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We consider here the energy dependence of different inclusive and semi-inclusive processes in the quark-cascade jet
model for hadron production. The corresponding integral equations for inclusive quark fragmentation functions are
derived. The energy dependence of individual multiplicities for quark-antiquark jets is also discussed. The results are
calculated with different primordial quark fragmentation functions and compared with experiments. It is further

suggested that the diffractive dissociation of mesons may also be possible examples of hadronization of high-energy

quark-antiquark pairs corresponding to the invariant mass of the dissociated hadrons and this hypothesis is
examined in the context of the present model. There is general agreement with the experimental results when the

energies are not too high.

I. INTRODUCTION II. GENERAL THEORY

The quark-cascade jet-production model'~ is
based on repeated quark fragmentations Q,. -M
+Qz with a sharing of the longitudinal momentum
of the original quark by the resulting quark and the
meson. This is described by primordial quark
fragmentation functions f&&(x) as phenomenological
inputs. " The model is usually formulated in the
high-energy limit. The energy dependence at
finite energies is reproduced by the kinematics
of the particles generated' or by assuming that
when quarks lose momentum they finally stop
fragmenting. 4 With the latter point of view, we
shall analyze here the energy dependence of the
quark jets regarding exclusive multiplicities as
well as regarding the final-meson fragmentation
functions. For this purpose in Sec. II we give the
description of conventional quark cascades with
an explicit energy dependence assuming that the
quarks stop fragmenting when a momentum p, is
ultimately reached. " In the same manner as
some earlier. investigations' only quark jets which
end in soft quarks are explicitly considered and the
corresponding probabilities are examined. %e
include the flavor degree of freedom as well as
the possibility of symmetry breaking. In Sec. III
we write down the energy-dependent integral equa-
tions and obtain the formal solutions. In Sec. IV
we apply these results to pion production from
u and d quark-antiquark pairs and compare the
calculated results with the experimental observa-
tions. For comparison with experiments we as-
sume here that in the diffractive dissociation pro-
cess m P -XP, the hadronic system X is effective-
ly the hadronization of du quark-antiquark pairs.
The results appear to be broadly consistent with
such a picture. In Sec. V we discuss the general
nature of the results.

Q,. -M+Q~ (2.l)
is described by the primordial quark fragmenta-
tion function f,.&(x), where x is the longitudinal
fraction of the momentum carried by the meson.
Also we adopt here the normalization

J1

f",,(x)dx =1
0

(2.2)

whenever the above function does not vanish iden-
tically. We next define matrices g"(y) and g(y)
such that

g";;(y) =P(Q;, MQ, )f;",(l -y) (2.3)

g;&(y) = gg";,(y) . (2.4)

In (2.3) P(Q, , MQ&) is the probability that the quark

Q,. fragments to M and Q~. Clearly in contrast
to (2.2) we have

(2.5)

We shall now consider the c(nark Q,. of momentum
P fragmenting n times and leaving the quark Q&

of momentum p, . Then the corresponding prob-
ability is proportional to'

lg(y, )g(y. )".g(y. )1„6(yiy. "y.- ~)dyldy2 .d3. ,

(2.6)

where we have considered the probability in the

Our motivation here is to modify the conventional
ideas of the quark-cascade model to include an
energy dependence for the quark jets. As men-
tioned, the fragmentation process
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differential form. Also, X =ii/P and the 5 function
gives the. constraint regarding the momentum of
the residual quark. ' Now we define the function

Z"„(n,u, x, ~)

a
'' g ~n i'&x' 'd~n

I,. (X) = F ),.(, 1,) = fD(*,.X)d, "(2.13)

as is conventional. However, here we have also

tion x. We then have the average multiplicity as
given by

&& ~(yl ' ' y, —~)~(yy ' ' '
yy l(1 -y))) -&) . D, (x, X).xdx =1 —x. (2.14)

(2.7)

Clearly (2.7) will be proportional to the probability
that the quark Q, fragments n times leaving the
residual quark Q J with longitudinal momentum
fraction A. and that a kth-rank meson M is pro-
duced with momentum fraction x of the original
quark Q, We further define

C,.q(m, l, ) = Q fE",,(nk, x, l)dx,

Equation (2.14) merely reflects the fact that the
residual quark carries a momentum fraction X,
which goes to zero in the high-energy limit.

We note that in the present analysis we are
retaining the energy dependence of the quark-
cascade jet-production model through the vari-
able p, . Thus our calculations will be reliable
when p. behaves like an average value and sets
up a scale, but will be unreliable otherwise. '

III. EXCLUSIVE MULTIPLICITIES AND THE MESON
FRAGMENTATION FUNCTIONS

"5(yi ~ ~ ~ yn —~)dye ~ ~ ~ dye (2.8)

c„.(~) = gc, (n, ~) (2.9a)

We obviously take the total. probability for had-
ronization as unity. This leads to the normaliza-
tion constants

We shall now need to evaluate C, (X) and C,&(X).
From (2.8) we note that for n ~ 1 we have the
matrix recurrence equation

'dy
C(n+1, ~) = —g(y)C ~n, —

~. (3.1)

We also note that by (2.9a) the above equation im-
plies the integral equation

c,.(x) = gc, (x). (2.9b) l' dy (A
c(~) =g(~)+ Ji

—z(y)cl— (3.2)

Hence, as is conventional, ignoring the residual
quark, the probability that the quark Q,. gives
mesons with multiplicity n is given by

since C(1,y) =g(y). As earlier' we now consider
the Mellin transforms'

P, (n, X) = Qc,q(n, X) (2.10) 1

g(~) = Z(y)y" 'dy,
'0

Also, the energy-dependent final-meson fragmen-
tation function D", (x, X) is now giv. en as which has the inverse with c& 0 ass

D",. (x, ~) = gZ"„(n, u, x, X)
nek~ j

(2.11)
C+$~

g(y) =2„. y g(~)d~.
C too

(3.4)

D,.(x, ~) = ga",. (x, x), (2.12)

which is the resultant fragmentation function for
any meson to be produced with momentum frac-

The energy dependence above is obtained through
the assumption that the quark stops fragmenting
once the momentum fraction X is reached. The
parameter p introduced above is irrelevant in
the high-energy limit, but at finite energies it
sets up a suitable scale for the approach to the
high-energy limit.

Parallel to (2.4) we may define

The other MeBin transforms are also defined in
the same manner. We thus obtain from (3.1) the
matr, ix equation

C(n, (o) = [g((u)]".

Equation (3.2) also yields

C((o) =[I-g((d)] 'g(co).

(3.5)

(3.6)

For specific examples we may take the inverse
Mellin transforms of (3.5) and (3.6) and then ob-
tain the energy dependence of fixed multiplicities
by using (2.10).

We now note that from the normalization (2.5)
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we have

Hence, writing (3.6) as

P(&u) =g(W) +C((d))g((d)),

(3."I)

The above equations yield that

E(n, k, (o„(o,) =[g((d, +(o, -1)]"'[g((d), ))" ))

x E(1,1,+„e,), (3.19)

where (3.16) is to be used. Hence, substituting

(3 6)

we obtain from (2.9b) k«& =1

C, (~) =1+C,.(v) .
contradiction in (3.8) implies that C, ((d)) has

a singularity at co =1. Assuming this to be a pole3
we write

E(x, 1) = QQE(n, E, x, 1)
n='1 /=1

(3.20)

C,. (&u) =8,./((o -1) (3.9) we obtain that

C,.(X) =ll,./X. (3.10)

in the neighborhood of v =1. In the cases we have
examined, the contribution from (3.9}appears
to give the dominant contribution for the inverse
Mellin transforms in (3.4) for small A.. In fact,
we then have, fox' small X,

E((u„(o,) = [I-g ((u, +(u, —1)] '[I -g ((d, )] '

X E(1,1, (1)„cu,) . (3.21)

Hence, we now obtain that the energy-dependent
one-meson fragmentation function of (2.12) is
obtained as

It was earlier noted that in case there is only one
flavor, R' is given by' D,.(x, ~) =QF„(x,z) (3.22)

8'= gy ln1 ydy. (3.11)

We shall now consider the inclusive fragmenta-
tion functions for mesons. We thus define

F,.J(n, k, x, X) = QE,.q(n, k, x, X). (3.12)

We then have the recurrence matrix equations

dy x
E(n +1,k +1,x, A.) = —,g(y)E n, k, —,—

i
y y y]

(3.13)

where E&&(x, d(.) and C,.(X) are obtained from the
inverse Mellin transforms using (3.21) and (3.6),
re spectively.

We may note, however, that the inverse Mellin
transform in (3.21} is plagued with double or re-
peated contour integration, which is difficult and
often mathematically ambiguous. Hence, we
shall now proceed to obtain an energy-dependent
integral equation for D,~(x, A).

Parallel to (3.20) we also define

E(n+l, k, x, A) = —g(y)E n, k, x, — . (3.14)dy

Introducing the double Mellin transforms

E(nd, n„n ) = ff, E(nd, x, x)x" '1. 'dxd, x,

(3.15)

E(n, x, ~) =QE(n, k, x, ~).

We then have the matrix recurrence relation

g(1 -x)E(n+), x, x)=
(1 )

(: n,
(1 ))

+ ~g y + pg

(3.23)

(3.24)

we then obtain from (3.13) and (3.14) that

E(n+1, k+1, e„((),) =g((d), +(1), -1)E(n, k, (d)„(d),)

(3.16)

The above equation then yields the integral equa-
tion for E(x, X) as

E(x, A.) =g(1 -x)5(1 —x —A,)

E(n +1,k, (u„(d,) =g (&u, )E(n, k, (d„(u,) .
We now note that

(3.17)

(3.25)

E(1,1, |n„tn, )= fx(1)(1 —I) '1 'dl, . ($.18)
From the above integral equation using (3.22) we
now obtain the equation for D, (x, A) as
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D,. (x, A.) = ~,.&(1 —x)6(1 —x —A.)c, '(X) On taking the Mellin transform we obtain from
(4.1) that

+ pg, ,(1 —x)(l —x) 'c,
( )c,. '{z)

+ g —,g. (y)L) —,—c
~

—C.-'(~).dy x A.

3' ' 3' J &Y

(3.26)

In (3.26) we shall now consider the limit A, ap-
proaching zero and utilize (3.10). We then obtain
the equation in the high-energy limit as

D,.(x, 0) = Qg'„(1 —x)

g((d) = (~ + 3»)g{(((d) .
Hence, (3.5) gives

C(u, (o) = (A'„+A.o») [g, ((d)]",

where we have substituted

and

(4.3)

(4 4)

(4.5)

(4.6)

where we have substituted

g,', (y) =g„(y)If; '&, .
We now note that from (3.6) we also have

C,. (&o) = Pg,.&((o) + Pg,.&((o)C~((d),

such that

(3.27)

(3.28)

(3.29)

C,. (n, (o) = Q C,q(n, (o.) = [g,((o)]".

Hence, corresponding to (2.9a) and (2.9b), we
have in (3.6)

(4.7)

We note that in the above A'„and A. '„are the prob-
abilities that after n fragmentations the quark
does or does not change its flavor. From (4.4) we
have

Z,. = Qg, ,(1)Z, . (3.30)

The above equation implies that the matrix g',.~(y)
in (3.27) is also normalized as

Q

foal,

() )dv =(, (3.31)

which is the same as (2.5). Equation (3.27), being
the high-energy limit, is the usual integral equa-
tion which is quoted. " However, we note that
particularly for heavy quark jets, the approach
to high energy as described by (3.26) can be quite
relevant since in such cases the symmetry viola-
tions are known to be quite large.

C,. ((o) =g, ((d)/[1 -g, ((o)]. (4.8)

From (4.8) we note that as expected, the normal-
ization constant (2.9b) is independent of the flavor
of the quark. We may take the inverse Mellin
transforms of (4.7) and (4.8) and by (2.10) write
the exclusive probability for pion production with
a fixed multiplicity to be given as, with C,.(n, X)
= C, (n, A.) and C,.(A.) = C„(A.),l

p,.(u, ~) =C, (n, x)/C, p.). (4.9)

We note that (4.9) is a function of the quark energy
through X = p/P with p, as a fixed parameter to
be determined from experiments. Also here
parallel to (3.10) and (3.11) we have in the high-
energy limit when X is small, by (4.8),

IV. APPLICATIONS c,.(x) =z,/x, (4.10)

We shall now consider some applications of the
results developed in Sec. III. We first confine
our attention to only pion production of a u and
d quark-antiquark system. Including isotopic-
spin invariance, in such a case the matrix (2.4)
is given as

g(y) =(s +3»)g, (y), (4.1)

g, y dy=1. (4.2)

where g, (y) is an ordinary function, and the matrix
part is factored out. We note in particular that
f'„'(x) g, (1 -x) =f,(x) and that P(u, w'd) =f, whereas
p(u, m'u) =-,'. Also we have the normalization

where'

8, '= g, y ln1 ydy. (4.11)

We now note that the total-multiplicity analysis
of a single-quark jet is not experimentally very
useful since it is difficult to precisely separate
the hadrons belonging to single-quark jets. Due
to color confinement the overlap between different
jets will be inevitable and the individual jets will
be necessarily ill defined. In the above analysis
we have also ignored the residual quark. Hence,
instead of considering the jet due to a single quark,
we shall consider the hadronization of the quark-
antiquark pair.
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To fix our ideas let us consider the uu quark-
antiquark pair and let n and nz be the respective
multiplicities of the u jet and u jet with the re-
sidual quark and antiquark being i and j. Qn the
basis of the earlier analysis of quark jets, the
probability for the above is ProPortional to

[(—', +-,'7, )"]„.C, (n, z)[(-', +-,'r, ) ],C,(m, z). (4.12)

In the above we have set X = p, /(W/2), where 4 s
is the c.m. energy of the uu pair. Here clearly
q,.q,. will recombine to yield a pion. Now from
the quark content of the pion and isotopic-spin
invariance the probability for the recombination
of q, q& to form a pion will be ProPortional to
(—,'+&r, ),&

He. n. ce in (4.12), taking further this
probability of recombination into account, the
probability that the u jet has n pions, the u jet has
rn pions, and there is a pion due to recombination
becomes proportional to

[(-,'+-,'r, )" "]„C,(n, ~)C, (m, X) =A'„C, (n, ~)C, (m, X) .

(4.13)

In the above, N =n+m +1 is the total multiplicity,
with ¹ 3. We are obviously taking the energy
v s to be large enough so that the above assump-
tion is valid. We shall now examine the individual
charged multiplicities during pionization of the
uu pair as a function of energy. From charge con-
servation, clearly here we shall have only an even
number of charged mesons. We shall now obtain
the individual probabilities by normalizing the
total probability to unity. Clearly the normaliza-
tion constant from (4.13) becomes

22l
P, (2l, A.) = Q P, (N, A.) « "C„

N «2 l

e
N' (4.18)

We also note that the exclusive probability that
there are only 2l charged pions is given as

P'""(2l, &) = (-')"B,g(&)/C. (&)- (4.19)

We note that a11. the above statements are also
true for the dd quark-antiquark pair.

'We next consider pionization of the ud quark-
antiquark. pair. As before we obtain that in this
case the probability that the u jet has n pions, the
d jet has m pions, and the total multiplicity is
E= n+ m+ 1 with one recombination meson is pro-
portional to

[(—'+ —7,} ]„C,(n, &)C,(m, &) =A„C,(n, , &)C,(m, &),

(4.20)

which is the parallel of (4.13). Parallel to (4.14),
the present normalization constant becomes, with
(4.15),

C,(X)= Q A«'B«(A. ) .
N«3

(4.21)

We also obtain, corresponding to (4.16), that the
probability that the ud pair gives rise to exactly
N pions is given as

Po(N, A) =A«OB«(X)/C (X) . (4.22)

In the present case the total number of charged
pions produced will always be odd. As before, we
now obtain the inclusive probability for the produc-
tion of 2l+ 1 charged pions with any total multi-
plicity as

C (X)= gA B (X),
3

where we have substituted

(4.14) 22l+ I.

P,(2l+ 1,X) = Q Po(N, A) ««C2„, jA«0 .
N «Bi+1

(4.23)

B„(~)= P C, (n, X)C, (m, z).
n, m

n+m+l=N

Obviously from (4.14) we obtain, parallel to
(2.10),

(4.15)

(4, 16)

N e3«C2i/A' ~ (4.17)

Hence, the inclusive probability that there are
2l charged pions (and an arbitrary number of
neutral pions) is given as

To obtain the signal of charged pions, we note
that in the binomial expansion of (-,

' +-,'v, )«, the
power of v', will exactly correspond to the number
of charged pions. Now, the probability that there
are 2l charged pions with the total multiplicity
being N is given by

Also, we get the exclusive probability for the
production of exactly (2l+ 1) charged pions as

P,'" (2l+1, A) =(-', )"'B„„(X)/C,(Z). (4.24)

We shall now explicitly examine the energy de-
pendence of the above probability with calcula-
tions and compare the same with experimental
results as are available. For this purpose we
need to make specific assumptions regarding g, (y)
in (4.1). Before doing'that, let us first see the
type of experimental data with which we may be
able to compare our calculations.

We note that 8 e annihilation yields hadroniza-
tion of 'quark-antiquark pairs. This, however,
contains mixed information since even above 1
QeV ss quark-antiquark pairs will be formed,
and also above 3-4 Ge7, charm signals will con-
stitute a major fraction of the hadrons produced.
The decay channels of these charmed mesons are
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f',(x}= n+ P(l —x}', (4.25a)

not adequately known' for us to be able to use the
experimental results in the background of the pre-
sent analysis regarding individual multiplicity sig-
nals of specific quark-antiquark jets.

We may note, however, that another class of re-
sult has existed for quite some time which we may
imagine as hadronization of quark-antiquark pairs:
the diffractive dissociation of pions in p p scatter-
ing. ' For the pion dissociation in m p diffractive
dissociation, we imagine that the pion dissociates
to the ~z pair, which subsequently hadronizes. In
the context of quark-parton ideas" the above ap-
pears to be a simple but inevitable picture for
pion dissociation, where in the present context we
need not worry about the dynamical mechanism"
which causes the "dissociation" of p to du, since
in the conventional picture the hadrons produced
will be independent of this. Assuming the above to
be the mechanism for the dissociation process as
a two-stage process, "here we shall have a fairly
clean instance of hadronization of a nonstrange-
light-quark-antiquark pair. We shall thus utilize
our present analysis to calculate, e.g. , the charge
multiplicity of the system X for the diffractive-
dissociation process n p-Xp as a function of M~
=M. In this analysis X= p/(M/2), where we shall
choose the parameter p. as 500 MeV as we had
estimated earlier, ' this also being generally the
region for nonperturbative infrared cutoff in
quantum chromodynamics. In order to justify such
a picture we shall analyze, e.g. , the total charged
multiplicity for the process z p-Xp, as in Ref.
8, as a function of M~ against the same for e'e
annihilation. " We have plotted them in Fig. 1 and
may notice that with v s =M», from 2 to 10 GeV,
the points are close to each other. We have also
verified that in the quark fragmentation models' '
at such energies the charged quark-antiquark sys-
tem d~z and the neutral uu or dd systems have the
same charged multiplicities. The disagreement
between the two in Fig. 1 around 2 GeV and below
is expected, as may be clear from the careful ex-
perimental analysis of e'e annihilation data below
charm threshold, "and is apparently due to the tail
of the p' production. We regard the agreement of
the points for the two systems in Fig. 1 as evi-
dence that the w -dissociation charged multiplicity
is also the result of the hadronization of the dF~

system. We shall use this conjecture in our sub-
sequent calculations for comparison with the data.

In the present calculations we consider three
phenomenological pr imordial fragmentation func-
tions f,(x) as illustrations, and calculate the ener-
gy dependence of exclusive and semi-inclusive
multiplicities. We shall first take f,(x} as

I2—

(%0

'cf' ~p

. 0
I

I I

IO l5 20 30

V„= r |',GeV)

FIG. 1. The experimental average charged multi-
plicities for e+e annihilation and ~ dissociation are
plotted against Mz or v s . The data for e+e annihilation
from ADONNE, SPEAR-Mark I, DASP, PLUTO, and
TASSO Collaborations have not been distinguished and
are all represented by solid circles {Ref. 11). The open
squares represent the & -dissociation data (Ref. 8).

f,'(x) = 5x(l —x) . (4.25b)

The above choice is made parallel to the para-
metrization of Buras and Gaemers" for the struc-
ture functions in deep-inelastic lepton-hadron
scattering processes or for the resultant frag-
mentation functions D,"(x}. Many .expressions can
be analytically written down when we make the
choice (4.25b}. The alternate choice of Ax'(I —x)"
can also be made, but it becomes more cumber-
some.

Our third choice of f,(x) is, as was derived from
the ratios of cross sections in Ref. 5, given as

f (x)="'("Q- "q) .,(dq, -„q) (4.25c)

In the context of the present paper we only regard
it as a phenomenological input, and the function
f;(x) is plotted in Fig. 2. This fragmentation func-
tion had some general properties parallel to
quark fragmentation, such as boundedness of the
transverse momentum coming from the wave func-
tion of the meson and universality along with
scaling. It also had some agreements with exper-
iments' and was based on similar assumptions for
coherent'4 and incoherent" processes. We may
note from Fig. 2 that the function here is qualit-
atively similar to (4.25b).

We shall now apply Eq. (4.23) to obtain the prob-

where we have n = 0.12 and P= 2.64 as parametrized
by Field and Feynman. Our second choice will be
the simple analytic expression
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FIG. 2. The primordial fragmentation function f ~~(x)

proposed earlier (Bef. 5) is plotted againstx.

abilities for the individual charged multiplicities
for g dissociation. Clearly the probabilities for
observing two-, four-, six-, and eight-prong
events for the process p p-Xpwillbe respectively
given by P,(21+1,X) for I=0, 1, 2, and 3. With the
experimental values of do/dM'(v p-Xg), we now
note that the respective cross sections are given
as

0
20-

t5-
U

IO-

5- l

I
0 i--J.

20-

l5-

lO-

6 Pangs
(c)

8 Pr ongs

d)
--—(2l+ 2 prongs) =—,(total) P,(2I + 1, X) .
dVl2

(4.26)

For the three cases of Eg. (4.25), we have plotted
the calculated values of the above cross sections
against the experimental points' in Figs. 3(a)-3(d)
for two-, four-, six-, and eight-prong events,
respectively. We note that the data points are
quite crude and unreliable. However, the present
calculations reflect that such exclusive signals can
distinguish between models if we have a more
careful analysis. In (4.26) we have taken (do/dM')
(total) = (524x~/M') pb/GeV', corresponding to
Regge phenomenology, and such that it gives the
points of Ref. 8. We note that the Feynman var-
iable x+=1 -M'/s, and that the M dependence of
the results in (4.26) arises through X = p, /(M /2).
For (4.25a), we have chosen p = 1 GeV and for
(4.25b) and (4.25c), we have chosen p =0.5 GeV. '
The qualitative nature of the results does not de-
pend on p, and we have chosen this parameter so
that. the- agreement is the best. After the choice
of primordial fragmentation function this is the
only parameter in the present model which fixes
the scale for the energy dependence of the results
at finite energies.

As mentioned, for the case (4.25b) analytic so-
lutions are possible. A straightforward but quite

lengthy calculation ultimately gives us

( 1)k 1 1 k 6n
C,(n, A.)=, ln —

(
-)—, X

and

x (k —2n+ 2)(k —2n+ 3) (k —n)

(4.2V)

6 1c (~)=———~'~.
5 x

(4.28)

One may check (4.28) with the approximation (4.10)
in which in fact we have R, as -', .

In the present case the charged multiplicity is
given by

5-
l

-IO 0 lo 20 30 40 50 60 70 80

M (GeV )
FIG. 3. In (a), (b), (c), and (d), (der/dM2) (2, 4, 6,

and 8 prongs) vs ~2, respectively, are plotted. The
continuous, the dashed, and the dot-dashed curves cor-
respond to the primordial fragmentation functions f „(g),
f (x), and f '(x), respectively. The experimental data
are taken from Bef. 8 after background subtraction.
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M,(X) = g(2l+ 1)P,(2l+1, X), (4.29)

where (4.23) is to be again used. We have plotted
in Fig. 4 M,(X) as a function of M' against the ex-
perimental points for the three primordial frag-
mentation functions of (4.25). As earlier, the
identification is through X= p, /(M/2). We notice
that the predicted curve for large M lies below the
experimental points for the cases (4.25b} and
(4.25c). This feature may be compared with the
recently observed increase in the multiplicity
structure for e'e annihilation. " We may identify
these with the effect of gluon production" directly
or indirectly as due to scaling violations. " The
curve due to (4.25a) appears to lie above the ex-
perimental points.

We next consider some exclusive charged-pion
signals from e'e annihilations. We may believe
that such exclusive pion production may come only
from ~z and d quark-antiquark pairs. Here with
(4.19), we write the energy-dependent cross sec-
tion as, with A. = p, /(vs/2),

cr(e'e -2l charged pions) = (4wa'/s)-'P;""(2l, X) .
(4.30)

all three curves decrease when Ms&2.5 GeV,
whereas the experimental points continue to show
an increase. This may be due to the p' tail as
indicated in the recent careful analysis of e'e- hadrons below the J/g resonance. " The same
effect of resonance production may also be oper-
ative in Fig. 5(b).

2('6 TK )

Fmscati

Oil—

0.0I—

With (4.30), we have plotted the energy dependence
of the total cross' sections for 2/=4 and 6 against
the corresponding experimental points" in Figs.
5(a) and 5(b), respectively, again using all three
primordial fragmentation functions in (4.25). We
note that the predictions of the different models
are different, but confirmation of these experi-
ments would be desirable before any conclusion
can be drawn, since observation of such exclusive
processes is inherently difficult. In contrast to
Fig. 4, here the agreement for (4.25a} appears to
be the best. We may further note that in Fig. 5(a)
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FIG. 4. The average charged multiplicity correspond-
ing to ~ dissociation vs M2 is plotted as calculated from
f «(x), f „(x), and f «(x) as continuous, dashed, and dot-
dashed curves, respectively, against the observed points
from Ref. 8.

FIG. 5. (a} 0'(e+e four charged pions) vs c.m. energy
is plotted for the three functions. The experimental
points are from Ref. 17. (b) 0'(e+e —six charged pions)
vs c.m. energy against the corresponding experimental
points (Ref. 17).
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V. DISCUSSIONS

We have calculated here the energy dependence
of specific hadron multiplicities in the quark-cas-
cade jet model using Mellin transforms and have
tested this against experimental observations. The
same problem had been tackled earlier" in the
context of fireball models" where the results are
quite similar to ours. %'e believe that these sig-
nals will also be useful for the quark-fragmenta-
tion model in addition-to the others examined earli-
er by many authors. ' ' Further, Fig. 1 and Figs.
3(a)-3(d) indicate that the diffractive-dissociation
process z p-Xp may be a two-stage process" in
the quark model where the quark-antiquark pair
ding subsequently hadronizes after dissociation.
That a diffractive-dissociation process may be
viewed as a two-stage process had been suggested
earlier also in the context of the fireball model, "
the first step being the production of a fireball.
We are obviously considering here the same prob-
lem in the context of quark-parton ideas. This
identification implies a new source of information
regarding hadronization of quark-antiquark pairs
both from experimental as well as theoretical
points of view. ' Further, this source will be
more "clean" than that from e'e annihilation,
where, above the charm threshold, the signal of
the cc pair cannot be easily separated. ' The
hadronization here should also be associated with
quark-antiquark jets, ' which appear to be observed
in a recent experimental analysis" in the study of
yP - m'n ~'m m'~ P with a two-jet structure for the
pionic system. In the context of the vector-dom-
inance mode12' and in the present context, we may
expect here this observed two-jet structure for
the pion system above as corresponding to the
hadronization of gu or dd pairs resulting from the
dissociation of the vector mesons p' and ar. We
note that such a two-jet structure will not be ex-
pected to be present in the fireball model. " It
is also difficult to visualize this with triple-Regge
phenomenology, 2' which is a conventional way of
understanding diffractive-dissociation processes.
On the other hand, it is to be expected in the
quark-model picture for diffractive dissociation
which involves a phenomenological hard scatter-

ing." However, it will be more satisfying to see
this structure for the system X in the reaction
z p-Xp directly, but naturally one has to look for
this. Such a source of hadronization of quark-
antiquark pairs or even of quark-diquark systems
for pp-pX may be carefully experimentally stud-
ied with appropriate selection of data in purely
hadronic collisions, particularly since Ref. 8 has
poor statistics for such details.

We are attempting to calculate here the nonper-
turbative hadronization effects with specific as-
sumptions. At very high energies, leading-log-
arithm approximations of the jets in perturbative
quantum chromodynamics will come into play. '~

It appears from an analysis of Furmanski" that
the energies for which the quantum-chromodyn-
amic jets will manifest in e'e annihilations in an
unambiguous manner have not yet been reached.
Hence, the present nonperturbative models for an
analysis of data continue to be unavoidable. How-
ever, we may also note that the quark-fragmenta-
tion model will have to be ultimately supplemented
or altered at high energies. E.g. , quark recom-
bination or other alternative mechanisms are
needed" in high-energy hadronic collisions. W'e
expect that such effects arise from hadronization
of quarks and gluons as in perturbative quantum
chromodynamics with leading-logarithm approx-
imation and subsequent hadronization. The rapid
increase in multiplicity in e'e annihilations" also
appears to indicate this effect. We conjecture that
this will require perturbative"'" and nonpertur-
bative'" techniques being used in a combined
manner. " This in the context of the present model
is nontrivial. Further, we must have as much
verification of the nonperturbative phenomena
separately at comparatively low energies, which
is being proposed here, so that at intermediate
energies we may be ultimately able to predict
phenomena with reasonable certainty.
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