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%e show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry

breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical

symmetry breaking. A representation for Newton s coupling constant in terms of flat-space quantities is derived.
The sign of Newton s coupling constant appears to depend on infrared details of the symmetry-breaking mechanism.

I. BACKGROUND

Of the fundamental interactions in the world, the
two more feeble interactions are characterized by
dimensional coupling constants: one observes
Fermi's coupling constant Gz =(300 GeV) ' and
Newton's coupling constant G„=(10 ' GeV) . As
was noted long ago by Heisenberg, ' dimensional
analysis implies that interactions with coupling
constants with dimensions of inverse mass to some
positive power are highly divergent and nonrenor-
malizable. Over the last two decades or so, we
have come to realize that the weak interaction at
a more fundamental level is actually characterized
by a dimensionless coupling constant and that the
dimensional nature of Gz results from a spontan-
eous symmetry breaking. Indeed, Gz -1/V„,
where V —300 GeV is the vacuum expectation
value (VEV) of some scalar field (which may be
elementary or composite). The weakness of the
weak interaction is then understood in terms of
the fact that 390 GeV is large.

It is tempting to suggest, in light of the above,
that gravity is also in fact characterized by a
dimensionless coupling constant and that the weak-
ness of gl avlty 18 associated with symmetry
breaking at a high mass scale. We imagine that
GN, similar to G~, is given by the inverse square
of the vacuum expectation value V of some scalar
field Q (which may be elementary or composite).
Clearly, we should not push the analogy too far
since the physics of the weak interaction and of
gravity is quite different. Gravitation is long
ranged and so V cannot be associated with the
mass of a mediating particle. Indeed, 1/G„ap-
pears in the Einstein-Hilbert action, S~
=J d x~gR(16vG„) ', multiplying what is essen-
tially the kinetic energy term for the graviton.

It was proposed by the present author, and in-
dependently by Smolin, ' that the action S~ be re-
placed by the action

s= ' & ~~g / &4 R+ 2 s.4s.4g'"- V(4)) (»

The coupling constant e is dimensionless. The
potential V(P) is assumed to attain its minimum
value when Q = V. Then

1 1
16m —,'~V'& '

The introduction of scalar fields into gravity has
a long history. ' Here, the crucial feature is the
incorporation of spontaneous symmetry breaking.
As a consequence the scalar field is "anchored"
in a deep potential well V(Q) and„thus the physical
consequences of the present theory is indistin-
guishable from Einstein's theory except under ex-
treme conditions of space-time curvature. This
is in sharp contrast to earlier work such as that
of Brans and Dicke.

II. SCALE INVARIANCE

The attractiveness of scale-invariant theories
has been much discussed in recent years. Such
theories are apparently renormalizable by power
counting. The renormalization procedure intro-
duces a mass scale and as a result of this so-

. called "dimensional transmutation' " all dirnen-
sionless physical quantities are calculable. It
was suggested by the present author in Ref. 11
that the underlying interactions of the world, in-
cluding gravity, are scale invariant. (For sim-
plicity, we do not insist on local scaIe invariance
here since we do not need it to make our point.
While it is most appealing to impose local scale
invariance, we could do so only at the price of
introducing additional structures not relevant to
our discussion. ) In that case, the Einstein-Hil-
bert action for gravity is not admissible. Instead,
a scale-invariant action for the world would read'

8= Jt d xv.'-g [a(f) R+PR +yR Q~"

+ 'g""~ups. 4 —&4'-

+ Z(g, A, y, 7l)] .
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Here 8 is a scale-invariant gauge-invariant La-
grangian describing the interactions between
quarks and leptons g, gauge fields A, the scalar
field P, and possibly other scalar fields q. Note
the presence in general of the dimension-4 terms
R and R„g"".

We note in passing that the presence of the R'
and R„g""terms, which involve four derivatives,
implies that the graviton propagator would go as
k for large momentum k thus rendering the
theory, at least formally, renormalizable. As is
well known, the price to be paid for this improved
convergence is the occurrence of a.ghost pole in
the propagator. This ghost pole, however, occurs
at momentum so large, of order /5

'~
Mp~ or

y
'

M», that it is not even clear whether local
quantum field theory mould continue to hold.

Coleman and Weinberg" had shown that in the
flat-space limit the action S, with suitable choice
of coupling constants, is such that P has a nonzero
VEV. We ex'pect the same would hold in curved
space, at least for spaces of small curvature.
Thus, the eP'R term would then lead to effectively
Einstein's theory of gravity. (In general, the
VEV of P will be a functional of the metric g„„,
and thus for spaces of high curvature the effective
gravitational action may be quite complicated and

nonlocal. )
Recently, Adler has gone one step further, ' he

proposed in a very interesting paper that elemen-
tary scalar fields should not be present in the
fundamental action in Eq. (3). Elementary scalar
fields are generally regarded with repugnance by
the particle physics community. It is generally
believed that the elementary scalar fields needed.
in present-day theories are merely the phenome-
nological manifestations of some composite scalar
field such as gg. In the present context, Adler '
made the important observation that in that case
scale and gauge invariance combine to forbid
terms proportional to R. The terms R and ggR
have mass dimension 2 and 5, respectively, while
A„A"8, although of dimension 4, is not gauge in-
variant. Homever, if dynamical symmetry break-
ing occurs, such that gg has some nonzero VEV,
then, in general, we expect that a term such as
(gg) ~'R would be effectively induced in the action.
Thus, we are led to the rather amusing view that
gravity may be, at least in some sense, an inevit-
able consequence' of the dynamical breaking of
a grand unified symmetry describing the strong,
weak, and electromagnetic interactions.

Thus, the roots of gravity may well. lie in Lor-
entz invariance. To write down Lorentz-invariant
interactions between fields me have to introduce
the Minkowski metric g„„. Once we admit the
possibility of q~„depending on space-time, we

promote the metric to a field g„„(x)=q„„+Jg„„(g).
In field-theory language, 5„„is then a field with-
out a proper kinetic energy term. In the view
discussed here, the appropriate kinetic energy
term arises as a consequence of dynamical scale-
symmetry breaking.

We suggest that this view leads to a severe con-
straint on dynamical symmetry breaking. Scale
invariance forbids the appearance of a cosmologi-
cal constant term gip-) ~ J d4xv'-g in the action
which mouM in general appear' upon symmetry
breaking. At the moment, no one knows how to
avoid generating this undesirable term. This is
perhaps the meakest point in the program to gen-
erate gravity spontaneously, and, indeed, this
problem afflicts a11 current theories in particle
physics which utilize the notion of spontaneous
symmetry breaking. We imagine that the ulti-
mate correct theory of dynamical symmetry
breaking will not produce a cosmological term.
(In a soluble two-dimensional model' of dynami-
cal symmetry breaking a "cosmological" term does
appear. However, it is not clear how this may be
relevant since gravity does not exist in two dimen-
sions. )

As a crucial test of this idea of gravity as a
consequence of dynamical symmetry breaking, we
have to perform a calculation to see mhether the
sign of the induced R term is positive, leading to
attractive gravity. It is the purpose of this paper
to do such a calculation. As was announced in the
abstract, we will be led to conclude that this cru-
cial sign depends on the infrared details of the
symmetry-breaking mechanism.

III. PHILOSOPHY BEHIND OUR CALCULATION

In view of the fact that a precise understanding
of dynamical symmetry breaking is lacking at
present, it appears to this author that it may be
better not to perform .calculations' tied to any
specific scheme of dynamical symmetry breaking.
Instead, we propose a calculation which retains
some general and essential features of dynamical
symmetry breaking, most notably that effective
masses thus generated are expected to decrease
rapidly at large momentum.

Before me embark on a calculation, it may be
illuminating to consider a simpler analog problem.
It turns out that the problem of "spontaneously"
generating a graviton in four dimensions shares
some common features with the problem of gen-
erating a photon in six dimensions. Consider a
six-dimensional world with local U(1) invariance.
Thus, the fermion kinetic energy term in the
Lagrangian would read Pi(if —ig)g We note .that g
has dimension —', while the gauge field A has dimen-
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sion +1 (as is the case in any space-time dimen-
sion). Thus, if we insist on a scale-invariant
Lagrangian, the "photon" kinetic energy term
E„„E""with dimension 4 would not be allowed.
Dimension-6 terms, such as B„E „O'E~" or E,
are allowed. (The F term may be eliminated by
invoking charge conjugation invariance. ) The
(8E) terms, involving four derivatives, are
analogous to the B' and B„„R""terms in the grav-
ity problem. Also note that, were an elementary
scalar field P present, the dimension-6 term
g'F„„F""would be allowed. To summarize,
scale invariance combined with gauge invariance
forbids, in the absence of elementary scalar
fields, a photon kinetic energy term in six dimen-
sions and a graviton kinetic energy term in four
dimensions.

%ith dynamical symmetry breaking, we expect
an E„„E~"term. induced by, among others, a
graph such as the one in Fig. 1. The dark "blobs"
on the fermion line indicate the fermion conden-
sate (gg). In effect, a soft fermion mass is gen-
erated, so that the chiral-noninvariant part of the
fermion propagator vanishes rapidly at large
momentum. Thus; we argue that we should cal-
culate the vacuum polarization graph with suitably
softened fermion propag'ators. Of course, we
cannot arbitrarily soften the propagators, ' we must
maintain gauge invariance. Of the methods avail-
able, we prefer the method invented by Pauli and
Villars. In this application, the Pauli-Villars
cutoffs are to be interpreted as perfectly physical,
reflecting the characteristic damping of dynamical
symmetry breaking.

The calculation is then simply done, and we
find an induced photon kinetic-energy term.

IV. GENERATING THE GRAVITON

We finally turn to the problem of generating the
graviton. Adopting the philosophy outlined above,
we are to calculate the graviton vacuum polariza-
tion graph" [Fig. 2(a)] with Pauli-Villars cutoffs,
the cutoff masses being thought of as a rather
crude way of incorporating the soft mass generated
by dynamical symmetry breaking. Thus, we cal-
culate the graph in Fig. 2(a) with a momentum-
independent mass rn, but with the understanding
that the momentum dependence of rn is to be
mocked up by the cutoff. We are to extract the
order-p' term corresponding to the term in R
quadratic in k. By dimension counting, we find
that these order-p' terms are quadratically diver-
gent and thus two Pauli-Villars masses nz~ and

m2 are needed. Thus proceeding, we would find
that these order-p terms correspond to an effec-2

tive action of the form

2

&,s=K Pc,m, lnm,
~

d xv'-gR.') ~

Here as before mo ——m and co ——1, Zc;=0, ~~c,m,.
=0, and E is an overall constant to be determined
by calculating Fig. 2(a); its sign is the object of
our interest. In Fig. 2(a), the internal line is
taken to be a fermion line. (In general, we should

c,m; IIIm, )f d xE„,E"",
g=p

(a)

where g is a positive number. Two regulator
masses m& and rn2 are needed. S"e define cp ——1,
pBp = pl = the physical fermion mass actually gen-
erated, and Qc, =0, Zc;m, ~ =0. [The solution
reads cq ——-(m2 —m )/(m2' —m& ) and c2
=(m, —m2)/(mq —m, ). Note that with the order-
ing nz &m& &m2, c& &-1.] The expression
Qc;m; Inm, is positive for m &mq, m2.

(b)

Q;,—+ CROSSED TERMS

(c)

FIG. 1. Photon vacuum polarization.
FIG. 2. (a) Graviton vacuum polarization. (b) Graviton

going into two scalars. (c) Graviton going into a scalar.
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also include the contribution from gauge bosons. )
The correct ' graviton-fermion coupling reads

(Fig. 2)

i I'

I &.(2e+ P)„-&„.(24+ P —2m)

Notice the presence of the third term, a "spin"
term which can be traced to the local variation of
the vierbein frame. " Also note that neither the
first nor the third terms are symmetric ip p, p.
However, when, and only when, 7„„is sandwiched
between Dirac spinors and the equation of motion
is used, the antisymmetric, parts of &„„cancel.

To save ourselves considerable computational
labor, we utilize a-trick based on exploiting the
fact that gravitational gauge invariance (or, if
one prefers, general coordinate invariance) re-
lates processes involving n gravitons and pro-
cesses involving n+ 1 gravitons. Under an infi-
nitesimal coordinate transformation

scalar fields are introduced as a trick in calcu-
lating the graph in Fig. 2(a). They are not to be
thought of as present in the theory.

Since 4-gR =8'0 —8"8"k„„+O(k')the sum of the
graphs in Fig. 2(b) must be proportional to
(P"P"—g""P ). Actually the calculation can be
simplified even further by letting one of the
scalar lines in Fig. 2(b) carry momentum p (the
incoming momentum of the graviton) and the other
carry momentum zero. In that case, we need
actually only compute the graph in Fig. 2(c).
The graphs in Fig. 2(b) can then be obtained by
differentiating with respect to the fermion mass.
The calculation of Fig. 2(c) is now quite simple
and is presented in Appendix B. These different
ways of doing the calculation can, of course, be
exploited to provide computational checks.

The result, when expressed in the language of
Eq. (5), is that an effective action

S,~=K~ gc&m, lnm, ~ Jl d x&-gRRE
(

i

is induced with the overall coefficient K given by

R = 2v'/3(2v)'. (9)

/

—h,„&,e"—h s,a" +0(c') .

Thus, the order-Il and order-@' term in 8 are
necessarily related. Of course, because of mo-
mentum conservation we cannot compute a graph
with just one graviton. To get around this we use
the trick of coupling a scalar field P to the fer-
mions. We add to the Lagrangian the terms
-f/'. Thus, we make the shift m, -m, +f in
Eq. (5) and extract the term quadratic in Q,
which reads

As remarked before, the expression

2 2 22(mf -m mf
c,m; lnm, =m2~ 2 2 ln 2m

2
2 mf-m ln

m
(10)

is positive as long as m'&mf', m2'. The cutoff
masses mf and m2 mock up the vanishing of the
dynamical mass m with increasing momentum and

may be expected to be some multiples of rn. m,
=P,m, i = 1, 2 with P, &1. The expression in Eq.
(10) then becomes

(s)

In other words, to extract K we may do the much
simpler calculation of the one-graviton-two-
scalar Green's function given in one-loop order
by the graphs in .Fig. 2(b). We stress that the

m (Cfpf lnp~ +c2p2'lnp2 ),

2

R(gc, lnm, ) J(R x4 Rf QR. -
&qO

FIG. 3. Graviton-fermion vertex.

where cf+c2 cfpf +c2p2
Numerically, the expression in Eq. (10) is

largest and equal to M when mf and m2 are
large and comparable: mf -m2 -M . The factor
K, characteristic of a one-loop calculation, is of
order 10 . Thus, in order to produce Newton's

coupling, the scale M of the relevant symmetry
breaking has to be of order -mM». It is amusing
that the striking feebleness of gravity may be
linked with the large mass scale of symmetry
breaking necessary in the ultimate grand unified
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theory and indirectly with the longevity of the
proton.

V. A QUESTION OF SIGN

Before we conclude from the preceding calcula-
tion that the correct sign for gravity is obtained,
we Dlust examine in closer detail our cutoff pro-
cedure. At issue is the question of how sensitive-
ly the sign of gravity depends on the precise mo-
mentum dependence of the dynamically generated
mass. Unfortunately, we are led to conclude by
the following discussion that the dependence is
quite sensitive.

Let us consider the quadratically divergent inte-
gral I(m ) = if-d'q(q —m +i@) ' T.his is a typical
integral we encounter after extracting the p
terms when calculating the graph in Fig. 2(a).
What we did in Sec. IV amounts to replacing I(m )
by

2 2

I"(m') = Q c,I(m, ') = v Q c,m,
' lnm, '

ga0 gaO

=mm c& &
ln

&
&0. 12

A rotation to Euclidean space has been performed.
This integral is negative if m (q ) is positive. In
particular, if we had regulated the logarithmic
integral in Eq. (13) by introducing a cutoff we
would have obtained a negative value. In general,
the inverse fermion propagator. has the form
gA(q') —a(q').

Following the Pauli-Villars procedure, we
would have obtained IPv(m')-I~(0) =I~(m') [cf.
Eqs. (11) and (12)]. When one regulates a quad-
ratically divergent integral in the Pauli-Villars
method, c&, the coefficient associated with the
first regulator is less than -1. Thus the first
regulator "oversubtracts".

This discussion suggests that the sign of the in-
duced gravitational constant is sensitive to the
infrared details of dynamical symmetry breaking.
Indeed, aside from the quadratically divergent
integral I(m ), we also encounter, when calculating
the graph in Fig. 2(a), subdominant pieces of the
Feynman integral which may be only logarithmi-
cally divergent or even convergent. For instance,
consider the convergent integral .

4

J(m') =iJt d-'q, 2
(g —Vl J

By power counting, we see that the coefficient
of the order-p terms in the Feynman graph in
Fig. 2(a) involves quadratically divergent integrals
such as I(m'). However, the Einstein-Hilbert
action is not allowed in the absence of dynamical
symmetry breaking. Thus, we may argue that we
should have subtracted off from the graph in Fig.
2(a) the corresponding Feynman expression in the
absence of scale-symmetry breaking. In other
words, an integral such as I(m ) should have been
replaced by

Adopting this procedure, , we would encounter only
logarithmically divergent integrals. [Note that
the integral subtracted off, I(0), is in fact identi-
cally zero in dimensional regularization. ]

In the presence of dynamically symmetry break-
ing, m would be replaced by a (presumably) rap-
idly vanishing function of momentum m (q').
Thus, the integral I(m ) —I(0) would effectively
converge and is equal to

(14)

In the Pauli-Villars calculation of Sec. IV this
term is regularized to zero: F~,. 02c,.J(m;2) =0. On
the other hand, following the procedure outlined
above, we would have obtained J(m') —J(0) = J(m')
= a finite number. In contrast, we obtained
I(m ) —I(0) = —1n(M /m ). Recalling that M is to
be interpreted as the scale of decrease of the
dynamically generated mass, we believe that M
may not be much larger than m so that terms
such as I(m ) —I(0) may well be overwhelmed by
a "subdominant" term like J(m ).

We are thus led to conclude that, within the
present framework, an understanding of the sign
of gravity may well have to wait until after one
achieves a detailed understanding of dynamical
symmetry breaking. This is not an entirely un-
welcome conclusion in that gravity may eventually
provide a way of discriminating between competing
theories of dynamical symmetry breaking.

VI. A REPRESENTATION FOR NEWTON'S
CONSTANT

The graph in Fig. 2(a) suggests' a representa-
tion of the induced gravitational constant in terms
of the two-point function of the stress-energy
tensor T„„. Starting with the Lagrangian 4
=f0 x(--,'7"")h~„+. . . (which defines T„„)we
expand (0

~

Tc'~&~ "~ 0) to extract the term quadratic
in h. We treat k,„as a e-number classical field
and thus the effective order-k' I agrangian is
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given by

i Jt d'x Z.,(x) =—
, ~

—'
~ ~

d'xd'v a„„(x)a„,(v)

«~T T""( }T"(v)~0).

We specialize to the form k „=4'g„„k and choose
h(x) to be a rapidly vanishing, sharply peaked
function concentrated around some point so that
one can expand

ease of (g(II) increasing was discussed and was
shown to have some relevance to the horizon
problem. The opposite case, in which (gg) or
(p')-0 as temperature increases, is also of some
speculative interest. Gravity, as controlled by
the fd~xl g-R term in the action, may be "cooked
away, " so that the early evolution of the Universe
may be controlled" by the fd'x4 gR-' and

fd'xl gR-„„R""terms.
&he gravity theory considered here is, in some

sense, softer than Einstein's theory. Whether
this softening would modify the physics of the
initial singularity, of black holes, etc. , is a
question which deserves further investigation.

1(x) =I(&)+x"s„a(v)+'
~

s.s„I(v)+. . . ,

(16)

with x=y+ x. Defining T(x) =g„„T""(x)we find

fS.,(x) =-—,a'(x) ~l d'x(O
~

T T(x)T(0)
~
0)

+ , o(»( &F—J~' '«I»(»(»l(».
(17)

A simple computation (see Appendix A) shows the
order-g' term in v'-gR to be —s, (sj'g)'. Thus we
find the following representation for Newton's
coupling constant:
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APPENDIX A

In this appendix we outline our notation and con-
vention, paying special attention to signs which
might affect our final conclusion. We use the
Minkowski metric q„„=(+1,-1, -1, -1), and also
g-=detg „. With this convention the action (defined
by S=fd'xR) for gravity is

16gG 96 ~
d xx (0

~

TT(x)T(0) ~0) . (16)
S=+(16wG) ' d xv'-gR . (Al)

This representation was first derived by Adler"
using a slightly different formalism. If the two-
point function is evaluated in a free-field theory
we recover the one-loop graph shown in Fig.
2(a).

VII. PHYSICAL CONSEQUENCES

[Note that since 1"~„—= 2'g'"(8~„„+s„g„„—s„g„„),

I'"„„and A~„„do not change while R changes sign

In our convention, the stress-energy tensor T„„
is deQned by varying the matter action'.

The type of gravity theory considered here and
Einstein's theory can differ substantially only
with ultrahigh temperatures and/or curvature, in
particular near the initial (or final) singularity.
Unfortunately, this is also the regime in which
quantum gravity effects presumably become im-
portant.

At temperatures comparable to the Planck
mass, such as may have existed in the very early
Universe, we expect (gg) or (P ) to change as a
temperature-dependent function. In Ref. 11 the

5S,„„=—,
' d x 4-g(-T"")6g~„. (A2)

(A3)

The minus sign is necessary so that +pp would
correspond to a positive energy. [Recall in the
variation in Eq. (A2) x«and therefore S„, A„are
to be fixed. ]

As a check on the sign in Eq. (Al) we ean de-
duce from Eq. (A1) and Eq. (A2) the field equation
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which we can solve in the weak-field limit for a
small mass source. We then verify that the mo-
tion of a point test particle is described correctly.
[It is most efficient to obtain the equation of mo-
tion for a test particle by a variational (least
proper time) principle, which also yields the
above-mentioned relation between I'"„„and g,„.]

In terms of the graviton field h „=—g„„—g„„, we
have I -9h(1+k+. . . ) and R —9'h+ h9'h+ h'9 h

+. . . . An easy computation gives

R =@""9h„„—9"9"h„„+O(h) . . (A4)

To identify the coefficient of fd xv' gR-by com-
puting the graph in Fig. 2(a) we need to expand
4-gR up to order k . This may be done by brute
force. However, it is much easier to note that

fd'x6(l gR-) =fd4xl g( ,'g-""R-R")6-g„„sothat
we only need to expand R"" and R to first order in
h. We find, in order k,

)I d x(V gR)'-'= ~ I d x( ,'9"hs-„h—+9„h9"h„„

+ 1 8 y 8)tgpv
2 )t gv

-9 h, s„h") . (A6)

This expression is gauge invariant.

APPENDIX B

We outline here the computation of the graphs
in Fig. 2(b). The first graph is given by

(-if) (-i)i (-)g c; (2 }4
Tr

~
t d'q 1 1

i

since Z;c; =0. The evaluation of Eq. (B2) then
proceeds along standard lines and yields

——,'(p p„+p'r} „)(-iv') g c,. lnm, ' . (B3)

2

(-i) 3(2,4f (P „—r/ „P ) gc; lnm, (B4}

The fact that the sum total is proportional to the
gauge-invariant form p„p„p' is of course an im-
portant check on the computation of the individual
pieces.

As explained in the text, it is far less tedious to
compute the graph in Fig. 2(c). Here, in the step
arriving at the analog of Eq. (B2), . one must keep
all terms proportional to m in the numerator in
the Feynman integrand.

As a check we have also considered the graph in
Fig. 2(a) directly. Because of gauge invariance,
the graph must be proportional to jcf. Eq. (A5)]

2 imp'( n~,n 4-+ 2n~.n~+ 2n~an, .)+(rhea f 4+@.4Pd.}

(n,gud& -+-n. exing+'08pp +rl Ppg)] (B6)

We can save a vast amount of labor by contracting
the graph against g and g '. The graph is then
porportional to

I(m) = d q Tr (8m —6q —3P)
4 1

We proceed in this vein. (Incidentally, the terms
in v„„ linear in P contribute nothing. ) The four
graphs in Fig. 2(b), after some work, are found

to sum to

1x g „(q,P). x)+ (8m —64t —3P) .a
(B6)

(B1)

4 1 1 1
gpss gpss +

I.

Expanding the integrand to order p we find that
the relevant part of I „ is given by

d4
Qc, (B2)

The factors in front of the integral came from the
vertices, the propagators, and the Pauli sign for
a closed loop. A typical integral we encounter is
then

A simple calculation gives the order-p term in
I to be

I c&(m) =8iw (I cm 1nm,
' ~p'. (BV)

To verify that we indeed get the tensor struc-
ture in Eq. (B5) we have also computed the graph

in Fig. 2(a), but, in order to save labor, with the
internal fermion lines replaced by a scalar-boson
line. The graph is then given by

'}2
I

d q 7..(q~q+f)r~a(q q+f}
J (2v)' (q' —m') f(q+ p)' —m'] '

(B8)

A tremendous simplification results from the
realization that in the numerator trace we can set
the masses equal to zero. For instance, a term
in the numerator proportional to m,. is multiplied
by a convergent integral proportional to rn, and
thus vanishes under Pauli-Villars regularization

with

T,„(k,k') =k„k'„+k~k„.q„„(k k' —m2}.—
I

(B9)

For simplicity, we have also taken the old unim-
proved stress-energy tensor for the scalar field.



SPONTANEOUSLY GENERATED GRA VITY 865

(Again, the graph has no p dependence and may be neglected. ) For the sake of completeness, we exhibit
the result here (Pauli-Villars regularization is understood):

~2 i
J'» a= 4 J dy ln)4 [ )4 (It+I&)+ —,')4 (1 —2y) (Ia —2I4+P Ii)s 0

+m (m —2p. )Ii +y (1 —y) (4I0 —4P I 4+ 3P Ii)].

Here )4 denotes m -y(1-y)p —ie and the I' s
denote schematically the following tensor invar-
iants:

Ii ——g~~gf

I2 =&ag&av+ ()4 t') 1

I& ——)~+ap„+'pa+ J „+(p, v),

I4=& ap J.+7)..pea
Ig =P/gP, P. -

Extracting the order-P2 term, we find the tensor
structure in Eq. (B5). Note the presence of the
order-P4 term in E41. (B10), leading to renor-
malization of the coefficients of the R' and R„Q""
terms in the action.

*Present Address: University of Washington, Seattle,
Washington 98195.

iW. Heisenberg, Z. Phys. 110, 251 (1938). We thank
H. Primakoff for informing us of this historical fact.

This is compared to the hadronic mass scale, which is
presumably largely due to chiral symmetry breaking.
If we believe that symmetry breaking at 300 GeV is
due to heavy color tL. Susskind, Phys. Rev. D 20, 2619
(1979); S. Weinberg, ibid. 13, 974 (1976); 19, 1277
(1979)] in analogy to the breaking of chiral symmetry
by color, then we are led, rather amusingly, to explain
the weakness of the weak interaction in terms of the
weakness of the strong interaction compared to the
heavy-color-strong interactions.

See Appendix A. g-g R can be expanded in an infinite
series as B h+ Bh Bh+ h Bh, Bh+ ~ ~ ~ (in a self-evident
schematic notation). The term linear in 1z is a total

-I
~divergence and can be dropped in Sz {but not in the ac-

tion described in this paper). The Einstein-Hilbert ac-
tion is reminiscent of the Yang-Mills action S&M
= fd x (—&E )(g ), where E has the schematic (term-
inating) expansion 9ABA+ AABA+ AA.AA. The couplings
GN and g measure the "stiffness" of the graviton and
the gluon field against excitation. Confinement is es-
sentially equivalent to having a large effective g out-
side and a small effective g inside hadrons. This may
be described phenomenologically by an effective action
S= fd x p ( 4E ), where 00 varies from a large value
inside hadrons to a small value outside hadrons.
G. 't Hooft, Report No. CERN-1902 TH, 1974 (unpub-
lished); J. Kogut and L. Susskind, Report No. CLNS-
263, 1974 {unpublished); T. D. Lee, Columbia report
(unpublished). This effective phenomenological action
is similar in spirit to the action described here.

A. Zee, Phys. Rev. Lett. 42, 417 {1979);44, 703 {1980).
~L. Smolin, Nucl. Phys. 8160, 253 (1979).
6One is tempted to suggest that (It) is also responsible for

the breaking of a grand unified theory into strong,
weak, and electromagnetic interactions (see Ref. 4).
Unfortunately, it is now believed that the relevant sym-
metry scale of grand unification is lower than what was
originally suggested fH. Georgi, H. Quinn, and S. Wein-
berg, Phys. Rev. Lett. 33, 451 (1974)].

For a list of references, see Ref. 4.
8Earlier work which does discuss spontaneous symmetry

breaking includes Y. Fujii, Phys. Rev. D 9, 874 (1974);
P. Minkowski, Phys. Lett. 71B, 419 (1977); T. Matsuki,
Prog. Theor. Phys. 59, 235 (1978);A. D. Linde, Pis'ma
Zh. Eksp. Teor. Fiz. 30, 479 (1979) [JETP Lett. 30,
447 (1979)]. (We thank Professor Y. Fujii and Profes-
sor A. Linde for bringing their work to our attention. )

IC. Brans and R. Dicke, Phys. Rev. 124, 925 (1961).
S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888
(1973).
A. Zee, Phys. Rev. Lett. 44, 703 (1980).
g»&R»" may be expressed in terms of g and R„„R».
B. S. DeWitt, Phys. Rev. 162, 1195 (1967); 162, 1239
(1967); G. 't Hooft and M. J. G. Veltman, Ann. Inst.
Henri Poincard 20, 69 (1974).

3S. Adler, Phys. Rev. Lett. 44, 1567 (1980). @Tery
similar ideas have been expressed by K. Akama,
Y. Chikashige, T. Matsuki, and H. Terazawa, Prog.
Theo. Phys. 60, 1900 (1980). We thank these authors
for calling these papers to our attention. ]
4This represents, in some sense, the modern realiza-
tion of ideas of A. D. Sakharov, Dokl. Akad. Nauk.
SSSR 177, 70 (1967) )Sov. Phys. —Dokl. 12, 1040 (1968)]
and of O. Klein, Phys. Scr. 9, 69 (1974).

i~A. D, Linde, Pis'ma Zh. Eksp. Teer. Fiz. 30, 479 {1979)
[JETP-Lett. 30, 447 (1979)];J. Dreitlein, Phys. Rev.
Lett. 33, 1243 (1974); M. Veltman, ibid. 34, 777 (1975).

~D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
iZ~Very interesting calculations in the context of specific

dynamical schemes are being performed by B. Hass-
lacher and E. Mottola (private communication from
S. Adler).

8W. Pauli, and F. Villars, Rev. Mod. Phys. 21, 434
(1949).
a is defined by a =—sm f dsaq (qst+ mt) 4.
The graph involving the contact coupling between two
gravitons and two fermions does not contribute in order

2iF. J. Belinfante, Physica (Utrecht) 7, 449 {1940);
S. Deser and P. van Nieuwenhuizen, Phys. Rev. D 10,
411 (1974); D. Boulware, ibid. 12, 350 (1975).
We do the calculation here for a Dirac fermion. The



866 A. ZEE

calculation for a Majorana fermion shouM be similar.
The overall minus sign in Eq. (6) is explained in Appen-
dix A.
In particular, the prescription of symmetrizing the
first term "by hand" is wrong.
This trick was developed in conversation with D. Boul-
ware to whom we are grateful,

6Vfe exploited the existence of three different ways of
doing this calculation to check our. computation.
The contact graph has trivial momentum dependence.

G. 't Hooft and M. Veltman, in Particle Interactions at
Very High Energies, edited by D. Speiser, F. Halzen,
and J. Weyers (Plenum, New York, 1974), Part B,
p. 177 and references therein.
S. Adler, IAS report, 1980 (unpublished).
The consequences of this remark are under investiga-
tion.
The much more tedious task of expanding about a gen-
eral curved metric has been carried out. See
G. 't Hooft and M. Veltman, Ref. 12.


