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Rotationally invariant field theory on lattices. II. Internal symmetry

Kenneth I. Macrae
Department ofPhysics, B-019, Uniuersity ofCalifornia, San Diego, La Jolla, California 92093

(Received 5 February 1980)

We construct gauge theories on the Euclidean Poincare transform related ensemble of lattices. Some examples of
their effective propagators are derived. Even though the lattice spacing is kept nonzero (on the order of the Planck
length), the effective ensemble propagators are rotationally invariant.

I. INTRODUCTION

In this paper we examine the ensemble-averaged
lattice theory' for interacting scalar-vector and
spinor-vector gauge theories. The notation used
follows naturally from the previous paper. '

We begin (Sec. II) with the usual lattice deriva-
tive for scalar fields coupled to gauge fields. We
try to stay as close as possible to conventional
lattice formalisms, "but some differences arise.
In particular, we employ the natural map from the
group to the algebra (the logarithm). In this for-
malism the difference between noncompact and
compact theories ' corresponds to the difference
between the "direct" logarithm and the principal-
value logarithm. We do this because our approach
generalizes to lattices with nontrivial metrics. '

We obtain the Poincare-averaged action for the
decoupled Abelian gauge theory. In an appendix we
show the derivation for the two-dimensional ver-
sion.

Then in Sec. III we calculate the lattice-averaged
U(1)-gauge coupled fermion system in momentum
space. The answer is so complicated that it ap-
pears only useful perturbatively. Of course, in
view of the smallness' of z, that should not be too
bad for most purposes. We note that the Minkowski
version has a nondegenerate energy and thus one
does not get a multiplicity of fermions.

II. INTERACTING GAUGE FIELDS

In this section we discuss the action for scalars,
Q (C" vectors), interacting by a gauge-covariant
coupling with gauge fields B"associated with SU(n)
geg.erators. Because the momentum space is com-
pact, there appears to be a difficulty with gauge
covariance, if one uses the path-ordered exponen-
tial of the gauge field. But if the group elements
for each link are constructed using the variables
natural in the Weinberg-Salam model, ' the Physical
field variables, no problem arises From a .geo-
metrical standpoint this means we use path-ordered

s„e+iW„"Il„c=n-'(s, y+iB„"W„y).

I.et I be an n-tuple of integers; I locates its
neighbors:

(2)

I~„=—(I~, . . . ,I„+1, . . . , I„)=I+ v . -
The embedding of Z" in R" is given by

xq= EI,

xz,„=&I,„=e (I+ v),

(3)

with g the lattice spacing and x in R". We intro-
duce the arc from xr to xz.„given by x =xz(1 —A)

+xz,„Xwith X c [0, 1]. The group element for the
link xz to xz,„ is given by the path-ordered expon-
ential

I+v

U(1+v, 1) Xexp W="I'A„dx")
I

(5)

where J ~z'"dx~ is shorthand for 1 0'(xz"„—xz")d&. The
covariant derivative of 4 is therefore

DC
i
I=a '[U(I+ v, I)C (I+ v) —4 (I)].

Because 8'„"will be sampled on the ensemble of
lattices, ' not just one, we will not assume W„"
constant on links. For if it were constant for one
lattice orientation, it would not necessarily be so

integrals of the connection; not just the gauge
field. '

As in the Weinberg-Salam model' we define

W„"iA~=Q B i A~0+0 8„0,
c n'-y

The A„are matrices representing SU(n) genera-
tors. In the SU(2) case 4 has only one physical
degree of freedom; 5""„has three more than B"„.
9'"„and 4 are the gauge-invariant quantities. Of
course, it is still true that the covariant deriva-
tives of 4 and Q are proportional so the theory re-
duces, as z -0, to the usual theory
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for another.
Since the cells are in one-to-one correspondence

with the vertices, we associate the positive dis-
placement cell (framed by I,I+ p, , I+v, etc. ) with
the Ith vertex. The loops around this cell's pla-
quettes have the following group element associated
to them:

Uq„„=U(I, I+ p. )U(I + p, I+ p + v) U(I+ p, + v, I+v}

x U(I+v, I) . (

It is an element of SU(n) for each I and pair p, v.
Just as exp maps the algebra into the group, Ln

maps the group into the algebra. Diagramatically,

~i'

U(I+ v, i)C (I+ v) —e(i)
I. v

—&'ic(I)i' —4 g—(I"[,„I",„„) . (18)
PV

The Abelian version is
I+ v

8= e'Q Q e ' exp i (A„+ (u,„)dx"4(I+ v)-@(I)
I v I

—I'ie(l)i'-! Qz,.„z,.„I.
(14)

As for gauge invariance, let V be in the group
algebra '"' group,

group L'algebra. (8)
0- V-'n, (15)

For matrix representations with iA in the algebra
and Q in the group,

1
iA =lnG =P—(I- G)",

n-j. +

a, —v-'s„y+ v-'a, v.
Thus

(16)

1
G = exp(iA) =g —,(iA)" .

S 0

(9)

This difference is what leads to the compact ver-
sus noncompact ambiguity in lattice field theories.
Note that our approach is somewhat different from
that of Wilson. ' ' Thus, depending on the theory
desired, one can take F~»„ to be given by either

gFlA AA=E-'LnUIP

or

sFAL~v AA = E-2 lnul~v

There is an ambiguity in the definition of the logar-
ithm depending on whether or not one chooses the
principal part (Ln or ln). Thus

Lne'~ =i 8, 8 = 8 mod 2m,
(10)lne' =i8.

Also,

(17)FI~.—Fs~.
and so the action is manifestly gauge invariant.
Note that in the Abelian case one can use

t I+V

J
B„Adx" = X(i+ v) —X(i) (18)

to see that J ~ A„d xgoes to J I'"(A„+S g)dx& in s,

gauge transf ormation.
We will not write out the Fourier transform of

the coupled scalar-vector piece because of the
complicated convolution terms. We show the ex-
ample of a fermion coupled to a gauge field in the
next section. Here we will compute only the effec-
tive propagator for the Abelian gauge field.

The action for the electromagnetic field is

We will ignore this distinction in the following.
The choice is left to the reader. We choose this
approach as one which generalizes to lattices with
nontrivial metrics. One readily verifies that in

the Abelian theory these definitions yield

4 IuvFIiIs &

where

1
I"~„„=e dv do'(rgb —n~h~)

0 0

(19)

'F ~dx ~dx~
„plague tt e

2 (A, +s ~)dx
I bndry

2 A dx
I bush. y

tI V

(12)

with

and

and

xs [A,(xr+ Q„T+ Qo')] (20)

(21)

(22)

Thus for the gauged scalar-vector theory we con-
sider the following action:

A„(x}= 2,A„(k)e "'*.
I all &r

(23)
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Thus

8= 46 jt d k Q (ik d t~k h„))t(ik b,)„/t n„))
PV

sin(k r „/2) sin(k +/2) '
. (k ~„/2) (k ~/2)

(24)

I.O

k S(k)

where the bracketed indices are antisymmetrized.
To obtain the effective action (the average over

the ensemble) it is convenient to use the coset
decomposition of an element 6 of SO(4):

0 0 0 0

0.4

0 a '

Q = exp exp
-a~ o,

0
0 0 0 0

exp
0 0 0 0 c

0

-b~ 0 00-c~0 FIG. 1. Euclidean S(k~) and k $(4 ) with ~ = 1 fOF sMall

(25)

Q"f= —' d jg kf„A„)~jgf A ]SO
I kel gr pv

with

~aka)»
~N!(N 2)!» 4 j

where

(26)

(27)

with ac R', b(= R', and c(= R. The result of this
calculation is (compare to the Appendix)

ing of the derivatives of higher-rank tensors (es-
pecially antisymmetrized tensors of rank p, P-
forms) are possible. Since we do not make appli-
cation of these functions we will not give their
series representations here. But the procedure
is simple. One averages the appropriate tensor
of rank p over a cell of rank P of size -e. Take
the sum of the squares. Represent it in terms of
a plane-wave series and compute the rotationai

and

8»= (2N+2)C» (28)

See Fig. 1 for a plot of S(k'). C„=1/(2N+1) f»
very small N(&5). However, it starts to grow
thereafter. See Fig. 2 and Table I. Therefore,
8»= (2N+2)/(2N+1) (N&5) and so

1 2N+ 2
it

k~@2 "
0~~&5 N (N+ 2)! 2N+ 1 l 4

There is an integral representation for C„,

(29)
IO—

C~=4 dp dp dx dx x +p

Clearly, C„«2", and so the series will converge.
We note that just as averaging the square of the

derivative (a vector) of a sca!.ar-generated con-
ventional. Bessel's functions, averaging the square
of the derivative of the vector field (an antisym-
metric tensor) has generated these generalized
Bessel functions. Further extensions to general-
ized Bessel's functions associated with the averag-

IO

FIG. 2. CN vs N.

l5 N
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TABLE I. Values for Cz.

0

10

13

18

19

10

20

30

40

T
17
90
29
2i 0

i87
~5~5

239
2~~5

0.12

0.14

0.17

0.22

0.30

0.60

0.88

1.33

2.05

3.20

5.08

8.16

13.2

0.30

21.82

4703.0

15,5x 10

FIG. 3. Euclidean E(p) and p+(p) vygh &=7 for s~&l p.

III. FERMIONS

In this section we describe the coupling of gauge
fields to fermions. We expand the equations in the
plane-wave basis for the Abelian case since, in
fact, the plane waves are the actual basis functions.
The configuration-space functions are viewed as
samplings of the momentum-space basis functions
(see paper I).'

We take the action to be

8=6 6 Im 4x y Ux+, x 4 x+
E V X X5

——,
' Q—(F',„„F,„„.)I

(33)Iu v Iuv

I+V(+(i»)e~,»=U(i i)-=peIeepi »Hrei. d»
I

(34)

&1~„ is t&e same as before. 0!=0 'g as for sca$ars,

4(x)
~ z,„=4'(I+v) . (35)

average. Evidently the rank of these functions
depends on the dimension p of the form and d of
the space, and the shape of the cell over which they
are averaged. Their arguments are scalars con-
structed from the p-vectors. The usual Bessel's
functions have p = 1 and d —2 = 2v for J„. See com-
ments at the end of the Appendix. We continue S
to Minkowski space as described in the previous
paper':

(32)

On a lattice there is the well-known problem of
energy degeneracy. But from the form of the ac-
tion we are about to derive we find no energy de-
generacy when we take

deci(x)=,e ""zi,
(a.((. (2&)' (36)

and continue back to Minkowski space. Thus the
actual observable fermion energy has no degen-
eracy.

In the Abelian case we have already analyzed the
E' piece of the action. We shall analyze the other
term which we denote by a prime:

8' =pc'Im @y +exp i dx"(P„—iW„) 4
I@V X X XI

8P„=-i9„=-i --„-; Q'„=Q + B„A.. (38)
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So

or

X+hl,8'=g e' @(x)y +sin dx"(P„—iW„) 4'(x)
ZyV x~ÃI

a'=g -"
fdj fd'pfdk, f d k...B'„(k,) B (k, „W„„y„d„@,il p' —p —Qki)f

Q l1 + j-"1

(39)

(40)

where

(41)

(42a)

B„(k))=-6„[(2v) 'W(k, )+6 (k))P] Q I~+ I !
The reader may wish to ignore the technical details involved in computing the convolutions when A„,WO.

If so, skip to Eq. (49).
Upon averaging over SQ(4), only even products of vectors survive. To this end we define the product

[V„.. . , V~] recursively as follows:

[o]=1

(ilf-1) ' gV, V,.[V„.. . , V, , , V„) if M even )2
vw]=

0 if~ odd.
(42b)

The notation V, means that V,. is to be deleted from the expression. Note that there are (M —1) t t terms
in the full expansion. Thus

[o]=1,

[v,]=0,
[v„v,]=v, v„
[v„v„v,] = o,
[v„v„v„v,]=-,'(v, v, v, v, +v, v, v, v, +v, v, v, v,),
etc.

(43)

Since averaged products of the B,'s will involve terms like (k&), we define

[V„(k)', V„2]=—[V„k, . . . , k, V„2], (44)

where k appears I times on the right-hand side. Since the I,.=0 term in B„(k~) is unlike the others, we de-
fine

a, =—a(k, , m,.) = (2v) 'W(k, .) + 60 6~(k,.)P (45)

and

J.=J,(P')P) = +,.x,+p

2tl+g

2N=2n+2+ g I&.

(46)

(47)

N will be an integer in the effective action

1 3n+1

x [a„.. . , a~~„(ik,) ', . . . , (ik~„„)'"")J]
2 '+�).

x 6'ip p
g"-1 (48)
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~(P2) [J ((p2~2)l/2) +3 I ((p2e2)1/2)]2
(50)

It is evident that the energy will be nondegenerate.

IV. CONCLUSION

We have presented the most straightforward
adaptation of conventional lattice gauge theory to
the ensemble of lattices which is possible. It was,
however, necessary to introduce a different kinetic
term for the gauge fields in order to have an ap-
proach which works for lattices with nontrivial
metrics. The coupled fermion action is, unf or-
tunately, rather unpleasant looking, but should
still be useful perturbatively. The fermions do
not have the usual lattice fermion energy degen-
eracy.
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APPENDIX

In this appendix we show how to calculate the
effective action for a U(l) gauge boson in two di-
mensions. As in the text [Eq. (24)] we take the ef-
fective two-dimensional action to be

, sin(k ~ &,/2) '
6=4 d k k, A, -y, A, 'a'&' g

$l!! V

sink ~ &„/2 ' '
. (k ~„/2)

when A =. 0 all the l,. sums are trivial; N =n+1 and
so we find

n t&2 2 n)
gleff de@ p@ 2 i . 49„,n! (n+2)! )( 4

Let E(P2) be the function in the brackets. Note
E(p2) = (8/12e2)Z2((P2&2)1/') The Minkowski-space
version replaces (-)"by [(-)"+3]/4 and ps -p„.
That is,

where cV„=cA'„with A'„an SO(2) matrix. Set

cosg sing '
-sing cosg „

f,»
= k, A» —k» 2,

and find

sin(k ~ 4„/2)
(k ~„l2)

Now expand I', ',

2
1 —cos(k ~ &„)

(k ~„)'

k. ~ ~ .~ (2l+ 2)!

Since

k ~ &,= zk, cosg+ &k, sing

k ~ &, = -Ek, sing+ ak, cosg,

it is convenient to define

@=Pe' =2&(k, —lk, ).
Thus

k ~ &,=re' +Ze

p[ei(a+8) + &-i(a+8) ]

and

k ~ &,=f'ze' -iYe
ei(al+tI) ) W(e~t)) ) j

, g k.X, -k, a.)'~ /' '~ 'Z '
+~V

if i

2 Q (AOA1 Al Ao)2~ 2~ 2

gil V

(A2)

(A3b)

(A4)

(A5)

(A6a)

(A6b)

(AB)

Now

( )1+m

o 1 Z (2! 2)( (2 2)( (k ' o) (k ' 1)

1+m » 2tn(-) ' „»+2„+ 2ll 2m! r» 2((l +m»»x~+())]-

, „,(2l+2)!(2m+2)! ~ k! (2l-k)! P!(2m -P)!" (A10)
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When we integrate this over dg and divide by 2m,

we get a Kronecker delta 6, ~,~. Unfortunately,
the sum still appears to be quite complicated until
one notices that the vanishing of (l-k+m-p)
means there is no & dependence. Since there is no
& dependence, we may as well choose it to be zero
and use the first line of E'1. (A10).

(k, Q )2t(k, ~ )2m (2p)2lk2m COS2 lp Sin2me
dg dg
2m 1 2'

4 2 i.~ 4" (l+ m)! l!ml
'

with

1 1 1 1
~+ 1 2~+ 1 ~+ 1 2~+ 1 ~t~~

(A15}

Note that the answer is positive definite, since it
is the average of positive quantities. 'When one
computes the effective action in R, one can simi-
larly select the direction of k„ to make life easier.

If we use small disks instead of squares for the

averaging region, we find that S is changed to S',

Now use the fact that

4p2 g2k2 '2(k 2+ k 2)

(A11)

(A12)

S'(k2) - [J ((k2&2)1/2)]2
4

In terms of coefficients of E'k',

(A16)

Therefore, we can write the effective action as

aeft d2k! (24 „., (2l+ 2)!(2m+2)! 4

2lt 2m'
(l+m)! l!m!

(A13)

$'(k2 = . (A17)l!(l+1}!m! (m+1)! 4

If we compare to this series, we find

( )tern '2k2 t«m

S k')= )I((+1)(m!(mal)t( k )

(A14) x l™l 1 1
(l+m! 2l+1 2m+1 (A18)
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