregulated
version of these theories it seems plausible thai
one should add a term to AL„:

1@2 3 2R ~4
8
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Is it possible that this can be interpreted as a
space (time) curvature? We shall examine this
question. First, in order that R have the usual
dimensions, the fields g must be replaced with
fields having the dimensions of length. Thus let

(c13)

X scales as a length if X is a length.
Define I' I y

In the continuum limit we see that g z is the per-
fect coordinates metric

g ~-5 ~+8 X g ~8~X, (C17)

where we have used the diffeomorphism properties
of X . Because of the close relationship between
X and the coordinates g", it seems reasonable
to set g=X. Thus we have been led to the lattice
action

pi, = -g e'Z, la = -ale. (C14) D X"g D X 5'v+ — R
rt'q l'

I I (C16)
Therefore the 1.1 for the rescaled -(8~+8') is

4 4

I = —' — g D X DX& "+8 — q'RI 2 g og p v
Iso

(C15)

If we wish ultimately to interpret R not as an
internal but as a space (time) curvature, there
must arise an implicit curved metric structure.
This can be achieved by requiring an intimate re-
lationship between the fields X and the coordi-
nates x". Xo(x") must be a diffeomorphism. That
is, it and its inverse x"(X') must be (infinitely)
differentiable functions of each other. We shall
temporarily gloss over the difference between
lattice and actual derivatives. Furthermore, we
define g z implicitly as follows:

We can approximately interpret R as a space
(time) curvature, because it is unaffected by dif-
feomorphisms, if the metric D„X D„X, couples
to matter fields in the appropriate way. This can
be done by hand along the usual lines (see Sec. VI).
In addition one must introduce a conformal field
Q. One can treat it as an independent field which
couples in the appropriate way. Thus consider
the action

2

I ~8

+ ~ q D„QD„Qg"

+ Q'g ~"(5) @)t S C + Q~U (4)

g,„=D,X.g,D„X' -4, tr(Ft ~F„,)g""g~' (.C19)

= D„X g~gDvX ~ (C16)

= D Xo[5 +(DX ')'(D, X'q„D„X')(DX ')~]D„X

-D Xog D XI'+D„X'q,~D„X

with internal fields in standard notation.
If one is at large distances on the Planck lattice,

one expects this action to be approximated by the
integral (after slightly rescaling g)

-8= Jt vgd'x ——,'g„„5'"~ ~-xft+g""(~„@)tu„@+p(@),g~"g& tr(F~,F ) .,„(5'(0)) „„].
(C20)

Here we have used

2ggv= gpv

and the following' correspondence

(c21)

v gd4x g,„5'" ==-' Q5'e'g, „5"
g I

We see that upon regulation it is the first term
which vanishes. One is left with the Einstein-
Hilbert-matter action. This strange transforma-
tion has arisen because of' the unusual scaling
properties of X as a field.

Two more serious questions beset this idea.
One, why should the extra degrees of freedom in

I

g z beyond X" (those corresponding to the six X')
be quantized? A somewhat plausible answer is .

that this is precisely how the fixed curvature in-
ternal space should be generalized to the arbitrary
curvature internal space, and summed over the
arbitrary variations. Two, what about the fact
that this theory does not. converge on the lattice
for the same reasons given in the text? This is a
fatal flaw to the theory as it stands. Clearly,
some modifications such as those described in
the text are called for.

We point out that Sakharov's" "proposal, to
consider the modifications of zero point for the
Lagrangian on a curved space as the source of
gravitation, is not entirely dissimilar. In the
case he considered, one finds the modifications
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expressible as a power series in the curvature.
The leading term (after renormalization) is

B is an as yet unspecified constant. If one cuts
off 0 at hm/e, one finds

hg=B5 Bm q

where

K& =1.

Sakharov suggests setting

B@m =-1
and interpreting this correction factor as the
Einstein-Hilbert action, though why one should
then quantize the metric degrees of freedom is
not clear here either. In the path-integral series
we just discussed, the relation terminates at

In his case the power series goes on for-
ever. Still the idea of using the correction fac-
tor as the source of gravitation is common.
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