
PHYSICAL RKVIE% 0 VOLUME 23, WVMBKR 3 1 FEBRUARY 1981

Double equivalent-photon approximation including radiative corrections for photon-ph«on
collision experiments without electron tagging
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It is shown that, in first approximation, radiative corrections in photon-photon collision experiments without
electron tagging can be estimated by using a double equivalent-photon approximation of the same type as (but, of
course, analytically much more complicated than) that used for computation of yy cross sections without radiative
corrections. It is obvious that, in such an approximation, radiative corrections —for a given beam energy E0 and a
given invariant mass M produced —become independent of the specific process yy —+X considered. The invariant-
mass spectrum, corrected for radiation, will be written in the general form do.""/dM =—(1+6)do'/dM where
do /dM is the uncorrected spectrum, Values obtained for 6 at typical beam energies Eo = 1.5, 3, 15, and 70 GeV,
and for M/Eo ranging between 0.1 and 0.6, are systematically of the order of less than ~ 1 /o.

I. INTRODUCTION

Investigation of photon-photon collisions in elec-
tron-positron storage rings has started becoming
an area of high-energy experimental physics.
Last year, three experiments were published'
more of them are presently going on or being pre-
pared at DCI (Orsay), PETRA, and PEP.

A. priori, radiative corrections in such experi-
ments are expected to be significant (four external
electron lines in the yy diagram). They cannot be
derived, even roughly, from any standard formu-
las to be found in the literature. They may differ
widely according to the experimental configura-
tion considered, and in particular to the solution
chosen as regards tagging of the outgoing elec-
trons.

Whereas radiative corrections in experiments
with tagging at 0' were considered previously, '
the study presented here, mainly based on the
thesis of one of us (S.O.),' concerns those experi-
ments where the final electrons remain undetected
(notice that two" of the above-mentioned three
experiments were of that type).

As usual, and more than usual, radiative cor-
rections are of great complexity; therefore, we
were led to introduce some simplifications. Lim-
iting ourselves to terms of order not higher than

we had to consider 0 PROM the dj.agrams
shown in Fig. l (leaving aside those which are
eliminated by mass renormalization): the non-
radiative diagram (a); diagrams (b) and (c), with
virtual radiative corrections at one electron ver-
tex (plus the symmetric diagrams obtained by

exchange of the left- and right-hand electron);
diagram (d), with real-photon emission at one
electron vertex (plus the symmetric diagram);
diagrams of the type of (e), with virtual radiative
corrections connecting one electron vertex with
the central vertex (plus the sysnmetric diagrams);
diagrams of the type of (f), with real-photon emis-
sion from the central vertex; and diagram (g),
with virtual radiative corrections connecting both
electron vertices.

Diagrams (b), (c), (e), and (g) contribute, to
order z', only through their interference with (a).
In order to eliminate infrared divergences in the
usual way, we shall consider the following groups
of terms:

(A) The cross section of (d), in association with
the interference between (a) and (b)+ (c).

X

FIG, 1. Feynrnan diagrams involved in the computation
of first~rder radiative corrections for yy collision pro-
cesses in electron-positron storage rings.
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(B) The cross section of diagrams of the type of
(f), associated with interferences between (a) and

diagrams with internal virtual radiative correc-
tions at the central vertex (here we have not
shown the latter ones).

(C) Interferences between (d) and (f), associated
with interferences between (a) and (e).

(D) The interference between (d) and the corre-
sponding symmetric diagram, associated with the
interference between (a, ) and (g).

In our treatment, we shall keep only the group
of terms (A), neglecting all other contributions.
To do that, we shall use the following arguments.

(i) Corrections from the central vertex [i.e. ,
the group of terms (B)] should be less significant
than those originating from the electron lines,
since in general particle masses at the central
vertex are higher, and in addition particle ener-
gies are lower. Furthermore, we may treat
radiative corrections of the central vertex se-
parately, i.e., as included in the process yy

(ii) Since, in any experiment performed in a
charge-symmetric way, the interference between
contributions with g =+ I and -1, respectively
(where C is the charge-conjugation number of the
system X produced), would strictly be zero, the
group of terms (C) would thus vanish.

(iii) The group of terms (D) may probably be
neglected since there should be very little overlap
in momentum space between {real or virtual)
photons emitted by the left-hand and by the right-
hand electron, respectively.

Thus sticking to the contribution (A) only, we
shall consider two different ways of computing
that contribution: In Sec. II, we introduce a single
equivalent-photon approximation (EPA), i.e., we

apply the EPA only at one electron vertex (that
without radiative corrections). From that single
EPA, we then derive (in Sec. III) a double equiva-
lent-photon approximation including radiative cor-
rections. In Sec. IV, numerical results obtained
by using either the double or the single EPA (and
also an exact calculation in a simplified case) are
shown and compared, and conclusions are drawn.
Some details of the calculation are given in an
appendix.

II. RADIATIVE CORRECTIONS IN THE SINGLE
EQUIVALENT-PHOTON APPROXIMATION

Since the equivalent-photon approximation is
known to work well for high-energy electrons
(leaving radiative corrections aside), ' we shall
apply it here at the right-hand electron vertex of
diagrams (a)-(d) of Fig. 1, i.e. , at the vertex
without radiative corrections.

At a given beam energy E„ the invariant-mass

spectrum (calling M the invariant mass of the
system X produced) corrected for radiative ef-
fects will be written as

do "'/dM = (1 + b)do'/d M, (2.1)

where doo/dM is the uncorrected spectrum. The
relative correction 5 is thus defined, in our treat-
ment, as

do" /dM
do /dM ' (2.2)

where the factor 2 takes account of left-hand-
right-hand symmetry, and do "/dM refers to the
group of contributions A defined in Sec. I.

Applying the EPA at the right-hand vertex of
diagrams {a)-(d) of Fig. 1, and calling ~ the
right-hand virtual photon's energy, one gets

2 fN(&u)dr@do" (&o,M)/dM
7

fN(ar)d&u do'(cu, M )/dM
(2.3)

where the symbol 0 is used to define cross sec-
tions for the reduced processes obtained by cutting
off the right-hand vertex from diagrams (a)-(d);
and where the equivalent-photon spectrum N(&u) is
given by the usual formula'

Eo
N((g) = —il ——+, ln —' ——1-—

7J co „k +p 2EO my 2 +0

(2.4)

Our task is thus reduced to computing the in-
variant-mass spectra obtained in the reaction be-
tween the left-hand electron and the right-hand
photon (now treated as real and collinear with the
beam axis') in diagrams (a)-(d) of Fig. 1. Such a
reaction is a one-photon-exchange process, and
we now may apply the factorization formula es-
tablished for any such process (Fig. 2):

dtdW'dW" 64w' A(s, m', m")t'

x [oror()+2)+(o~~+o~o'r)I'+or o~(&+I)],

(2.5)

where m, m' are the initial masses (here m is the
electron mass, whereas red' is the real-photon
mass, i.e. , 0); W, W' are the invariant masses
produced at both vertices (here W ' -=M ); s is the
total c.m. energy squared (here s =4~E, +m, 2);
t is the absolute value of the exchanged (here the
left-hand) photon's four-momentum squared; o»
and 0~ ~ are the virtual transverse and longi-
tudinal cross sections (in a reduced, nondimen-
sional form, i.e., eliminating the "flux factor" ")
for the left-hand and right-hand vertex of Fig. 2

[corresponding to the left-hand and central vertex
of Figs. 1(a)-1(d), the right-hand photon being



DOUBLE EQUIVALENT-PHOTON APPROXIMATION INCLUDING. . . 665

larger than gpss, only by an infinitesimal quantity.
(1) Contribution from virtual and soft Photons.

Setting W =m, (left-hand vertex elastic}, one gets
from (2.5)

d2(7 coH

dM"dt' = « 'E 't'~'

FIG. 2. General Feynman diagram for one-photon-ex-
change processes.

taken as real]; the A function is defined as
A(x, y, z) =x'+y'+z' —2yz —2zx —2xy [here one
has A(s, m', m") =16~'E,']. Finally, g is a kine-
matic factor related to the Lorentz transformation
performed, along the exchanged-photon line, from
one vertex to the other in Fig. 2; it is called
sinh'g in Ref. 9, and its expression can be derived
from Eqs. (2.21)-(2.23) given there.

We notice that, using formula (2.5}, our task is
further simplified, since all radiative correc-
tions considered are now contained exclusively in
the reduced cross section a~ ~ for the left-hand
vertex. %e shall now, as usual in radiative-cor-
rection computations, divide our calculation into
two parts: (1) Contribution from virtual and "soft"
photons. (2) Contribution from "hard" photons.
The limit between soft and hard photons emitted
at the left-hand vertex is of course artificial; it
is set, actually, at an invariant mass W0 which is

(2.6)

br = ——(E+J+K+L'),

6 = ——(I+J'+K+ L),
7t

(2.7)

where the terms I and J (or J') are due to the in-
terference between diagrams (a) and (b) of Fig. 1,
whereas g is obtained from the interference be-
tween (a) and (c) (after charge renormalization),
and J. proceeds from the soft-photon contribution
of diagram (d). All those terms are finite [an in-
frared divergence was canceled out between the
interference of (a) and (b) on one hand, and the
soft-photon contribution from (d) on the other
hand]. One obtains

where terms containing 5~, 5~ are due to the con-
tributions called (A) in Sec. I. br and bz can be
expressed as

1+2p ~
&12 y + ~/2-!

I=2+2(ln7) P, , ln(1 +p)'~' ——
![P(1+P)] 2 ll +pi p

+
[ 1+,y, (y( 7&P) —4 (v—p/q)+ ,'[y(-2'/y) ——y(-2y~p)]},

1+2p

-1
(1+ )]xta

(2.6)

(2.9)

(2.10)

Wo' -m, ' 1+2p l 1+2p2+ 2ln 2 ~ 1 ~ &f2 7 + r x(2 47 p j+p ) — 4py+p ~ ~)m, jp(1+p)j ' ] 4[p 1+p

(2.11)

with

p=t/(4m. '), ~=(1+p)'~'+v p

I

with

ln(1 —g)
y(x) = — dx.

0 x

From Ref. 9, Egs. (2.21)-(2.23), one gets

(2.12)

m, M
7S

~min
~tmax

(2.13)

(2.14)

As for o'~ and o~, they depend of course on the
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with

2

6477 Q)gpt ~ 2
(2.15)

specific yy process considered.
(2) Contribution from hard photons. Here one

gets from formula (2.5)

with

ng, M
S

(2.16)

t" = —~1 — '
~[s —M'-W'+A' '(s, M' W')]

1 t' m'&
2 I, s

1
2 [oToT(~ } (oToL oIor)~8~+

M'(W'-m') m 2M2(M'-W2+m 2)
n h h

max Stmax
(2.19)

+ o ~o ~ (g" + 1)]. (2.16) As for the kinematic limit 5",„, it is given by"

4st(t.",„-t)(t —t.",„)
A(W', m. ', -t)(M'+ t)' ' (2.17)

The virtual Compton cross sections 0~ ~ are given
in the Appendix. As for g" (where we use the sub-
script h for "hard" ), it is given —according again
to Ref. 9, Eqs. (2.21)-(2.23)—by the expression

(st+ m, 'M')(s —M' —m, ' t)—
(s-m ')(M'+t) (2.20)

To get the total radiative correction, we now

simply sum up both contributions (1) and (2).
(3) Total radiat'oe corr, ection. The total radia-

tive correction is now obtained as

2
JN((u)der fdt([d'7(„„" /(dMdt)] —[d'v'/(dMdt)]'I+ fN((u}d(u fdt[d'oh ~/(dMdt)]

JN((u)d(u fd t[d'(7'/(d M d t)]
(2.21)

using Eqs. (2.4), (2.6), and (2.15), and noticing
that d~o'/(dMdt) is given by setting br and 5J.
etlual to zero in (2.6). The limits of integration in
the first term of the numerator and in the de-
nominator of the right-hand member of Eg. (2.21)
are t , t,„given . by (2.14) and (2.13); &u „=(M'
+ 2m, M)/4E, ; &u,„=Z, -m„whereas in the sec-
ond term of the numerator they are only very
slightly different, namely t , t,„given b-y (2.19)
and (2.18), setting W=W, ; ~ =[(M+W,)' —m, ']/

p max p ™g'

III. RADIATIVE CORRECTIONS IN THE DOUBLE
EQUIVALENT-PHOTON APPROXIMATION

The double equivalent-photon approximation is
derived from the single EPA by making

g' (M' t) = or'(M2, 0) = 2M'u (M'),

o,'(M', t) = o,'(M', 0) =- 0,
(3.1)

where o~~(M') is the cross section for both pho-
tons on shell. We know that such an approxima-
tion is justified for the nonradiative term. ' The
explanation is that t, as given by (2.14), is ex-
tremely small, and that the t behavior of the dif-
ferential cross section is -dt/t, i.e. , t values
cl.ose to t give a predominating contribution.
Now the "soft+virtual" term has the same t .

and, as well, the same t behavior in the first ap-
proximation [see (2.6)]. Moreover, the "hard"
term has also, practically, the same t . ; and on
the other hand, it results from Eqs. (2.15}, (2.16),
and (2.20) that its t behavior is, again, -dt/t.
Therefore, we conclude that above approximation
formula (3.1}may validly be used.

We thus get the total radiative correction as

JN((u)(d(u/(u') f (dt/t')(t(r+ 2)5r+4m, 'g5~]+ fN((u)(d(o/(o') f(dt/t') f7dW'
fN(cu)(d&u/cu') f (dt/t')[t(r + 2)'+ 4m, '&]

(3.2}

with

T=, [(g"+2)or+ g"v~]. (3.3)

IV. NUMERICAL RESULTS, CHECK OF THE DOUBLE
EPA, AND CONCLUSIONS

The limits of integration are the same as before.
We notice that 5 has now become independent ofo, i.e., of the specific yy process considered.

In Table I, we show the total radiative correc-
tion 5 in percent, computed numerically in dif-
ferent ways, i.e. , (i) by ueing the double EPA
(3.2), (ii) by using the single EPA (2.21) for the
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&zzr ~zv

0.1
0.16
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6

0.21
0.17
0.10
0.05

-O.04
-0.15
-0.24
-0.34
-0.48
-0.67
-0.68

Ep=1.5 GeV

0.20
0.15
0.14
0.03

-0.06
-0.13
-0.23
-'0.31
-0.40
-0.46
-0.63

Ep=4.5 GeV

0.19
0.14
0.10
0.02

-0.05
-0.12
-0.23
-0.33
-0.46
-0.57
-0.78

0.24
0.21
0.15
0.09
0.01

-0.07
-0.16
-0.25
-0.35
-0.45
-0.55

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5 '

0.55
0.6

0.36
0.32
0.20
0.15
0.12
0.03

-0.13
-0.17
-0.32
-0.44
-0.52

0.45
0.30
0.13
0.00

-0.13
-0.21
-0.24
-0.28
-0.42
-0.56
-0.59

Ep=15 GeV

0.45
0.28
0.09
0.08
0.06

-0.01
-0.09
-0.18
-0.34
-0.47
-0.54

0.40
0,36
0.30
0.22
0.13
0.04

-0.06
-0.16
-0.27
-0,39
-0.50

0,1
0.15
0.2
0.25
0,3
0.35
0.4
0.45
0.5
0.55
0.6

0.49
0.47
0.43
0.29
0.19
0.11
0.01

-0.09
-0.26
-0.37
-0.47

0.50
0.47
0.44
0.29
0.20
0.04

-0.05
-0.08
-0.28
-0.36
-0.49

Ep=70 GeV

0.57
0.47
0.42
0.36
0.20
0.08
0.05

-0.07
-0.09
-0.40
-0.61

0.60
0.56
0.47
0.38
0.28
0.17
0.06

-0.06
-0.18
-0.31
-0.44

0.1
0.15
0.2
0.25
0.3
0.36
0.4
0.45
0,5
0.55
0.6

0.84
0.74
0.61
0.55
0.39
0.33
0.19
0.11

-0.01
-0.18
-0.39

0.81
0.73
0.51
0.44
0.35
0.19
0.15
0.07

-0.05
-0.18
-0.32

0.85
0.83
0.70
0.62
0.44
0.31
0.18
0.01

-0.09
-0.27
-0.32

0.86
0.79
0.70
0.59
0.47
0.34
0.21
0.08

-0.07
-0.21
-0.36

TABLE I. Total radiative correction 6 in percent, for
various values of the beam energy Ep and the ratio M/Ep
(vrhere I is the invariant mass produced), for nontagg-
ing measurements of processes of the type ee eeX.
6z: double equivalent-photon approximation (process-
independent). 6zz.. single equivalent-photon approxima-
tion, X= p'p . 6zrz.. single equivalent-photon approxima;
tion, X=7t'~ . 6zv.. exact calculation, X=0"state.

specific processes ee - ee p,
'

p and ee - eel' &, and
(iii) through an exact calculation for a fictitious
and particularly simple process, namely ee- eeX,
where X represents a scalar (0") continuum. In
case (iii), formula (2.5) was applied as well, but

'

now the reduced cross sections o~ ~ were those
of the full process y*s-Xe (where y' is the left-
hand virtual photon) and were calculated without
any approximation. Correspondingly, in formula
(2.5), the definition of s, m', W', and & was
changed as well (all those modifications are quite
trivial). Let us also mention that, for the coupling
between the yy system and the 0" state, we used
the gauge-invariant tensor: g„„-k'„k„/(k. k'). We
here considered various beam energies ranging
betweeri 1.5 and VO Ge7', and invariant masses
ranging between 0.1 E, and 0.6 E', .

Comparing numerical predictions of the process-
independent double EPA with those of the single
EPA and of the exact calculation for the specific
processes considered, we see that the differences
are insignificant. We thus conclude that the double
EPA may be used with confidence for such calcula-
tions.

On the other hand, we notice that j 5 [ is less than

leap

everywhere, i.e. , the total radiative correction
is systematically very close to zero. In other
words, surprisingly enough, there is an almost
perfect cancellation between the "virtual plus soft"
contribution and the "hard" one."

In conclusion, it appears that, in a very wide
kinematic range, the total radiative correction
may be neglected ip yy collision experiments
without electron tagging.

A few additional remarks are in order.
(i) As already said in Sec. I, radiative correc-

tions may strongly depend on the experimental
conditions considered, and they may considerably
differ from the figures here shown when a dif-
ferent solution is chosen as regards electron tag-
ging (see Ref. 5).

(ii) A more realistic calculation would consist
of taking account of acceptance cuts in the central
detector; one of us (MD) is performing such a
calculation.

(iii) Since the total first-order correction ap-
pears to be negligible under the conditions con-
sidered, there is no need for calculating higher-
order corrections.

APPENDIX

We give here expressions for the virtual Compton
cross sections:
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T W2 e W2 Al/2

4W' (W'-m, ')(W'+m, '+ t) 2W' (W'+me'+ t m, '(W' —m, ') l

—me e

8 = —,' (W'-m, ')+. . . [m, '-m, (5W' —t) —m, '(5We+4tw')+We(W2+t)j
e

2I 2+, ', ,t, [3m, +2 m'(5 W+3t)+ 3W+6W t+2t ) — 4™',(2W'+2m, '+t)I,W'-m ' A't'
e

8' -m e

A'~2 1+q
W2+m, 2+ t'
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