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Dirac theory and its Melosh quantum-mechanical representation

J. Beckers and M. Jaspers

(Received 21 April 1980)

Some properties of the Melosh quantum-mechanical representation are derived and discussed on the basis of
interrelations between Foldy-%'outhuysen, Eriksen, and Melosh transformations.

The existence of a unitary transformation rela-
ting the SU(6)~ „„„andSU(6)~,„„„„„groupshas
been suggested by Gell-Mann. ' Such a transfor-
mation has been constructed by Melosh' in the
context of the free-quark model. Different as-
pects of the Melosh proposal(s) have already been
discussed' ' and some of their implications in re-
lated fields have also been studied. ' So, recent
contributions state and deal with Melosh transfor-
mations, but for brevity we refer the reader to
the literature' and to the references therein.

Actually, in relativistic quantum mechanics, a
unitary transformation which eliminates the &,
and n, terms in the free Dirac Hamiltonian is
often called a "Melosh transformation" for evident
reasons, ' although it has, in principle, nothing
to do with the original context. " In fact, such a
relativistic quantum-mechanical transformation
belongs to a class of unitary transformations
whose different properties have already been
emphasized and discussed. In particular, Wea-
ver' compared the so-called Melosh transforma-
tion with those of Foldy and Wouthuysen" (FW),
Cini and Touschek" (CT), and Majorana" in the
free case. He also studied" the energy eigen-
values for a charged Dirac particle in a homo-
geneous magnetic field and recognized the corres-
ponding Melosh transformation as the Tsai pro-
po al."

Each transformation of the above-mentioned
class has specific physical interests. For exam-
ple, the FW and CT transformations are meaning-
ful when nonrelativistic and ultrarelativistic
limits of the Dirac theory, respectively, are un-
der study; the Majorana and Melosh transforma-
tions show direct relevance to physics when the
high-energy limit is taken into account, or when
the transverse momentum (of the particle) is
large compared to its longitudinal momentum.
These physical situations evidently are intimately
connected with the null-plane formalism and the
study of the infinite-momentum frame. Let us
only mention that, in the original Melosh context,
connections between constituent quarks and cur-
rent quarks have been proposed through the use
of lightlike (or null-plane) charges which are

where the index L refers to the transverse com-
ponents, m is the nonzero rest mass of the Dirac
particle, and y =P& are (anti-Hermitian) Dirac
matrices. Applied to the free Dirac Hamiltonian

H =n ~ p+Pm

U„gives

N OM 0 N i p&. 3P3&

where E~, = (p, '+m')' ' corresponds to the usual
"energy" E~= (p~+m')'~'.

Now, let us mention that in a recent work" we
constructed the "Eriksen-type" form' of the
Melosh transformation in the quantum-mechani-
cal context. In fact, we noticed that the interest-
ing role of the matrix P in the Foldy-Wouthuysen-
Eriksen developments has to be played by the
Dirac spin matrix Z, when Melosh-Eriksen inter-
relations are considered. Then we proposed the
following Eriksen-type form of Eq. (1):

U~ = 2 (1+ZSX)[l+ —,'(ZSA. + XZ~ —2)] (4)

especially suitable in dealing with the infinite-
momentum limit. So the study of "objects" like
the Melosh transformation, besides their speci-
fic interests in connection with the precise con-
text of the Dirac theory, could, maybe, lead to
interesting remarks in connection with charac-
teristic features in strong and weak interactions.

Here, the aim of this note is to give more in-
formation and properties on the quantum-nzechani-
cal Melosh transformation, seen as an element of
this interesting class of unitary transformations
acting on the Dirac equations and operators. Our
new results are, first, the use of projection op-
erators giving a deeper insight into the physical
meaning of the transformation and, second, the
explicit contents of the Melosh rePresentation by
comparison with the original FW results. "

Let us, at once, recall that the Melosh trans-
formation takes the explicit form '

U„=e~(is„), s„=-,' tan '(-i ' '),
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with'
' Pc3 U +xUt PB U. P JUt

M + Ny + N y hf &

and

Z =-—(o' "c') =O', 'Y,3 2
where P~3, P,', P~„and P,"J are projection opera-
tors with an evident physical meaning in the Dirac
theory when

~=Z, (m+y, p, )E, ,-'. (6) P, = —(1+X), Xc(Z„X,P, X]. (16)

p, -rr, =p, -eA,
in Eqs. (4) and (6), e being the charge of the parti-
cle. So Eq. (4) becomes the closed form of the
Melosh transformation with

X =Z, (m+y, 11,)E„,-', (8)

where the superscript I refers to the interacting
case. Let us finally notice that other closed
forms of unitary transformations of the Dirac
equation have already been discussed. In a re-
cent work, "Moss and Okninski developed a method
for obtaining a class of unitary transformations
which bring the Dirac Hamiltonian for the free
electron into a diagonal form. This class includes
all the transformations described by Weaver' but

not the Melosh one because, in this case, the
transformed Hamiltonian is not diagonal (only its
square is).

Let us now come to the original part of this
note. I"irst, we construct projection operators
associated with the Melosh transformation. Let
us write the transformation (1) or (4) in the form

m+EP J+ YJ Pj (8)
2E, ,(E, ,+m)'~' '

Then it is easy to show that

3 = UzXU~ (10)

Moreover, if we notice that the matrix ~ in Eq.
(6) can be written as

Let us also recall that one of the well-known
interests of an Eriksen-type transformation is its
"closed" character allowing one to consider simul-
taneously the free as well as the interacting cases.
Then if we consider the interaction of a charged
Dirac particle in a constant homogeneous magne-
tic external field, we directly recover the Wea-
ver" or Tsai" considerations through the substi-
tution

As an example, the projectors P~ refer, as usual,
to the subspaces of large (+) and small (-) com-
ponents of the Dirac wave function and P," to the
subspaces of definite positive (+) and negative (-)
energies when p, —= 0. Thus, through Eq. (15), the
Melosh transformation connects these respective
subspaces. Here, let us recall that from the FW
transformation" "it can be shown that

(»)
4

giving correspondences between the subspaces of
large (and small) components and the subspaces
of definite positive (and negative) energies, res-
pectively, these eorrespondenees being expected
when nonrel&tivistic considerations have to be in-
vestigated. So the physical meaning of the Melosh
transformation appears very clearly through Eqs.
(15) and by comparison with Eq. (17) for example.

Such considerations on projection operators are
also useful when the transverse momentum of the
particle is large compared to its longitudinal mo-
mentum, i.e., when the physical situation is such
that p,/(m' p+, ')' ' «1. Indeed, it is then straight-
forward to connect our developments with those of
Weaver"; his E operator is nothing else but our
PZS matrix connecting X and X, [cf. Eq. (12)]. So,
projection operators defined by Eqs. (15) and (16)
can be simply interpreted in this modified Major-
ana repr'esentation" and the associated two-com-
ponent forms of the Dirac theory can directly be
related to "good" and "bad" component descrip-
tions. '

Finally, let us mention that the expression X

in Eq. (12) does not require the explicit specifica-
tion of the Hamiltonian and, consequently, is well
adapted for an extension to interacting cases.
For example, in the case of an electron in a mag-
netic field, the corresponding relation becomes,
with Eq. (8),

~=Z,p(c., p, +pm)E, =Z,pa, (a, ')

—Z~P k~

and that

[Z,P, U„]=0,
we immediately get

P = Us X~U~ .
Then, from Eqs. (10) and (14), we obtain

(14)

2 = ZP~,', ~,'= a,'(a', 2)-'~',

and the associated projection operators are easily
constructed.

Second, by comparison with the original FW
results, we can calculate the different operators—
position, velocity, momentum, etc.—belonging to
the Melosh representation in the free case. These
straightforward but rather lengthy calculations
are summarized in Table I, where we also pointed
out the corresponding mean operators in the Dirac
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TABLE I. The Dirac and Melosh operators in their respective representations.

Operator Dirac repre sentation Melosh representation

Position

Velocity

(+ && pgz IP(7~ tP(G' ~ px)pz
2Ep ~(m+ Ep ~) 2Ep, 2Ep,2(E +m)

PP~ (0" P~)p~

Ep ~ Ep ~(Ep ~+m)

Momentum

Hamiltonian Ho= o..p+Pm HD „=usp3+ pE

Orbital
angular

momentum
L=x xp

Spin
1Q XgS=- Z =-

2 2 2$'
p.(p.- ~) ~P(~ &p.)S~=2 Z+ — +

Ep ~ Ep ~(Ep 1+m) Ep, j

Mean
position

{gxpz)~ PG'~ & P(o' p~)p
2Ep j(Ep, 1+m) 2Ep~ 2Ep1 (Ep ~+m)

Mean

velocity
X=- G' pg+ Pm

E E X~= + (o. e,)e,
p l

Mean
orbital
angular

momentum

@=Xxp

Mean spin
1 m

&+ p&(px Z) iP(a xp~)
2 E» +E»(E»+m) E»

1S~=S=—ZN 2

/

representation. These formulas give us a com-
plete insight into the quantum-mechanical con-
text of the Melosh representation. As an example
we note that the transverse components of the new
mean velocity operator commute with each other
but not with the longitudinal component. Such
considerations are directly connected with the
"good" use of the Melosh transformation in the
context of the infinite-momentum limit from ~here
it was originated in hadronic physics. & As an-
other example, it is easy to point out that the
longitudinal components of the new mean orbital
and intrinsic angular momentum operators are
separately constants of motion:

[(Z„')„a',] = [(s„')„a,'] = o. (»)
This was expected in what concerns the third

component of the spin operator through its con-
nection with the helicity operator at the infinite-
momentum limit. " Let us also mention that the
results contained in Table I can immediately be
compared with those of the F% representation as
summarized in particular by De Vries. '4
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