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The 0(a, j perturbative quantum-chromodynamic corrections to weak, charged-current production of heavy
quarks are evaluated. For perturbative subtractions and parton densities defined via the electroproduction structure
function E, , the residual corrections to vX flavor-production structure functions are shown to be modest except for
x'~1 or g'&M'. We investigate sensitivity of the results to different perturbative subtraction prescriptions.
Specializing to charm production, we further find that, for E„&30 GeV, color-radiative corrections modify
estimated production cross sections by no more than 10%. The results for charm are shown to be generally
insensitive to factorization of G~F splitting "singularities" into evolution of an intrinsic charm-sea component of
the nucleon. The longitudinal structure function due to charm production is computed and found to be substantial.

I. INTRODUCTION

Initial optimism that factorized, leading-loga-
rithm perturbative quantum chromodynamics'
(QCD) might provide a quantitative description of
hard-scattering hadronic processes has been tem-
pered somewhat by recent calculations of sizeable
nonleading corrections for several processes. ' '
It is now known that these "large corrections" are
very much prescription dependent, and can often
be reduced by judicious choices for perturbative
subtraction schemes. ' ' Nonetheless, these re-
sults do demonstrate the need for evaluating non-
leading color-radiative corrections for as many
processes as possible in order to understand the
behavior of QCD perturbative expansions and the
validity of lowest-order approximations used in
hard-scattering phenomenology. In this work we
continue such a program by evaluating the chrom-
odynamic corrections to heavy-flavor production
by neutrinos.

Beyond simply extending the class of "radiative-
ly corrected" processes, we wish to emphasize
the value of neutrino charm production as an ac-
cessible l.aboratory for experimental studies of
perturbative QCD. Opposite-sign dileptons pro-
vide a clean signal for charm at a substantial
fraction of the total neutrino cross section. The
observed suppression of same-sign dil. eptons"
supports the expectation that soft cc-hadronization
is suppressed. The lepton from charm decay thus
provides a clean probe of gluon-bremsstrahlung
effects on the production and fragmentation of a
specific, identified quark. Sufficient data now
exist" to make quantitative study of such effects
a useful complement to jet analyses in e'e anni-
hilation. The 0(o.,)-corrected structure functions
and cross sections presented here constitute first
steps in obtaining a normalized, "standard model"
for phenomenological comparisons.

The organization of the rest of this work is as

follows.
In Sec. 0 we evaluate the perturbative structure

functions for heavy-quark production, using di-
mensional regularization for infrared and ultra-
violet divergences. The perturbative results are
presented in the form required for subsequent
factorization of initial-state singularities: a
known splitting-function coefficient times a simple
pole plus a finite residual. Attainment of this
form is found to require a slow-rescaling parton-
model formalism.

Absorption of the splitting singularities is done
in Sec. III. We define the perturbative subtraction
scheme using the electroproduction structure
function I', . Perturbative structure functions
needed for these subtractions are presented,
with particular attention given to the heavy-quark
pair-production process, y~G —QQ. Our final
results for the corrected flavor-production struc-
ture functions are presented in Sec. III C. We also
discuss sensitivity of these results to changes in
the perturbative subtraction scale and to treatment
of the heavy-quark sea.

In Sec. IV we investigate the radiative correc-
tions for charm production. The fractional
changes in the structure functions E, (x ) are small
except at very large x . The estimated changes in
the charm-production cross section are also quite
small —of order 5/~ over the energy range relevant
for current experiments. These results are
shown to be largely insensitive to different treat-
ments of the charm sea. The longitudinal struc-
ture function due to charm production is also ex-
amined.

Section V summarizes our principal conclusions.

II. PERTURBATIVE CROSS SECTIONS

In this section we compute the elementary cross
sections for heavy-flavor production in neutrino-
quark and neutrino-gluon scattering to O(o.',).
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A. Neutrino-quark scattering

To O(o.,); the contributing processes are

~(k,)+q(p, )-i (k.)+&(P.)
and

~(k,)+q(p, )- ~(k2)+@(P.)+G(p.)
corresponding to the graphs shown in Pig. 1.
Throughout, we use 9 (q) to denote a massive
(massless) quark, with p, ' -=M'.

(2)

w "(q )

q ( p()
(a}

Q (p&)

Since the initial states involve colored quanta,
these cross sections contain canonical collinear
singularities. The absorption of these singulari-
ties into measurable quark and gtuon distributions
and subsequent calculations of physical cross sec-
tions are discussed in Sec. III.

In principle, evaluation of the perturbative cross
sections is straightforward. In practice, the non-
zero heavy-quark mass results in complications.
In particular, care must be taken so that the final
expressions agree with known results in the limit
M 0. In Secs. IIA and IIB we present the per-
turbative calculations in sufficient detail for our
results to be reproduced or generalized without
undo effort.

Those readers interested only in the results of
the perturbative calculation can skim Secs. II A
and B without loss of content.

Hidden in the considerable algebra of Secs. IIA
and B we do find a few points worthy of separate
comment. These are mentioned in Sec. IIC.

The amplitude for the Born term, Fig. 1(a), is
written as

«~ aaIIO=~ & k

where, as usual

l = u (k, )y "(1—y, )u(k, ),
k =u(p. )r (1-r )u(P }

(4)

(5)

and K is the g -Q weak coupling relative to
(G~/W2)' '. The cross section is then

& ~Z I 0(.80ns
dQ' 64ws'

with

s —= (p, +ki)',
Q'=—-q' = —(k, —k,)',

and

(7)

(8)

H4 -—0.

I n8 Q Iatis
SPl11S

=8(k, k28+k2%, —k, ~ k, g +le s„„k,"k,") . (9)

The hadronic tensor H" is similar to Eq. (9).
However, to establish connections with higher-
order terms, we write this as

H "s =-4(Q'+s)H, g"8+16H, p,"p, +8iH, e „sq,p,"q"

+8H4q qs+8H, (q p~s+p, qs), (Io)

where s = (k, +p, —k,)' is the squared mass of the
recoil system. The functions H& are related to
conventional deep-inelastic structure functions by
coupling strengths and a convolution with nonper-
turbative parton densities, as discussed in Sec.
III. For the Born term, Eq. (1),

0 ( p&)

This specifies our normalization.
For the real-gluon emission process, Eq. (2),

we write

G( p&)
Jg= gT'l H (12)

(c)
FIG. 1. Graphs contributing to 8"*q QX through

0(a ).

where g is the'QCD coupling, T' is a color ma-
trix, and

H" = (k ""+ k,"")e "*

with

(2p. .p.)k,""=u(P.)r"(P. +P. +~)y (I r.)u(P,), —

(14)
(-2P1.P,)k2"" = u(P2}r (I —r,) (pl -P.)r "u(P 1)

corresponding to the graphs in Fig. 1(b). Main-
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taining the normalization of Eq. (6), we obtain

2

H s = (-', ) 2
ds d, P(p, +q -p, +p, )

SPlil

(15)

where

y = p (1 + cos ed3)

so that
1

t = —— (s + Q')(s —M')(1 —y) .s

(22)

(23)

~here

s =— (P, + d?)' (16)

The y integrations are easily performed, giving P
functions. Before giving results, it is convenient
to introduce notation:

and d, I' is the usual 2- 2 phase-space factor. The
factor (-', ) in Eq. (15) arises from color averaging.

To control the infrared divergences contained in
Eq. (15), we use the techniques of dimensional
regularization. " That is, we evaluate Eq. (15) in
space-time dimension

D =—4+2m.

The infrared singularities in H then appear as
1/c poles. Using this method, we can consistently
calculate with on shel-l external particles [as is
implicit in Eq. (14)]. This both simplifies phase-
space integrations and maintains gauge invariance
at all intermediate stages of the calculation. "

We compute & by projecting out the individual
structure functions II, :

Q'+A'
z= Q'+ s

Q'+M' '

s —Al' 1 —z
s 1 —Az

We then have

1

0

with

1 +z
JI = +1 —4z+z +4&z1

(24)

(25)

(26)

(2'?)

p a(8~+8

2 '
( ")dsd PP' (L8dId)

3n
(18)

(28)+ (z(l —z) —2)e(1 —z')+-,'t'(1
where we have dropped terms O(c'). Collecting
terms gives

The mass parameter p keeps the coupling g di-
mensionless in D dimensions, g gp. '. The pro-
jection operators are given in Appendix B. We
will evaluate 8, in some detail, and simply quote
results for the other H, The integrand in Eq.
(18) for H, is

4 a, Q'+M'~~' 1(1+a)
2m 4wg' j I'(1+2e)

z
&& —(1 —z)" '(1 —A.z) 'z 'H, (z, $, e).

(29)

~ a8 gn&~8 g ~

(s —M )
with

(19)
Next it is convenient to rewrite the (1 —z)"
singularity using the identities

s (Q'+M') (1 —c) (s —dVI') s —M' '
i(s —M') (Q'+s) Q'+s Q'+s

(1+a)t st(Q'+M')
2(s+Q') (s +Q')'

Q'+M' (1 + c) (s —M')'
t 2t(s +Q') (20)

where t= (P, -P,)', and we have discarded O(e')
terms in &, which do not contribute to the final
result for H, .

In D=4+2e dimensions, the two-body phase
space factor is

1 s —M' 1 (s )VI')'-
~ (1 ) 4 yfJ( 3)l

(21)

e lnz
1 —z

(1 —z)" '(1 —Xz)

2 1n (1 —z) —ln (1 —Az)+6 + O(c'),
1 —z

(3o)

1 —z+, + O(e), (32)

= 6(1 —z) —— —A'„+ + 0(&),
1 (1-Z)' .

"
1

]

(31)

(1 —z)" '(1 —Az) ' ('

= 6(1 —z) —— — K„——1 (1 —A.)' 1+A. li
E' A, A.
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where

K„=-—(1 —X) in(1 —~),=1

Li, is the usual dilogarithm,

Li., (x) =—— —ln(1 —xy),
0

(34)

(35)

and, for arbitrary h(z), the corresponding dis-
tribution [h(z)], is defined by its integrals:

Note that, for &-0„ the left-hand side of Eq.
(31) is simply (1 —A.z) ' and appears to require no
regularization. However, replacing Eqs. (31) and

(32) by their e =0 values results in a final ex-
pression for II, which does not have a well de-
fined massless limit. [For example, Eq. (40)
acquires an uncanceled 5(l —z)5(1 —A) piece. ]
The expansions in Eqs. (31) and (32) are necessary
if Eq. (40) is to agree with the known massless
result for A. —1.

Using Eqs. (30)-(32) in Eq. (29), we obtain

a. Q'+I)l' ' r(1+e) dz -1 1 3, 2 3 7 1 . 1+xHR (y) s 5(l —z), +———(1 —A.)'+—,——+————2 Li, (X) — E.„~ 2g 4zii' r(1+2e) z e' 2e 2 e' 2e 2 2~ ' 2Z

1 1+z' (1+z')lnz, 2 in(1 —z) —ln(l —Az)~
+— — +(1+z')

e (1 —z), 1 —z 1 —z

(36)
1

"
1 " 1 1 —z

+ () —4z ~ z') z() —z) —,+o(c)},
1 —z, 1 —A.z ~ 2 1 —A.z '

To obtain the complete O(o.,) correction to H„we must add the contributions H, from the virtual graphs
in Fig. 1(c). These virtual terms are calculated in Appendix A, with the result

4 o., Q'+Af ' I(1+@) 1 1 &, 2 3 . vII 5 (1 —z) —
2

——+ 2
~
(1 —A.)

' ——,+——8 —K~ + 2 L i2 (A.) ——
3 2w 4mli F(1+2'') t 2E I e e 3

Combining terms and adding the 5(1 —z) contribution from the Born term, Eq. (11), we obtain

II, =—5(1 —z) +—i, —' P, I, (z) +—' h, , + O(e)

where"

&,I, (z) = — —5(1 —z) +
4 3 1+z'
3 2 (1 —g)

(37)

(38)

(39)

is the usual quark-in-a-quark splitting function, and the

-5 1 —z 4+—+—+ K — +

residual term h, , is

(1+z') 2 1 n (1 —z) —1n (1 —)(.z) ~

~a

1 1 1
+ (1 —4z+ z') +z(1 —z) +—

1 —z t1 —xz, 2.
1 —z

(( —xz)' (40)

To quote results for all structure functions, we
first define

1 Q'+M' ' I'(1+a) a,

where the superscript q designates quark-current
scattering. Note that II4 has no initial-state
singularities. We expand the residuals h, , as

Then

dz'
H;(g) =—(P, (z) +—' h, , (z, X)

H;(z)/z =—6', (z) +—'h, ,(z, A)
dz

(41) h, .=(-', )Ih. +A, il() —z)1,. 1
+&x +B2'1 —z, '„1—wz ~,

1 —z

with
dz

H,'(z) =—

dz
H,'(z) =-

z

dz
H', (z) =-

z

(P, (z) +—'h~, (z, X)2'

—'h, ,{z,)(.).2p "
Q~

(P, (z) +—'h, , (z, A.)

(42) 1 )i 1+3%. (1+z )lnz
h, = —4+—+—+

2A. 3 2A.
" 1 —z

+ (1+z') 2 ln (1 —z) —ln (1 —A.z)
z +

(44)

with%„as defined in Eq. (33). Coefficients for
j=1,2, 3, 5 are given in Table I. For h4 „we ob-
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TABLE I. Coefficients for the expansions in Eq. (43)
of the perturbative structure functions for W*q —QX.

2

H g8 = ( ~
) —ds d2 P g Hz HG .

SPgl

(46)

A.

1 0

2 &g/2

3 0

1-4z+ Z2

2-2z2-2/z
~1 ~Z 2

B~
2

Z ~ Z 2

2/z
2

1-z 1
2

ZH-"H'[q(P, )- Q(P, ) G(P.)],
SPIns

(47)

The factor (-', ) arises from color averaging. The
spin sum in Eq. (46) is obtained from that in Eq.
(15) by crossing. That is, defining

j
2X

z2 3 ~2z~z 2 Z
2 FPr' = +HZ 'Hc[G (P,) —Q (P-.) +q (P,) ],

SP 111S

then

(48)

tain simply

z'(1 —Z)'
(1-~ )'

B. Neutrino-gluon scattering

I'"Pr'(Pi, P2, P~) = —I'7 '( P„P2-, -P,)

Again, we shall present the calculation in detail
only for H, (to simplify notation, we drop the sub-
script G). As in Eq. (18), we write

The O(g) Born graphs for neutrino-gluon scat-
tering are shown in Fig. 2. Foll.owing steps
analogous to Eqs. (12)-(15), we obtain the corre-
sponding tensor

2

H, =—(p. ")ds d, PH, ,

with

(50)

4
, +O(e ).

I 2 2(s —M')(Q'+M') 1 —e 2(1+e)(s -M')(Q'+M') 4M' 8M's
t (s+Q')' u —M' (s+@')' (s+@') (s+Q')'

4M' s +M' —2eM' 8s Q'(1 —e)
(u —M')' s +Q' (s +Q')' (51)

We expand the phase-space element as in Eq. (21),
use the scaling variables defined in Eqs. (24) and

(25), and replace

quark mass M' regulates the n —M' poles in Eq.
(51), giving finite terms for e- 0. Performing the
phase-space integrations, we obtain

Z
ds =—(s+Q') (52)

H, = 2(2)—'
. , —(1 —z)" (1 —Xz) 'z 'H,".a, Q'+M' ' dz'

2w 4np' z

u —M' = ——(s +Q')[M'+ y(s —M')) . (53)

The 1/t term in Eq. (51) again leads to a P-func-
tion singularity for &- 0. However, the heavy-

in Eq. (50). The invariant t is expanded as in Eq.
(23), and (54)

The factor 2(—,) reflects the conventional. nor-
malization of P,gc (below) in which G -q, G-q
are counted as individual transitions. The term
U, is

H =—[z'+ (1 —z)'+e]
26

0 (p&)

+ —,
' ln [z'+ (1 —z)'+ 4z(1 —A)

z —A,z

—8A.z'(1- g)]

G ( p))
q(p ) + z (1 —z) [3 —4 (1 —A.) ] + —1 + O (e ) .

1 —A,z (55)

FlG 2. O(a's~ Born graphs for 8"*G Qq. The current-gluon squared matrix element has no
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s-channel poles, so we may simply expand

(1 —z)" (1 —Xz) 'z '- 1+2@ln(1 —z)

To put the result for II, into a standard form, we
introduce the gluon splitting function

—z ln(1 —A.z) —e ln(z) .

(56)

P, io(z) =P;ga(z) = &-') [z'+ (1 —z)'].

We obtain

(57)

g o!, Q +M ' I'(1+a) dz 1
Hi =

2 P, pc(z) —& Lz +P,y&(z)[2 ln(l —z) —ln(1 —Az) —lnz]2z 4zp. ' I'(1 + 2e) z

+ 2z(1 —2hz) (1 —A,)L„+[3 —4 (1 —A.) ]z(1 —z) + (1 —x)z 1

1 —Az 2
(58)

where

1 —A.z
(1 —Z) z. (59)

I

(51) have opposite signs, giving

dz~(z) =—6'. (z)+ —2'I~. .( ),
ls ~I

and we have reinstated the superscript G.
The perturbative structure functions H, , H, , H,

can all be put in a form analogous to Eq. (42):

where
1 & Q +M'& ' I'(I+a) n,

(1 2)—
dz as

H, (z) =—6'G(z)+—'h, o(z, X)

dz as
H, (z) =—+c(z)+—'@2,a(z, ~)

I»

H, (z) =—(Pg(z)+ —'h, g(z, A.)
dz As

Isa

(60)

(65)

H, =——'h, o(z),
Z +s

(66)

with

and h, o is expanded as in Eq. (62). Finally, for
the finite term H, we obtain

where

(Po(z) = —+ Lx I 4 2 I 2
—2P, ~i( )z. (61)

1 ) Q'+M' ' I'(I +e) a,

The residuals h~ are expanded as

h, q = —2z(1- A.)Lq+2(1 —z),
where L~ is defined in Eq. (59).

C. Comments

(67)

h,. g = C, + C,'- z (1 —z) + Cq

+(1 A)zL~(C', . +&zC;),

where

(62)

Equations (41)-(45), Eqs. (58)-(6V), and Tables
I and II contain the primary results of this section:
the perturbative structure functions for heavy-
flavor production. These expressions are singu-
lar, with the generic form

TABLE II. Coeffieierts for the expansions in Eq. (62)
of the perturbative structure functions for 8'*G —Qg.

Ci 2 C3J

3-4(1-~) (1—'A) g 1
1-Xz 2

7-18(1-~)

+ 12(1—~)'

3 -1+2(1-~)

5 7-10(1- ~)

i
T
(1—A)z 1
1—Xg 2

2(1 z)

-10

Co=—P, ~ z(z) [2 ln(1 —z) —ln(1 —Xz) —ln(z) ] . (63)

The coefficients C~ are given in Table II. For
H, , the leading coefficients in the analog of Eq.

-1
Pz (perturbative) P, y, (z) + H, (fin—ite), (68)

Identification of the scaling variable

In Eq. (24), we introduced the scaling variable

Q'+u' Q'+u'
Q +s 2p, ~ q

(69)

where the residual, finite parts are dependent on
the scheme used to regularize infrared diver-
gences. The pole term in Eq. (68) has the canoni-
cal form required for universal factorization of
initial-state collinear singularities. The absorp-
tion of these singularities, and the determination
of measurable consequences of the finite residuals
will be done in Sec. III. There are, however, a
few interesting results hidden among the preceed-
ing formulas which merit special comment here.
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This definition is not arbitrary. Rather; it is
required if the initial-state mass singularity
P, ), (z)ge is to be independent of the final state (as
required for perturbative factorization). This
leads to the flavor-production cross section

(70)

we obtain

~, (z, )(.) =—'(-', ) —,'If„5(1—z)

(1 —x) (1+z)(z —2)
(1 —A.z)

(73)

where q and d& are "regularized" quark distribu-
tions, cross sections, and

(z, 1) =—'
Iz (I —z) (4 —14 (I —I) + 12 (I —1)']

Q'+Mp' M~'
x

2MN v 234~v
=x+ (71)

(1 —X) (1 —z)
1 —A, z

Equations (70) and (71) define a "slow-rescaling"
parton-model formalism. "

The notion of slow rescaling is by no means
new. " Our point is simply that it is required for
consistency in an on-shell factorized parton
model.

Structure- function differences

2 (I —1)(1 —21)1.,[-1 24 ]I,
(74)

where A. , K„, Lz are defined in Eqs. (25), (33),
and (59). In the limit M-0 (A. —1), these agree
with the known results:

(75)The regularization-scheme dependence of indi-
vidual. structure functions 0,- cancels if we con-
sider differences. Here we examine a (z) =—'4z(1 —z).

2a
(76)

(72)n(z) =H, (z)/z —H, (z) .

For quark-current and gluon-current scattering
To get some feel for the. size of mass effects, we
plot 6(z, A)(b, (z) for several values of x in Fig. 3.

l I 4

~o(& ~)/'~G(z)
4 I

)

= o.5o

h, = ov5

0

0.0 0.5
z

1.0 0.0 0.5
z

1.0

FIG. 3. Ratios of the perturbative structure functions in Eqs. P3) and (74) to the corresponding massless lsmsts for
various values of A, = Q /(Q + M2).
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s +Q'
~,"*~;H~"=4(s+Q') -H, +, H,

—= 4(s +Q')HI, ,

where the longitudinal structure function is

1
H~(z) = H, (z) ——H, (z) .

(78)

(79)

In the massless limit, &L, vanishes to lowest or-
der, and &I. ——~ is the complete longitudinal struc-
ture function through O(u, ). For A. 4 1, Hz is not

zero for the Born term, so that extraction of
O(o.', ) corrections must await removal of initial-
state singularities from &, .

While the functions h(z, A) are not simply re-
lated to the longitudinal structure function, they
are nonetheless of physical interest. The 4's are
kernels (in the sense discussed in Sec. Ill) for the
difference in physical structure functions. Such
differences are free from the O(o.',) subtraction-
scheme ambiguities which affect individual struc-
ture functions.

[The 5(1 —z) component of 4, is not used, so that
these curves are not reliable for z 1.] The z-0
divergences in Fig. 3 are due to vanishing of Eqs.
(75) and (76). Note that the approach to the mass-
less limit is not uniform in ~.

Using the longitudinal pol. arization vector

(77)

and the form of H"' in Eq. (10), it is easy to
show

The coefficient of the splitting function is

-[1—(s (M') '] L), + 0 (e) .
1

(82)

II, & does not have a smooth massless limit. This
"mass ambiguity" is removed only after factoriza-
tion of the singularity appropriate for G-QQ
splitting.

A. Nonleading corrections to parton-model calculations

In the simple parton modeI. , the cross section
for heavy-flavor production in neutrino- nucleon
scattering is

III. PHYSICAL STRUCTURE FUNCTIONS

The (I/e)P, y~(z) splitting singularities con-
tained in H;. (z) and H, (z) must be absorbed into
redefined, effective parton densities. This per-
turbative factorization will be done in this section,
In part A, we briefly review the meaning of par-
ton-model calculations beyond leading-logarithm
accuracy in perturbative QCD. In part B, we

compute the perturbative electroproduction struc-
ture functions needed for implementing the fac-
torization scheme of part A. The results for
y*q-q'G and y*G-qq are simple and well known.

However, for heavy-quark production, y*G- QQ,
factorization is somewhat ambiguous, as we dis-
cuss. Finally, in part C we present our final
formulas for the QCD-corrected flavor-production
structure functions in a compact, usable form.

Connection ~ith massless limit

do(vN- 1Fx) = g dx G, g~(x')do(va- lfx),
a

(83)

In the course of deriving the perturbative quark-
current and quark-gluon structure functions, we

encounter numerous terms of the form

(80)

where f (F) denotes a heavy quark (hadron). The
interactions of quarks and gluons described by
QCD modify the simple form of Eq. (83). Taking
into account only the most singular parts of
higher-order amplitudes, the net modification is
the now familiar, "factorized" substitution"

Such terms do not yield a smooth massless limit: G, y (x ) —G,y„(x, Q') . (84)

lim lim (1 —A.)'=1,
(81)

These noncommuting, ill-defined limits are seen
as ln(1 —X) terms in the expansions of real (H,")
and virtual (H, ) contributions to H, , While
neither H", [Eq. (36}] nor H,

" [Eq. (37}]has a
smooth massless limit, the sum &, , is completely
well behaved for A, - 1. This is mandatory, since
all singularities associated with H, , depend on the
splitting g -qG of massless partons.

In coritrast, one of the splitting singularities in

&, ~ is related to heavy-quark production, G -Q.

However, there now exist indications that the
simple, factorized picture of leading-logarithm
QCD may not be quantitatively adequate for de-
scribing physics at presently accessible ener-
gies. ' ' The nonfactorizing pieces of perturbative
QCD [e.g. , the terms 8;,(z), k; (z) of Sec. II]
cannot always be neglected. Inclusion of these
terms, however, is not completely trivial. Re-
calling that h&, is dependent on the specific
scheme used to regulate the infrared divergences
of perturbative QCD, it is clear that simply adding
a term proportional to @, , (z)G, g„(z) to Eq. (83)
can have no physical significance.

The extraction of measurable consequences from
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the residuals @,. is discussed in detail in Ref. 2.
The algorithm is best described by a simple,
schematic example.

Consider two processes involving initial-state
nonsinglet quarks. The Born cross sections are

(85)d,. (Bo ) fd='dq(dq'd( '),

where d&" is the lowest-order parton cross sec-
tion. The perturbative cross sections through
next order in n, can then be written as

drr(O(, )]= f, dxdq;"f ()P—(*) ~ ,.dy(qlli ( )
1

d 'd-() —y 6, 'y, h, 'y q(') y
x' y

(86)

where (I', is a singular function of the general
form of Eq. (41), e.g. ,

I

order expression for the electroproduction struc-
ture function F,:

1 n,
(P, 5(1 —z)+——' P, g, (z), (87) F, *"(z)(z=ge, 'G-, &„(z). (91)

d(T, —= dx da Oq ' x (88)

if dimensional methods are used to regulate in-
frared divergences. We now define the effective
parton distribution by requiring d(x, [O(n, )] to have
the form of Eq. (82):

This has theoretical attractions (e.g. , the Adler
sum rule is maintained), and the pragmatic advan-

tage that I'~ " is rather well measured. Difficul-
ties arise in that the quark sea, gluon distributions
are not well determined.

To implement this program we need perturbative
structure functions for the processes

The parton density beyond leading order is thus

q t'(x ) = —6', g,
—+ o., &, —

~
(f "(y) .y. y yj

(89)

yQq q(»

ygQ
'

qq

y*O- QQ,

(92)

(93)

(94)

Since parton distributions are not perturbatively
calculable, the relation in Eq. (86) is purely for-
mal. Operationally, the simple product form in
Eq. (88) is used to extract (f

' (x ) from experi-
mental measurements of d&, . The empirical par-
ton densities determined in this manner may be
used in calculations of d& ' provided Eq. (89) is
used to eliminate (f'(y) from the j = 2 version of
Eq. (86). Doing this and discarding O(o.",) terms
gives

d~, = dx'da, '"q" x'

+n, dx do("
I

&& —4, ——)d) —
i q

' (x ) . (90)
' dy x x I ()

y)

where, as before, Q (q) denotes a massive (mass-
less) quark. The perturbative H, expressions for
processes (92) and (93) may be trivially obtained
from the A. —1 massless limits of the results in

Sec. II.
,y+q qQ

e,() d, , 1 Q ~~'r(1+;)
z z c 4zp. '& T'(1+2') 2)T

+ —' h,', z (95)

with

h, , (z) = (-, ) ——+—6(1 z)
9 m' (1+z')inz

ln(1 —z)
'

+ 1+z
+

The second line in Eq. (90) is independent of regu-
larization schemes used in the calculation, and
represents the nonfactorized, measurable correc-
tion to leading-logarithm QCD which we seek.

B. Effective parton distributions and perturbative
subtractions

Following Ref. 2, we choose to define our effec-
tive parton distributions by maintaining the lowest-

3 1

2 1 —z
+3 +2z.

with

y+G qq ~

H, (z) dz 1 Q' ' 1 (1+a) o.,
z z e 4m'' I"(1+2m) 2~

+

(96)

(97)
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k,' (z) = [z'+ (1 —z)'] ln~ ~+6z(1 —z)
(I —zl

j
(98)

The scaling variable z is given by the massless
limit of Eq. (24):

Q'+s ' (99)

(100)

Equations (95)—(98) agree with the corresponding
results in Ref. 2.

For y*G-QQ, the analysis is somewhat ambigu-
ous. The heavy-quark masses regul. ate infrared
divergences, so we may take e =0 from the outset.
Following steps analogous to those in the calcula-
tions of Sec. II, it is easy to obtain

(102). We choose to generalize Eq. (24) by de-
fjning

z= Q +Sth

Q +s (108)

where s&q is the hard-scattering threshold (s,h

=4M' for y*G-QQ, vs s,&
=M' for W*G-QP). We

maintain the definition of A, in Eq. (25) [replacing
M' by s,„ in Eq. (25) gives F,(y*N) xF, (W*N) for
X- 1].

Using Eq. (108) in Eqs. (100)—(10'I) it is
straightforward to obtain the required perturba-
tive &,.

r"G-QQ:

P, (z) dz . /o. , l (a,'I
z z '(2~] ' '

i2w&
"=—2&~1 —' IP. io(z)+~ —'lk2, G(z) (1o9)

where l.z is defined in Eq. (59), and

where y, s are as defined in Sec. II,

Eg = ~s/2,

P$ = Eg(1 —4M'/s)'i',

and

H, =ao(u '+f ')+a, M'(u '+t ')+a, ,

with

t = (Pg -P o) —M',

u= (Po -Pg) —M',

and

a, = -1+(3s +8M')/(s +Q')

—4(s' —2M'+5%'s)/(s +Q')'

+2s (s' —4M'+6M's)/(s +Q')',

(101)

(102)

(103)

(104)

(105)

k,' gz) = 2P, i (z) lnR(A. , z)

+(1 —Z)[L„+lnR(Z, z)] C„(Z, z)

+T(A. , z)[-1+8z(l —z)]

+ (1 —Z)T(X, z)C, (Z, z),
with

(1 —z) (4 —3A.)
Z (Z, z) =Pg/E5--

R(Z, z) = [1+T(x, z)]', 4-3x-xz

C„(A., z) = —(1 —5z+9z')h~

+ (1 —A.)zk~'(23z/2 —3)

-9(1 —A)'z'k q'/2,

Cs(A. , z) = (1 —17z+25z')kg

(110)

(112)

(113)

a, = 2 —4(s+M')/(s +Q')

+2s (s +2M')/(s +Q')',

a, = —2/(s + Q') + 14s/(s + Q')'

-24s'/(s +Q')'+12s'/(s +Q')'.

(106)

(107)
where

+ (1 —A.)zk ~'(9 —26z)

+ 9(1 —X)'z'k „', (114)

The angular integrations in Eq. (100) are trivial.
P roblems arise, however, in defining an appro-
priate scaling variable z. For the massless-quark
case, the collinear singularity is an "artificial"
I/c pole. Identifying the coefficient of this pole
with a known splitting function fixes the definition
of z. In contrast, the singularity for G- QQ
splitting is "physical": lnM'. Thus, ~1I' lnM'
terms from Eq. (105) may be either absorbed into

,P~i(z)l n'M, or left as perfectly acceptable finite
residuals.

The scaling variable definition in Eq. (24) is un-
acceptable, in that the kinematic limit z- 1 yields
a negative argument for the square root in Eq.

4
(115)

C. Physical structure functions

We have finally completed all preliminaries and
can now give simple formulas for the flavor pro-
duction structure functions F, corrected to O(o,).
The connection between the perturbative distribu-
tions P& used'above and the structure functions I"&

is straightforward. Generalizing the discussion of
Sec. III A to include flavor-singlet contributions,
we may write for 5'~(x) =F,(x), F, (x)/x, F, (x), -
and F,(x):
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'dz5:.(x)/2 = q (x) + —K,'())., z)q (x/z)

dz
+ —K, ())., z)C'(x/z) .

x
(116)

The terms q, G are (physical) parton densities
weighted by weak-coupling strengths [e.g. , q(x)
= sin'God(x) +cos'Ocs(x) for charm production in

the four-quark model]. The kernels K,', K, are
obtained by subtracting the electroproduction per-
turbative distributions of Sec. III 8 from the per-
turbative distributions of Sec. II:

E,' = H', (.W*q —QG) —H~(y*q -qG)/z,

K, = H, (8'*G- Qq) ;H, (y—*G-qq)/z

——,'H, (y+G- QQ)/z, (jc3)
K, = H, (W*G- Qq) —.—, FI, (y*G-qq)/z

+-,' H, (y*G- QQ)/z,

(117)

(118)

(119)

—f(1) f d ) (z) .
0

(120)

This suggests introducing a modified distribution
[k( )z](,), with

where H, =— H, for jc2,. and H, (z) =—H, (z)/z.
that in Eqs. (118) and (119), the subtractions are
related to underlying transitions 8'~q - Q and
W*Q-q. This accounts for the relative minus
sign in the last two terms of Eq. (119).

In order to expand the kernels K', K in a
numerically useful form we use the identity

r
I 1

dzf(z)[@(z)].= «[f(z) -f(I)]~(z)
x

r
I . I

dz f(z)[h(z)](„l —= dz[f (z) —f(1)]I(!(z).
(121)

The kernels in Eq. (116) can now be listed rather
simply:

K,'. (~, z, x) = (-', ) —'Ã;. (~, z),
2g

(122)

(1 ) (
.,
)

ln(1 —z) —ln(1 —A.z)z + +z
- (x)

1 ~
+ [B', —(1+z') Ink —3/2+ z+ 2z']

1 2 (xI)

+ B',/(1 —Xz) + B',
1-8

1 —A.z' (,)'
where

A, =a, ——.'In~ — —~, I.„{~)
1 —A. & 1+3k.

(123)

—(-,
'- + 4 1nA. ) in (1 —x)

X(l —X)xt 1
+ in(1 —A.x)+ 1-A.x, 2x'

x-1 . 1—2 Li., + 2 Li.,
A. 1 —x A.

(124)

K,'. (~, z) =—'K;(~, z). (125)

For j/3,

The coefficients A, , &'„are given in Table I.
K~(A), A. are defined in Eqs. (33) and (25). Note
the x dependence in K,'-(A. , z, x) introduced via Eqs.
(120) and (121). For It, we have

K,. (A. , z) = z[z'+ (1 —z)'] [ln(1 —z) —ln(l —Az) —in'. —lnR(A. , z)]+z(1 —z)[ C,'. —3 —4T(A. , z)]

+C,'+T(A. , z)/2+ (1 —I()L)[zC„'+Az'C,' —Cx/2] —(1 —&)[C„inR(~, z)+Cz 2 (A. , z)l/2.
For j=3,

K, (a, z) = z[z'+ (1 —z)'] [ln(1 —z) —ln(l —Az) —ink. + InR(A. ) z)]+ z(1 —z)[C,' —3+42 P., z)]

+C,' —T(A. , z)/2+ (1 —X)l q[zC', + Az'C', +C„/2]+ (1 —X)[C„lnR(A., z) +Cs T(A. , z)]/2.

(126)

(127)

L) is defined in Eq. (59). The coefficients C", are
given in Table II. T(A. , z), R(A. , z), C„, and Cs
are defined in Eqs. (111)—(114).

Finally, we consider the structure function I'4.
Since I'"4=—0 to lowest order, the subtractions re-
presented by Eq. (89) do not contribute to O(a,),
and we obtain simply

D. Alternate subtraction schemes

Details of the kernels K, K' depend on speci-
fics of the perturbative subtractions in Eqs. (117)—
(119). We can briefly investigate some of this
prescription dependence by considering two dif-
ferent schemes.

n, 'dz
E, (x) = —' —F(, , (z)zq (x/z)

x

n, 'dz
+ —' —I(,, c(z)zG(x/z) .

h, , and 8, (; are given in Eqs. (45) and (67).

(128)

No heavy-quark subtractions

In the spir jt of the factorized parton model, the
subtracted term for y*G-QQ [Eq. (109)] is im-
plicitly identified with the Q' evolution of the
heavy-quark sea. A complete treatment of neu-
trino flavor production should thus also include
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the spectator graphs shown in Fig. 4. These
graphs pose phenomenological problems, in that
the kinematic properties of the flavored frag-
ments are essentially unknown. To avoid such
difficulties, we can consider a perturbation calcu-
lation without heavy-quark subtractions. The ker-
nels in Eqs. (126) and (127) are replaced by

K, (z, A) =P, &o(z)[ln(1 -z) —ln(l —Xz) - Ink+ L~]

+ z(l -z)(C) —3)+ C', + (1 —&)zL,(C', + XzC', ) .

(129)
he -I

~ choice is' for j=3. 'This scheme assumes
the nucleon has no intrinsic charmed sea.

Modified subtraction scales

The subtractions in Sec. IIIC are done at fixed
Q', which means different scales Q'/p, ', (Q'+M')/
p,
' in the sense of renormalization-group analysis.
his is the origin of terms proportional to

-lnAP, &, (z) in K', K . We can construct modified
kernels K,. H, ~(Q-') H&~(Q'-+ M') by simply de-
leting the In%', &,(z) terms from Eqs. (122)-(127).

Implications of both modified subtraction
schemes will be discussed in the following sec-
tion.

IV. RESULTS FOR CHARM

We now investigate some of the implications of
the formulas in Sec. IIIC for charm production in
the four -quark Glashow-Iliopoulus-Maiani model.
Higher-order leading-logarithmic QCD effects
could be included in the calculation by using Q'-
dependent parton densities and an effective coup-
ling o',(Q') as determined from fits to v W, elec-
troproduction data, . For our purposes, however,
this represents an unnecessary refinement (in-
deed, uncertainties in the flavor dependence of
the sea are larger than effects related to Q'
evolution), so we use instead a simple scaling
form (for an isoscalar nucleon target):

u (x) = d(x) = V(x)+ S(x),

u(x) = d(x) = s(x) = s(x) = S(x),

c(x)= c(x)= 0.

FIG. 4. Spectator, nonparton graph for heavy-fl. avor
production.

xS(x) = 0.150(1-x)'. (132)

Note that we have taken the charm sea to be iden-
tically zero. As we shall see below, the size of
the factorized y"G -QQ term suggests that this is
a reasonable approximation for presently avail-
able incident neutrino energies. Finally, for the
gluon density we use the counting rule form

xG(x) = 0.483(Nc+ 1)(l -x)"c,
with N~ = 5.

(133)

A. Structure functions

In Fig. 5 we plot the ratios of corrected to low-
est-order structure functions F,/Fo for several
values of &=Q'/(Q'+M'). As is required by our
choice of subtraction schemes, Eqs. (117) and

(118), the corrections vanish in the limit X- 1,
although convergence to this limit is clearly not
uniform. The small-x' regions for both v, v are
controlled by gluons through K~2. The large-x'
region for vN is dominated by A& in Eq. (124). For
A. & 1,

A& — —(z+ 4 In&) ln(1 —x') —2 Li,1 A, -1
x 1

' (X(l —x')
——(—,'+ 4 In'. ) ln(1 -x')+ ln'(1-x') . (134)

In turn, this behavior can be traced to a term
(Pz~/Ez)' in the phase-space factor, Eq. (21).
Summing higher-order Q -QG radiations may thus
be expected to soften this singularity. For
E,(vN)/E,', q(x') = S(x'), and for large x' the gluon
, contribution overwhelms the Born term. Since
&c is negative at large z, the "corrected" E,(v N)
becomes negative at large x', indicating that the
uncorrelated sea, gluon densities in Eqs. (132)
and (133) are too simplistic to realistically des-
cribe the large-x' behavior of sea-dominated pro-
cesses.

It is convenient here to consider the effects of
the different subtraction schemes discussed in
Sec. IIID. In Fig. 6 we present the E,/E', ratios
computed with subtraction sca,le Q +M'. 'The

differences between Figs. 5 and 6 are greatest for
small X, as expected. For ~& 0.7, the two sub-
traction schemes yield quantitatively similar re-
sults. In subsequent calculations, we will use
the Q' subtraction scale only.

In Fig. 7 we show the E,/E,' ratios computed
without charm-sea factorization. These curves
have no ~-1 limit. The heavy-quark kernel
H, (z, A.) in Eq. (109) is a positive function which,

We use the valence (V) and sea. (S) fits of Ref. 18,

xv(x) = Mx[0.895(l -x)'(1+ 2.3x)

+ 0.535(l -x)"] (131)
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FIG. 7. Corrections to the charm-production structure functions I'2 without subtraction of a charm-sea component.

for fixed z, increases with increasing ~ and, for
fixed ~, decreases monotonically to zero for z -1.
Accordingly, the curves in Fig. 7 are everywhere
higher than the corresponding curves in Fig. 4,
with the differences decreasing rapidly for in-
creasing x'.

For 0.6s X» 0.9 (corresponding to the bulk of
presently available charm-dimuon data), the be-
havior of E,/E02(vN) for 0.4sx'» 0.9 is largely in-
sensitive to modifications in the subtraction
scheme. This is also true for corrections to E„

In Fig. 8 we show results for E,/E'„using the
fully subtracted kernels in Eqs. (122)-(127). In
the limit ~-1, the corrections to F„E,are
simple:

'dz
x E (x ) =E (x ) — —' fx" E(z)—]. 2 27T Z3 2x'

negligible, E,(t/N) has a nonvanishing singlet
component.

B. Charm-production cross sections

We define the charm-excitation ratios

R,(E)=(x(v- pc)/o(v- p)

and

~R, -=R,[O(u, )] -R,[Born] . (138)

The fractional corrections due to QCD, &R,/R, ,
are shown in Fig. 9, where the two sets of curves
correspond to different perturbative subtraction
schemes: (I) full subtraction, Eqs. (117)-(119)
and (II) partial subtraction —no heavy-quark sea,
Eq. (129). For scheme (I), the asymptotic values
(E„~)of the fractional corrections are

-x E,(x ) =E,(x )

&s 4, dz x

(135) LR, /R, (v( (.45(~ '),

r a./R. (v) —2.0'((2') . -
(139)

For x'& 0.4 and ~& 0.8, the curves in Fig. 8 de-
viate from the massless limit by 20-50/o. Also,
it is worth noting that gluon contributions which
ultimately decouple from E, are not negligible for
moderate A.. To the extent that m, '/Q' is not truly

For finite E„, the behavior of &R,/R, is deter-
mined both by the ~ dependence of the corrected
structure functions and by the kinematic limits of
heavy-quark production, as discussed in Appendix
B. For the parton densities in Eqs. (131)-(133),
we obtain
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Corrections to the charm-production structure functions I" ' thi n ~ using e same subtraction scheme as in Fig. 5.

(X„)=0.71 (E= 100 GeV)

= 0.83 (E = 300 GeV),

(A.„)= 0.65 (E = 100 GeV)

= 0.77 (E = 300 GeV) .

(140)

(141)

For these values, the corrections to the structure
functions (Figs. 5-8) are positive except for very
small x'. For fixed &,= 0.25, the asymptotic cor-
rections in Eq. (139) are -5.7%(v) and -8.2%(v).
From Fig. 9 it is evident that convergence to the

. m, '/Q'- 0 limit is extremely slow.
Comparing the two sets of curves in Fig. 9, we

see that uncertainties in the predicted charm-
production rates due to different treatments of the
heavy-quark sea are very small (3%) at presently
accessible energies. The H, subtraction term for
&*G-QQ, Eq. (109), is quite small until Q' is
large enough that L~ becomes large —at which
point factorization requires absorption of the I-~
mass "singularity. " We conclude from this com-
parison that estimates of heavy-flavor production
based on nonfactored W gluon scattering" (W*G- cs, ub, etc) are dominated by mass parameters
used for the light quarks and thus are probably not
reliable unless both quarks are massive.

Finally, we note that the radiative corrections
to A, are not large enough to be phenomenological-
ly significant. For E& 100 GeV, the differences
between the sets of curves in Fig. 9 are larger
than the corrections themselves. IThe neglected

spectator graph in Fig. 4 will increase A, slightly
for scheme (I). However, a kinematically care-
ful treatment of this process is beyond the scope
of this paper. ] 'The corrections to A, do not pro-

10
ABC/ IRC (percent. )

100 200

(r, ~ v)
'300 100

FIG. 9. Fractional changes in the normalized charm-
production rate Rc ~Eq 0.37)l due to @CD radiative cor-
rectzons. The two sets of curves correspond to different
perturbative subtraction schemes, as discussed in the
text.
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vide a sensitive test of QCD radiative effects.
In Fig. 10 we plot the QCD-corrected charm

excitation ratios, using the full-subtraction
scheme (I). Over the energy range considered, the

R, values are far below the asymptotic values
0.13(v) and 0.20(v) expected for the input densities
in Eqs. (131)-(133). This is a well-known conse-
quence of slow rescaling. ." Figure 10 also com-
pares the ratio R,(v)/R, (v) with data "for relative
dimuon-production rates by neutrinos and anti-
neutrinos. Experimental detection efficiencies in
th ie individual dimuon rates approximately cancel,
so that the comparison with "uncut" theoretical
predictions is reasonable.

Strictly speaking, Fig. 10 has little to do with

QCD radiative corrections: the corresponding
curves for the Born terms differ by only a few

percent. We have included Fig. 10 to emphasize
that, contrary to "popular opinion, " the data in
Eig. 10 do not necessary ly imply a suppression of
the strange sea in the nucleon. Note that the "fit'"
in Fig. 10 involves an SU(3)-symmetric sea. More-
over, this curve can be lowered with an SU(3)-
symmetric sea fit of the same normalization

f dx'x'S(x'), provided that the (1 —x'p fall off
is steeper [e.g. , (1-x')']. Extraction of the size

of the strange sea must involve fits to R,(v)/R, (v),
,(v) itself, and the distribution in the slogg-ye-

scaling variable x'. Data for such fits should
soon be available. "

C. Longitudinal structure functions

Dropping terms proportional to the muon mass
the deep-inelastic differential cross section can be
put in the form

do 6 2ME
[A(x') y'/2+ B(x')(1 -y )

+ C(x')y (1 -y/2)] . (142)

E,( ix)= B(xi)=-E,(x ),
E (x')=-a(x') -A(x').

(143)

For two generations of massless quarks, the long-
itudinal structure function is

E~ (x') =E,(x') —x'E, (x')

s 8 „dz'
(144)

Experimental fits to this y dependence are used to
extract longitudinal and transverse structure func-
tions:

0.16
'dz xi

+ 16x" —,1 ——G(z)
g& 8 8

(145)

For production of massive quarks, Eq. (143) be-
comes

0.08

0.0 1

') 0

].5

1.0

0.5

0.0'

a., == 0.25

SU(3)-Symmet. r ic Sea

(.'Dl-lS clat. a
Rc(P)yRC(v)

E~ (x', X) = E,(x') —M'E, (x') (146)

which agrees (modulo normalization) with Eq.
(79). Note that the Born term for Eq. (146) does
not vanish for ~& 1. Thus, although charm pro-
duction accounts for only about 10% of the total
neutrino cross section, the longitudinal structure
function for charm seriously obscures the asymp-
totic QCD expectations of Eq. (145), as demon-
strated in Fig. 11. The large-x' "plateaus" in

(~ (charm) involve roughly equal contributions
from the Born term and radiative corrections.
Recalling the caveat after Eq. (134), the behavior
for very large x' should not be taken too seriously.
Note that the heights of the plateaus essentially
scale in 1 —X-M'/Q'. This behavior couM be ob-
servable.

V. CONCLUSIONS

100 200

1, -(GeV)

',300

FIG. 10. @CD-corrected charm-production rates,
using the input parton densities of Eqs. {130)-(133),
and the full perturbative subtraction scheme of Eqs.
(117)-(119). The data are from Ref. 20.

400 The primary objective of this work has been
evaluation of lowest-order chromodynamic cor-
rections to heavy-flavor production in deep-in-
elastic neutrino-nucleon scattering Th ' ' le principal
results of this exercise are the following.

(1) For massless initial-state quanta, universal
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FIG. 11. Longitudinal structure functions for neutrino
charm production normalized by the total transverse
structure function for inclusive neutrino scattering. The
parameter A, is A.=—Q /(Q + M ). For comparison, the
total, asymptotic I"z for four massless guarks is also
shown.

factorization of collinear singularities requires
use of the slow-rescaling variable

Q'+ M'
z=

2pif (147)

Residual mass dependence can be conveniently
described using

Q'
Q'+M' ' (148)

(2) Using the electroproduction structure func-
tion E, to define the perturbative subtraction
scheme, the O(ot, ) changes in the flavor-production
cross sections are small. Moreover, these cor-
rected total cross sections are rather sensitive to
specifics of the perturbative subtraction scheme
and thus do not provide good tests of QCD effects,

(3) The subtraction-scheme dependence of the
corrected structure functions is largest for x'
& 0.3. The 10-30% increases in the neutrino
charm-production cross sections for 0.3& x' ~ 0.8,
0.6~ ~& 0.9 are generally insensitive to the
changes in subtraction, schemes considered above.

This behavior might be observable. The O(o.')S
corrections become unreliable for x' - 1. 'The

corrections to sea-dominated processes for x'
& 0.5 are quite sensitive to corrections via initial
gluons.

(4) Uncertainties in subtractions related to
heavy-quark sea components in the nucleon have
little phenomenological effect at presently availa-
ble incident neutrino energies. The scaling varia-
ble appropriate for treatment of the heavy-quark
sea is not uniquely specified by perturbative kine-
matics.

(6) Mass effects make the longitudinal structure
function for charm production as large or larger
than asymptotic expectations for the total longi-
tudinal structure function for x ~ 0.2, E„&300
GeV.

Although it is not a consequence of QCD correc-
tions, the following seems worth repeating.

(6) Relative rates for dimuon production by
neutrinos and antineutrinos are not sufficient for
extracting the size of the strange-quark sea.

The QCD radiative corrections discussed in this
paper have obvious implications for final-state
observables in charm-dimuon events. In particu-
lar, wide-angle gluon brehsstrahlung should give
rise to a power-law tail in pr(ii'), the momentum
of the charm-decay muon out of the v-p produc-
tion plane. Sufficient dimuon data now exist to
see such an effect"; quantitative investigations are
underway.

APPENDIX A: VIRTUAL GRAPHS

The amplitude for the vertex correction in Fig.
1(c) is written as

3tt" = u(P, )Ay(1 —r, )u(P, ) .
We work in the Feynman gauge and use dimension-
al regularization" for both ultraviolet and infra-
red divergences. It is then straightforward to ob-
tain

A5=(-) 4
' I'(1 —c)(, )

where

&&(C y&+ C,p&/M + C,q&/M), (A2)
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(1 —X)'
2 2 3

C = (1 —2a+ 4e') ——+-0 E2

—8 -K~+ 2 Li2(&),

C —2K~,

C, = —2A. '(1 —A. +Kg) .

(A3)

(A4)

(A5)

E„, ~ are as defined in Sec. IIA. The renormal-
ized vertex is As)' =Z,Ab with Z, = [Z,(P, )z,(P,)j'i'.

he fermion wave-function renormalization con-
stants are defined on mass shell:

APPENDIX 8: KINEMATIC DETAILS

1. Cross-section formulas

For heavy-flavor production by neutrinos, vN

)HX,

do GAME
x'yyE, + 2(l -y)E,

c&c dg 27t'

(Bl)
dZ

Z =—1-— (A6) E is the incident neutrino energy, M is the nucleon
mass, and

which gives

s,(M, )=1 —'(—)( ',
)

[s-4 +0( ')],
(AV)

since p, '=M, '=0, Z, (p, )=1. For p, we write M'
= (1 —A.)(Q'+M'), and thus obtain

y = 1-E,/E,
M)2-MH2~=~' 2&MS

Q'+ Ms'
2MEy

(B2)

(B3)

(B4)

tM. F(1+a) s'+M')'
3~ r(1+2&) 4~] 2

x(Csp'+ C,p;/M+ C,q" /M),

where C„C, are as given above and
(M] + Ms)

2ME (B5)

where M, ,M& are the final-lepton, heavy-quark
masses. For v N scattering, the coefficient of E,
in E(l. (Bl) changes sign. For fixed E, the x', y
physical region is

Cs = (1 —e/2+ 2e') ——+ ——8
(1 —X)' 2 3

E2 E

x'My' = 1 — 1+ s'+ M, ' -MH' 2s'

772
-Kz+ 2 Li (A. ) ——.2 3

(A9)
where

xA. ' '(s' M ',M„')/(2s'), (B6)

with

'4 +s r(1+ &) Q +M 'dz
(1 )-g

3 2n r(1+ 2E) 4]]']((,2 z

(A10)

a„'=C, ,

H3= C~,
a4= O

V

H5=C~+ ~C, .

(A 1 1)
(A12)

(A13)

(A14)

(A15)

While we have worked, in the Feynman gauge, it
is interesting to note that the expressions in Eqs.
(A2) and (A7) are in fact unaltered by replacing
-g""--g""+o]k'k" /k' for the gluon propagator.
With all external lines on shell, the k"k"/k' piece
gives a net contribution of zero to both Ag and

Z, (M'), because of an exact cancellation of ultra-
violet and infrared pieces.

The vertex contributions to the parton-level
structure functions of Sec. IIA ar' e

s' =x'M(x'M+ 2E) (B7)

A.(a, b, c)= a'+ b'+ c' —2ab —2ac —2bc .

~&]] (s + Q 2)2gs(]]+ 4Q 2P(sP]]

+ 2(s+ Q')(P, qa+ q Ps|),

P",s= -Q'(s+ Q')'g ~+ 4(3+ 2&)Q'p, p~

+ 2(3+ 2a)Q'(s+ Q')(p, qs+ q p~l)

+ 2(1+e)(s+ Q')'q qs,

~eg

potpie

I', = —(s+ Q')'g + 4(3+ 2~)Q'p, p,
+ 2(2+ a )(s+ Q')(P, qs+ q Pa) .

Then, for H as defined in E(l. (10),

(B9)

(Bl0)

(Bl1)

(B12)

(B13)

2. Projection operators

Working in space-time dimension D = 4+ 2E, we
define
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P, BH'~ = 8(1+ «)(s+ Q')'H, ,

P, ~H ~ = 8(l+ «)(s+@')4H, ,

P, ~H ~ = —4(s+ @')'H

P, 'H ' = 2(s+ q')'H

P, SH ~ = 8(1+ «)(s+ Q')'H

(B14)

(B15)

(B18)

(B17)

(B18)

The expression in Eq. (Bll) is not well defined
because of ambiguities in extending & ~„„to di-
mensions other than 4." However, the calcula-
tions done in this work are sufficiently simple
that these ambiguities cause no practical difficul-
ties. ln the massless limit, our expression for
xE3 E2 does reduce to the proper result
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