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The identification of a basic geometric group structure acting on the manifold of paths P(M j of some manifold M
enables us to derive all the kinematical elements of a gauge theory from the single postulate of invariance of the
formulation under this group.

The relevance of path dependence to gauge theo-
ries was first emphasized by Mandelstam' in the
context of ordinary electromagnetism. The path-
dependent formulation was extended later to the
non-Abelian case by Bialynicki-Birula' and Man-
delstam. ' As was pointed out by Yang, 4 one of the
most interesting features of the formulation con-
sists in its global character in contrast with the
ordinary local or differential formulations. Re-
cently, Polyakov' has proposed to consider a gauge
field as a chiral field defined in the space of all the
possible contours, following the ideas of Wilson'
and Kogut and Susskind' on the role of closed
strings as elementary excitations in the confining
phase of a gauge theory,

In the present paper it is shown how all the kine-
matical elements of a gauge theory may be derived
from the single postulate of invariance of the field
under some basic geometric group structure in the
manifold of path&. From the mathematical point of
view, the postulate provides a natural and unified
geometric explanation of most of the properties of
a gauge field and identifies the class of path-depen-
dent objects that may be used to represent a gauge
field. On the physical side, since the postulate is
equivalent to the assumption of invariance of the
field under the complete group of motions of its
basis space, one gains new insight on the noninter-
acting character of a classical gauge theory when
formulated in the language of path dependence.

Let us then consider some finite-dimensional
manifold'M and choose some reference point 0 on
it. Let us denote by Co the set of all closed oriented
paths starting at 0. In this set one has the familiar
noncommutative operation that associates with C,
and C, the path CyC2 obtained by following first C,
and then C,. The operation is associative and has

a null element. However, there is no inverse. One
could consider as the natural candidate for the in-
verse of C the path C obtained by following C in the
opposite sense. However, CC is not the null path
unless some identification is made. In order to
construct such an identification we shall introduce
the concept of a tree. From a heuristic point of
view, a tree is a "null area closed path which is
contractible within itself" to the null path. This
idea may be stated in more formal terms by con-
sidering the homotopy group associated with the
continuous set of points that define the path C in the
manifold. Then C is a tree if its homotopy group is
the identity. With this concept in hand, one may
now introduce the relation

Cy C2 if C,C, is a tree,

which is immediately seen to be an equivalence re-
lation. Let us then define a loop as a class of this .

equivalence relation and the set of loops forms a
group that one may denote by L,. One is also im-
mediately convinced that groups corresponding to
different reference points are isomorphic and then
one may omit any reference to 0 and denote by
L(M) the group structure to which all the L, are
isomorphic. We shall know this group as the group
of loops of M.

This group could also have been introduced in a
more algebraic way in terms of polygonals. Since
this optional definition is easier to use in some
respects and it is more directly related to func-
tional sums over the group, we are going to dis-
cuss it in some detail in the case of 84. A closed
polygonal path may be identified with a finite
string of four-dimensiona1. displacements:

C —(g() Q2), ~ q Qg) q I)+ Q2+ ~ ~ ~ + Qy —0
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One may now define the contraction of a string

(ull u2l ~ 1 uM)c

as the operation which replaces any two coll, inear
adjacent vectors in the string by its resulting dis-
placement. Then if u, and u4 are the only collinear
adjacent vectors in the string (u„u„u3, u4, u, ), one
has

(ullu2 ju3lu4$ u5)c (ull u29 u3+ u4l u5)

Let us now define a loop as any string which is
equal to its contraction. The operation between
loops is defined by

ll u2& ' ' 1 ug)(vis V2l ' '
& VM)

(ull '''&
¹ ll '''l M)

and it is immediately seen that the set of loops
forms a group under this operation. This is an
optional definition of the group L(R4). In both defi-
nitions it is clear that a loop is defined as a closed
path for which any trivial null area part is declared
nonexistent.

Let us now turn our attention to open paths. Giv-
en two points 0 and 0' in the manifold, one may
consider the set of all oriented open lines joining 0
with O'. Two lines P«and Q» are declared equiv-
alent if the closed path P„Q;, is a tree. Then a
path is defined as one of these classes of equiv-
alence and the set of all open paths between 0 and
0' denoted as Ppo The group of loops L, operates
in a natural way on this set:

I.,x P„P„,
by associating with the pair (L, P) the path P' ob
tained by following first the loop I- and then the
path P. Every path in P«may be obtained by oper-
ation of the group of loops on some fixed reference
path. Hence I., is a complete group of motions for
the set of open paths.

A gauge field is then defined as a chiral field
taking values in the set of open paths. It is postu-
lated that the field is invariant under the action of
the group of loops. The invariance is sta.ted in the
usual way by assuming the existence of a (neces-
sarily unfaithful) unitary representation of the
group of loops by matrices W belonging to the
gauge group 6:

change induced in the gauge field when some path
P(x), ending at x, is extended by an infinitesimal
vector u„ to reach the point x+u:

4/P (x+u)j=(1+u"D )CfP(x)j. (6)

I.et us consider two paths P(x) and P'(x) with the
same ends. The path P' may be obtained by oper-
ation of the loop (P P) on P. Hence, according to
(5) one must have

C (P') = W(P'P)C(P).

If we now extend both paths with the same infin-
itesimal vector u„one must also have

C (Ps)= W(PsPM)e(PM). (8)

However, the loops (PMPM) and (P'P) are identi-
cal since they differ by a tree. Hence, according
to (6) one may write

D C (P') = W(P'P)D„C(P).

Hence, D„C transforms like 4 and the Mandel-
stam derivative is covariant as a direct conse-
quence of the defining property of the group of
loops.

The local structure of the representation W(L)
may be obtained as usual by considering the infin-
itesimal elements of the group of loops. Let us
then introduce the infinitesimal loop 5L(PuvuvP)
obtained by following some path P ending at x, then
an inf initesimal parallelogram spanned by vectors
u„and v„, and finally going back to the origin
along P. This loop is infinitesimal since, for
u„v„0, it reduces PP, which is identical to the
null loop. Hence, for fixed P, one may expand
W(5L) in powers of u„and v, to obtain

W(5L) = 1 e u"B~(P)+ v "C„(P)+2(u "v"+ u "v")S„„(P)

+ 2(u "v' -u"v")A. „„(P), (10)

where one has separated the symmetric and anti-
symmetric parts of the second-order terms by
convenience. By using again the defining property
of the group of loops, it is clear that if u„= Av~,
51 must reduce to the null loop for any v„and A..
It is immediately seen that this implies the vanish-
ing of the B, C, and S terms, and then by expand-
ing the remaining contribution in terms of the gen-
erators T, of the gauge group, one finally obtains

W(L,L,) = W(L, )W(L,), W(L5) = 1, (4) W (5L (PuvuvP) j= 1+i
2

5O'" "P„„(P)&„
and the gauge field C (P) transforms under the ac-
tion of a loop by

C (LP)= W(L)C (P).
The differential equations of the path-dependent

formulation are usually written in terms of the
Mandelstam' derivatives D„which measure the

which may be considered as the definition of the
path-dependent field strength E'„„(P).

The path-dependent structure of the generator
may also be studied by considering the infinitesim-
al loop 5L(ilababll PuvuvP Iibabail) which contains
aperturbationof the path P by the loop 5L'(Iiababli).
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According to (11)we immediately obtain the equa-
tions

F'„„(5l'.P) =F'„„(P)+ Cf-,F~„(P)E~(II)6g ~,

where C~, are the structure constants of G. Equa-
tion (12) is in fact a small generalization of the
Mandelstam' equations to which it reduces when II
is a part of P.

The Bianchi identities may be derived by consid-
ering the somewhat elaborated tree

Lo = PabcbcaP PacacP PcababcP

&& PcbcbP PbcacabP PbabaP,

containing an open path P and three infinitesimal
displacements a„, b„, and c„ forming a parallel-
epiped at the end of P. Then by using (11) and the
definition of the Mandelstam derivative, it is easy
to obtain the equations

D,F'„,(P)+D+;„(P)+DF'„„(P)=0. (14)

One could also have started the study of W(I, )'

with the optional family of infinitesimal loops 5I-
(PMP) obtained by following some path P up to x,
going then along some vector u„, and finally going
back to the origin along P. A similar analysis may
be carried out in terms of the associated generator

where P(y) is that portion of P leading to y. This
is the path-dependent potential discussed in a pre-
vious paper' which allows for the ordinary des-
composition of the field strength by introducing the
appropiate differential operators.

Hence, all the kinematical elements associated
with the degrees of freedom of the path are ob-
tained from the single postulate of invariance of
the gauge field under the group of loops. The dy-
namical equations and the transformation proper-
ties of the gauge field under the Poincard group
can then be introduced in the conventional way.
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