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Gravitational Beld of vacuum domain walls and strings

Alexander Vilenkin
Department ofPhysics, Tufts University, Medford, Massachusetts 02155

(Received 10 October 1980j

The gravitational properties of vacuum domain walls and strings are studied in the linear approximation of general
relativity. These properties are shown to be very different from those of regular massive planes and rods. It is argued
that the domain walls are gravitationally unstable and collapse at a certain time -t, after their creation. If the
vacuum walls ever existed, they must have disappeared at t & t, .

I. INTRODUCTION

In gauge theories with spontaneous symmetry
breaking, the symmetry can be restored' at a
sufficiently high temperature, T & T,. The phase
transition at 7 = T', can have important cosmo-
logical consequences; in particular, it can give
rise to a vacuum domain structure. ' ' As the
universe cools below T, , the Higgs field p
acquires a nonzero expectation value (g). The di-
rection of (P) in the manifold of degenerate vac-
uum states I can be different in different regions
of space, and we can certainly expect it to be dif-
ferent in causally disconnected regions. The
topology of the resulting vacuum structure is re-
lated to the topology of the manifold M, as dis-
cussed by Kibble. ' The three possible structures
are vacuum domain walls, strings, and mono-
poles. The original symmetry can be broken in
several steps; then we have a series of phase
transitions each of which can produce its own
cosmic structure.

Cosmological monopole production has been
discussed by a number of authors' who have found
that the estimated number of monopoles is too
large to be compatible with the standard big-bang
model. Possible ways out of the difficulty have
also been discussed. 4 Zeldovich et al. 2 considered
the cosmological effects of the domain walls.
They found that the gravitational field of the walls
is unacceptably large, since it would cause a
large asymmetry in the background radiation.
Therefore, if the walls have ever existed, they
must have disappeared before the end of the rad-
iation era, so that Compton scattering has enough
time to even out the anisotropy of the cosmic
radiation. Kibble' has reached similar conclu-
sions. He has also discussed the evolution of
cosmic strings and has concluded that the exist-
ence of a large-scale network of strings does not
contradict observations.

In Refs. 2 and 3 the gravitational field of the
cosmic vacuum structures was estimated in the

Newtonian approximation. The purpose of the
present paper is to study the gravitational pro-
perties of vacuum domain walls and strings in
the framework of general relativity. We shall see
that these properties are very different from
those of regular massive planes and rods. It will
also be shown that the domain walls are gravi-
tationally unstable and collapse at a certain time
-t, after their creation. If domain walls existed
and then disappeared, they must have done so at

Possible mechanisms of the disappearance
of the walls will be discussed. The cosmological
consequences of vacuum strings will be considered
in a separate paper.

II. THE ENERGY-MOMENTUM TENSOR

Since we are interested in macroscopic effects
of walls and strings, it is reasonable to approx-
imate them by infinitely thin surfaces and curves,
respectively. (The transverse dimensions of walls
and strings are comparable to the Higgs Compton
wavelength. ) Let us consider a static wall parallel
to the (y, g) plane in a flat space-time (gravitation
is neglected). The wall is described by a cia.ssi-
cal solution of the field equations with the energy-
momentum tensor

where LI&p"', p"„')is the Lagrangian of the theory
and the summation is taken over all fields &f&"'.

In the thin-wall approximation we replace Eq. (1)
by

T„"(x)= 6(x —a)
J

T„"(x)dx,

where x = a is the position of the wall. Since all
P"' are functions only of x, it is clear from Eqs.
(1) and (2) that T„"has only diagonal components
and that'

T'=T' =T'
0 2 3
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From the conservation law

it follows that

(4)

The magnitudes of o and p. depend on masses
and coupling constants of the theory. If m and e
are typical boson mass and coupling constant,
respectively, then'

d—y', = 0, y', = const, o-e 'm3,

P. -o. 'm',
(12)

and, since g„"=0atx=~~, we conclude that T', =0
and g', = 0. Thus we can write the energy-moment-
um tensor of the wall as

T„"(x)= o 5(x —a) x diag. (1, 0, 1, 1).

Here o is the surface energy density. In the gen-
eral case, the energy-momentum tensor of a hom-
ogeneous massive plane has the form

T„"(x)= 5(x —a) xdiag(o, 0, —p, —p), (6)

where p is the pressure (-p is the surface ten-
sion). We see that for a vacuum domain wall

Zel'dovich et al. ' obtained E(l. (5) by direct calcu-
lation in a simple model of a single scalar field
with quartic self-interaction. They noted also that
7„"is invariant under Lorentz transformations with
velocity parallel to the wall. This means that
tangential motion of the wall is unobservable.

The energy-momentum tensor of a string can be
constructed in a similar way. Consider a static
string parallel to the z axis. Defining

where it is assumed that aQ relevant masses and
coupling constants have the same order of mag-
nitude (m and o. can be different on different levels
of symmetry breaking). For numerical estima-
tions below we shall take z -10 '. Then on the
electroweak scale (m™10'GeV) E(l. (12) gives
o -10"g/cm' and p -10 ' g/cm. For grand uni-
fication walls and strings (m-10" GeV) we get
o -10"g/cm' and p, -10"g/cm.

III. WEAK-FIELD APPROXIMATION

(V' —8 t') hq„=16«(Tq„—~2tt„„T),
with the harmonic coordinate conditions

s„(h„"--,'6„"h)=0.

(14)

I.et us now find the gravitational field of walls
and strings in the linear approximation of general
relativity. Representing the metric tensor as

gpv
= 9pv+@pv~

where tt„„=diag (1, —1, —1, —1) is the Galilean
metric and

~ h„,~ «1, we can write the Einstein
equations as'

(xxy)=I!(x'-x),5(X —X)I X'„"(x,y)cxdX (6) The remaining coordinate freedom is restricted
to the transformations

and assuming that all the fields P"' are functions
only of x and y, we find that

y0 g30 3

hqp = h» —
$q „—(„p,

with

(16)

J Tt, ~
x dxdy =0,

where all indices take values 1 or 2. Integration
by parts gives

T',.- r', dxdy =0 i, @=1,2. (10)

and that all other components are equal to zero
except, perhaps, 7',- with i, k = 1, 2. To show that
these remaining components are also equal to
zero, we can use the conservation law (4) and
write

h„=4G(o —2p)(x~,

h„=h„=4Ga)x),

(18)

and all other h» are e(lual to zero. (Here I have
set a = 0, so that the plane is situated at x = 0.)
For a vacuum domain wall, p = —o and

(v' —8,')()) =0 . (17)

The solution of E(ls. (14) and (15) for a static mas-
sive plane with T„"given by E(l. (6) is easily found:

h„=4))G(o+ 2P')ixj,

Thus, the energy-momentum tensor of the string
is given by

T„"(x,y) =p5(x-a)5(y -b)xdiag(1, 0, 0, 1),
(11)

where p, is the linear energy density.

hoo= -h-= —h.3= —4«&lxl

h„=12«a~x( .

Similarly, we can find the field of a massive
string situated at the z axis:
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h„=h2, = 4G(p, +p)ln(r/ro),

h„=h„=4G(p, p—)ln(r/r, ) .
(20)

Here p is the pressure in the z direction, r = (x'
+y')'/', and r, is a constant which we can set to
be equal (approximately) to the radius of the
string. For a vacuum string, p= —p. and

~00 ~33

h» = h„=8Gp, ln(r/r, ) .
(21)

1 8h00x f e

2 8x
(22)

From Eqs. (19) and (21) we see that the weak-
field approximation breaks down at large distances
from walls and strings where ~h&„] become com-
parable to or greater than one. %e shall return to
this question in the next section. At the moment
let us discuss the properties of the gravitational
fields (19) and (21) in the region where our ap-
proximation is valid.

The equation of motion of a nonrelativistie test
particle in a weak gravitational field is'

fiel.d approximation

dv 1d Ph + —(h +h )dt 2 dx 00
le

Note that a regular wall (p = 0) moves just like a,

test particle [compare with Eq. (22)]. The inter-
action of two walls can now be easily described
using Eqs. (18) and (26). We find that two parallel
domain walls are repelled from each other with
acceleration 6~go, a domain wall and a regular
wall are also repelled with acceleration 2xco,
and, of course, two regular walls are attracted
with acceleration 22 Go. (In all cases I assume
that both walls have the same density o.)

Turning now to the ease of strings, we find from
Eqs. (21) and (22) that in our approximation the
gravitational field of the strings does not couple
to nonrelativistic matter. It can also be shown
that strings at rest (or slowly moving) are not
affected by the gravitational field of nonrelativistic
bodies. '

To get a better insight in the geometry of the
metric (21), let us rewrite it in cylindrical coor-
dinates:

From Eqs. (19) and (22) we see that domain walls
repel particles with acceleration g= 2xog. %'alls
of pressureless dust (for brevity we shall call
them "regular" walls) attract particles with the
same acceleration. Vacuum domain walls do not
deflect light (while regular walls do). This can be
easily seen if we note that the coordinate trans-
formation (16) with $, = 22 Go@' sgnz and g, = g,
= $, = 0 brings the metric (19) to a conformally
flat form

ds' = (1 —42'Got xI ) (dt ' -dx' -dy' -dz ') . {23)

where

dz (I g)(dr +r dy )

A. = 8Gp In(r/r, ) .
Introducing a new radial coordinate r' as

(1 —X)r' = (1 —8Gp. )r",
(1 g)dr~ = dr'2

we get

ds'=dt'-dz'-dr"- (1 —8Gp)r"dp' .

(27)

(28)

(29)

(30)

Let us now derive the equation of motion of a
massive plane in a weak external gravitational
field. For simplicity we shall consider a nonrel-
ativistic motion. The energy-momentum tensor
of a plane moving with velocity v in the x direction
is obtained from Eq. (6) by a coordinate transfor-
mation:

T"=o6(x —vt),

T22 T$2 p6(z vt )
(24)

(25)

Assuming that fg&„arefunctions only of x, setting
p, = 1, and integrating over x, we find in the weak-

T"= T"= ov 6(z -v t ),
and all other g&" = 0. The energy-momentum con-
servation law can be written as'

Kith a new angular coordinate

Q'=(1 —4Gp. )P,
the metric takes a Galilean form

d s2 = dt 2 -dz 2 -dr» - r'2d P

(32)

a y = 2 (1+4GP. ) . (34)

Thus the light deflection is 5g = 4mGp. and is inde-
pendent of the impact parameter p. This effect
can give rise to double images of cosmic objects
situated behind the string within the angle of order

This metric, however, does not describe a Euclid-
ean space, since @' changes from 0 to (I -4Gp. )2w.

Such space can be called conical. The trajector-
ies of light and particles in coordinates (33) are
straight lines. As the radial coordinate changes
from a very large distance R» p to the point
closest to the string (r' = p) and again to R, the
corresponding change in p' is ti, g' = 2 and
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6p from the string. The angular separation of the
images is s 6p. This separation is negligible for
electroweak strings (5g-10 "rad), but is quite
observable for grand unification strings (6p
-10 ' rad). The effect of double images may be
relevant to the double quasar. '

It should be noted that the results of this section
are not directly applicable to curved walls and

strings, in particular to closed bubbles and loops.
Because of the surface tension, portions of curved
walls and strings ean develop relativistic speeds,
retardation mill be important, and the static sol-
utions will not be relevant. For example, a
closed bubble of radius 8 develops a relativistic
speed in time t-R. The gravitational field outside
the bubble is that of 3chwarzschild and is attract-
ive, since the total energy of the mall is positive.

ds'=(1+K~x~ ) ' '(dt'-dx')
—(1+K ixi )(dy'+ dz'), (35)

where K = const. We note that Eq. (35) is related,
by a coordinate transformation, to the Kasner sol-
ution'

with p, = ——', and p, = p3= —', . The Kasner metric
(36) is the general solution of vacuum equations
depending on one (spatial) coordinate.

In the weak-field region (K)x) «1), Eq. (35)
gives

(37)

These h» cannot be directly compared with Eq.
(19), since they do not satisfy the harmonic co-
ordinate condition (15). A coordinate transforma-
tion (16) with g, = ~K«'sgn x and $, = g, =$, =0
brings the metric (37) to a harmonic form

IV. COLLAPSE OF THE DOMAIN WALLS

As mas noted in the previous section, the weak-
field approximation breaks down at large distances
from vaceum domain walls and strings. In this
section we shall examine the exact vacuum solu-
tions of the Einstein equations with planar and
cylindrical symmetry.

The static solution of the Einstein equations with
T„"= 0 everywhere except in the (y, z) plane and
having planar and refleetional symmetry is unique-
ly given by' (up to a coordinate transformation)

Comparing Eqs. (18) and (38) we find

g= —4xgo, P= —~g.
We see that the exact vacuum solution (35) does
not match with the weak-field approximation (19)
corresponding to P= —o. We also note that the
metric (35) is nonsingular only if K & 0, in which
case it corresponds to a negative energy of the
wall and thus is unphysical.

The result just obtained means that the weak-
field approximation (19) does not correspond to
any exact static solution of the Einstein equations.
Physically, this implies that the walls are gravi-
tationally unstable and collapse to form singular-
ities. This result can be easily understood in the
following way. Consider a sphere of radius B
centered on the wall. The mass of the mall inside
the sphere is M(R) = nB'o. For 8 & (2vGo) ', the
gravitational radius 2GM(R) is greater than R and
we expect the mall to collapse.

To discuss the cosmological evolution of the
walls, let us first assume for simplicity that a
single plane mall is created during the phase
transition at t- t,. At t&t„the gravitational
field of the wall propagates with the velocity of
light and settles down to the weak-field metric
(19) at distances smaller than f from the wall.
The weak-field approximation breaks down at
t-t, , where

(39)

[see Eq. (19)]. At this point the nonlinearity of
the Einstein equations becomes important. We
shaQ assume that the collapse of the wall starts
at about the same time. The critical time t, is-of
order 10' sec for electroweak walls and t, -10" '
sec for grand unification walls. If the wall is to
disappear, it has to do so at t & t, , since we can-
not get rid of the wall after it has formed a singu-
larity.

In a more realistic case of many domain walls
of irregular shapes, two new effects come into
play: (i) the interference of the gravitational fields
of different walls and (ii) curved walls move with
relativistic speeds under the action of the surface
tension. However, the intuitive argument given
above still suggests that at t-t, the walls "know"
that their size is greater than (Go) ' and start to
collapse. According to Kibble, ' the cosmic domain
structure evolves in such a may that the typical
separation of the walls, as well as the typical
curvature radius of each wall, is always of order

Then the average mass density due to the walls
. is p~ -ot '. The total density of the universe is
p-(Gt') ' and thus

(38)
p& lp -Got - f /f (40)
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If we require that the walls disappear at t & t, ,
then the universe never becomes domain-mall
dominated.

I.et us now turn to vacuum strings. If we again
consider a sphere of radius R centered on a
straight string, then GM(R)/R-Gp for all R.
From Eq. (12), Gg - n 'Gm'«1. This suggests
that self-gravity of the strings is unimportant and

cannot cause their collapse. Besides, there ex-
ists an exact static solution which matches with
the weak-fieM approximation (33). It is just the
locally flat "conical" space (33) with 0& &t&'

& (1 -4Gp, )2&&. The general static vacuum solution
with cylindrical symmetry is"

ds2= (~/y )4& & &&&~&+ +3&dt 2 —&iz2
0

(y/y ) 2&K »I(&-+3& z~&t&j&2
0

(~/y )2&K -& &/ (E + 3& dg 2
0 (41)

V. DISAPPEARANCE OF THE DOMAIN WALLS

According to the discussion in the previous sec-
tion, the domain walls, if they ever existed,
must have disappeared at t & t, -(Go) '. Zeldovich
et al. ' and Kibble' noted that we can get rid of do-
main walls by allowing a small initial bias, so
that one of the vacuum states separated by the
walls has slightly smaller energy density than the
other: p, —p, =e 40. This energy difference be-
comes dynamically important at t -t, when the
energy excess on scale -t, becomes comparable
to the energy of the walls on the same scale (we
assume' that the characteristic scale of the do-
main structure at time t is -t): et, '-ot, ', t,
-cr/e. Requiring that t, &t, , we get

e &Go'-n '(Gm')m' . (42)

An asymmetry put in by hand is aesthetically
unappealing and is not in the spirit of spontaneous
symmetry breaking. One other possibility is to

where K = const and r, = const. Note that this me-
tric can also be brought to the Kasner form (36).
The Riemann tensor of (41) is equal to zero if
and only if K= 1. The metric (41) can be matched
with the weak-field approximation (33) only if
K —1 =0 (G't&, '). Inside the string (x& r, ), T„"e 0

'

and the metric is different from (33) or (41). If
we assume that gravitation does not break the I.or-
entz invariance of the string in the z direction,
then the only allowed values of K in Eq. (41) are
Z =1andÃ = —3. Fox K= —3, thelengthof acircle,
r = const, decreases at x-'~ ' when r ~. We dis-
miss this case as unphysical. K= 1 corresponds
to a conical space.

consider a small universe with nontrivial topolo-
gy." A simple example is a cube ~x'

~

& a in which
the points x' = a and x' = —a are identified. Since
the expansion law is determined by the local en-
ergy density, the local properties of such a uni-
verse are identical to those of an infinite Fried-
mann model. Domain walls disappear when the
horizon size t becomes comparable to the size of
the universe. If this is to happen at t & t, , then the size
of theuniverseat t - t, is smallerthant, and the
present size of the universe is smaller than

R & t, (t,q/t ) (t /t~q) i (43)

where t,~
-10"sec is the end of the radiation era

and t -10"sec is the present time. Equation (43)
gives R & 10" cm and R &10' cm for electroweak
and grand unification walls, respectively. Obser-
vations exclude" R &400 Mpc - 10"cm and, there-
fore, this mechanism is ruled out.

Yet another possibility is that the symmetry is
broken at high temperature T„and then restored
at T„&T„.A model of this sort was discussed in
a different context by Langacker and Pi." A sim-
ple example of a symmetry broken at high temper-
atures and restored at lower temperatures was
discussed by Weinberg. " The physics of domain
walls in such models is different, since the mass
density of the walls changes with temperature.

The effective mass of a scalar boson responsible
for the symmetry breaking can be written as'"

m'(T) = m'(0) + ynT',

where y is a numerical coefficient depending on
the ratios of different coupling constants and on
the group structure of the theory. The quantity
m in Eq. (12) is of order ~m(T)~. It is usually
assumed that m'(0) & 0 and y&0. Then the sym-
metry is broken at low temperatures and the phase
transition occurs at T =T, = (yu) '~'~m(0)~.
T «T, ~'(T) =~'(0) and the density of the wall
(]2) is independent of T. Suppose now that m'(0)
& 0 and y&0. Then T„=(-yu)' 'm(0) and the
symmetry is broken at T &T„.When T»T, &,

I'(T) =yn T' and

At T -T„heavy particles associated with another
level of symmetry breaking come into play (we
assume that T„»T„).As a result y changes
sign and the symmetry is restored at T =T„.In
the whole interval T„«T«T„,the surface den-
sity of the walls is given by Eq. (45). The critical
time t, changes with temperature and

tlt -Got-n' 'G' 't ' '-(ut /t)' '«1 (46)

where t, = G' '-10 "sec is the Planck time and
I have used T-G ' 't ' '. We see that in this
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case the gravitational field of the walls is always
weak and can hardly produce any significant ef-
fects.

VI. CONCLUSIONS

%'e have studied the gravitational field of static
vacuum domain walls and strings in the weak-
field approximation. We found that the domain
walls repel nonrelativistic particles and each
other and do not deflect light. The strings do not
interact with nonrelativistic matter, but do de-
Qect light. The deflection angle is independent of
the impact parameter and is of order 10 ' rad
(-2 ) for grand unification strings. This effect
can give rise to double images of cosmic objects
situated behind the strings and may be relevant
to the double quasar.

We also found that, in the case of domain walls,
our approximate solution of the Einstein equations
does not correspond to any exact static solution.
The weak-field approximation can be used only
during time t &t, after the phase transition. At
t~t, the gravitational field gets into a nonlinear
regime and the walls collapse. For electroweak
walls t, ™10'sec and for grand unification walls
t,,- 10 "sec.

If vacuum domain walls ever existed, they must
have disappeared at t& f, . %'e discussed three
possible mechanisms for the disappearance of the
walls: (i) small initial bias favoring one of the two
vacuum states; (ii) small universe with a non-
trivial topology; and (iii) symmetry broken and
then restored. The first possibility is not very
attractive, since it is not in the spirit of spon-
taneous symmetry breaking. The second mech-
anism has been shown to contradict observations.
For the third mechanism, we found that the sur-
face density of the walls becomes a function of
temperature and changes in such a way that the
gravitational field of the walls is always negli-
gible. Thus, either the walls never existed, or
if they did, they had little effect on the evolution
of the universe.
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