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Stretching a black hole
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The geometry of the event horizon of a Kerr black hole in a magnetic field is examined at the poles and equator. It
is shown that there are two distinct domains where the Gaussian curvature is negative at the pole, whereas if the

angular momentum parameter exceeds a certain value the equator always exhibits positive curvature. A calculation
of the polar and equatorial circumferences indicates that the external field stretches the hole along the axis of
symmetry.

We intend to investigate the effect of an external
m'agnetic field that is oriented along the axis of
symmetry upon the geometry of the event horizon
of a Kerr black hole. This is best achieved by
looking at the invariant local measure of the in-
trinsic deviation of the horizon from a spherical
surface. Such a quantity is characterized by the
Gaussian curvature, denoted by K, which is in-
dependent of the embedding space. ' This calcul-
ation was performed by Smarr' for the Kerr
metric, where he showed that if the spin of the
black hole exceeds a certain limit the event hor-
izon acquires negative Gaussian curvature in the
vicinity of the polar caps. The flattening of the
polar caps as the rotation increases is analogous
to that for a rotating fluid body, although the sur-
face of a material body can nowhere possess neg-
ative curvature.

Fortunately an exact solution of the Einstein-
Maxwell field equations for a Kerr black hole in
an external magnetic field exists in an explicit
form. ' Because we are only concerned with the
event horizon, we will give only the two-dimen-
sional line element since the metric is quite com-
plicated. Here J3 denotes the magnetic field para-
meter, the field being directed along the symmetry
axis of the hole. The line element can be written
as

ds' = E'd8'+ &'dP',

where

A = 1+—(r, '+ a') sin'8 —2mai cos8(3 —cos'8)
4 +

2''sin 8
+ r + ie cos6

(1e)

is the value of the radial coordinate defining the
event horizon. For B, the units are determined
by the formula' '

mB=8.5X10 ]—)( „), (2)

where M is the hole's mass expressed in solar
mass units.

Using the standard procedure to calculate the
Gaussian curvature, namely,

1 d (1 d
(3)

a very complex expression is derived, which for
the pole reduces to

&, ,= p 'm '(f'+q') '(p(f' —3q')+20'(f'+q')]

where

(4a)

and where a is the spin parameter (angular mom-
entum per unit mass), m the geometric mass
parameter, and

r =r, =m+(m'-a')'~'

E' =E'(8) = Z AA*, (lb) ] p4 2 (4b)

and

Z=r +a cos 8, (1d)

and P=mB is defined as a dimensionless distortion
parameter. '

q = a/m. and f =r, (m are both con-
stants with the range of permissible values
0&q &1 and 1 &f &2. For the equator 8= n(2,
K becomes
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FIG. 1. Plot of P versus q illustrating the zones where
K, the Gaussian curvature, is negative, given by the
hatched areas. This is for the pole e= 0.

FIG. 2. Plot of P versus q at the equator 8=m/2. The
hatched area indicates where K is negative. Note that
for q 20.682 K is always positive.

Ke g~=4 'f 'm '(4'(I+q2f ') —4P'[,'(f +q')+2q'—f '+q f ]+~Pq'(3+q'f ')'), (5a)

where

~ = I+ '&[ 'V'+q')+-q'f -']. (5b)

An analysis of the character of K at the poles
and equator should allow us to infer the behavior
of E in the neighborhood of these points. Also,
the behavior in these regions will give us an idea
of the peculiarities of the geometry of a spinning
black hole embedded in very strong magnetic
fields. As discussed below, we can compute both
the polar and equatorial circumferences to get
a picture of how the event horizon is distorted
in space.

Figure 1 shows the domain of values for q and

P for which K is negative at the poles. Interest-
ingly, there are two disjoint regions (indicated by
the hatched areas) where Kis negative. If P=0,
Smarr' showed that the surface is everywhere
positive for q, ~0.866, whereas if q =0, the pole
possesses positive K for all P. For the equator,
Fig. 2 illustrates the situation as determined
from Eqs. (5a) and (5b). For q a 0.682, K is a
positive for all P, and if q = 0, K&0 when P & 1.

C, = J) G(v/2)dg,
p

f 2'
C~

=' E(8)de.
4p

For C, ,

(6a)

(6b)

C 2v(f '+ q')
m f [1+,'p (f'+ q'+2q~f-')]-

so that as P increases, C, /m will decrease for
any value of q. C~/m must be numerically eva-
luated due to the complexity of E. The results

I

However, it appears that in the interval
0.682 &q & 0.866 these two regions exhibit positive
K for all P. Is this true for the entire surface?
Such an analysis will involve studying the general
expression for K

The magnetic field stretches the black hole along
the axis of symmetry. This effect is observed by
examining the equatorial circumference C, and
the polar circumference C&. These quantities are
obtained by performing the integrations
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FIG. 3. C&/m versus q for several values of P. Note
horv the polar circumference increases for increasing
P though the rotation still has an effect.

of this integration for several choices of P are
shown in Fig. 3. For q=0 and p=0, C~jyg is
exactly 4w (since f =2) and increasing q causes
the circumference to reduce. As P increases,
the hole' s horizon becomes elongated along the
axis even though the rotation still influences the
extent of this elongation.

If, indeed, external fields cause the hole to
deform, it is conceivable that the distribution and
infall of matter in the vicinity of the hole will be
affected. Further, analyses of the vibration
frequencies have often assumed a spherical hor-
izon, though this may not be an accurate physical
representation under the unusual conditions that
may exist at the centers of some galaxies and
quasars (if black-hole models are to be considered
for such powerful radio sources). It remains to
be seen if the effects outlined here can ever occur
in nature, since for a black hole with a mass of
about 10' suns, gg must have a value near 10"gauss
if we are to have p- l. Current black-hole dynamo
models consider external fields to play an import-
ant role in the energy production mechanisms,
but to the authors' knowledge, the field strengths
are still. much less than 10"gauss. Perhaps under
certain circumstances our effects may play a role.
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