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U{1jproblem: Current algebra and the 8 vacuum
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The effective Lagrangian which gives a full solution of the U(1) problem is obtained from the 1/N expansion of
quantum chromodynamics. This Lagrangian satisfies all the anomalous n -point Ward identities for arbitrary q, and
includes chiral and SU(3) breaking. The relationship between the y' mass and the 8 dependence of the vacuum
energy in the absence of quarks and the form of the strong CP violation in the effective-Lagrangian framework are
deduced.

The U(1}problem has been a long-standing puz-
zle in the quantum-chromodynamic (QCD) theory
of strong interactions. ' Recently, Witten' has
proposed a resolution of the U(1) problem by ana-
lyzing the effect of the axial U(1) anomaly on the
QCD Lagrahgian within the framework of the'1/N
expansion. ' ~ While the anomaly produces effects
which are 1/N smaller than the leading terms, it
contributes a significant nonzero contribution to
the mass of the singlet 0- meson in the chiral
limit, thus splitting the singlet-octet masses in
that limit. In this note we show that these ideas
lead directly to an effective-Lagrangian formula-
tion which (1) satisfies all anomalous n-point Ward
identities (WI) and PCAC (partial conservation of
axial-vector current) conditions of U(3) x U(3) cur-
rent algebra, (2} includes arbitrary amounts of
chiral'and SU(3) breakdown, and (3) includes the
strong-CP-violating 8-dependent effects. The
satisfaction of the anomalous WI is accomplished
by the introduction of Kogut-Susskind'-type poles
needed to account for the nonvanishing topological
charge. The general WI of course includes the
soft-pion limit. Thus the effective Lagrangian
automatically realizes all the soft-pion results of
Witten: the g' grows an additional mass due to the
anomaly (which does not vanish in the chiral limit);
this mass can be related to the 8 dependence of the
the vacuum energy E(8) in the absence of quarks;
all effects of 8 are seen to disappear in the chiral
limit. In addition, a simple expression for CI'-
violating effects are obtained. However, since the
WI are satisfied for arbitrary q (and not just in
the soft-pion limit) and due to the fact that no
assumptions are made regarding the amount of
chiral or SU(3) breakdown, the formalism offers a
realistic approach to the calculation of processes
that depend on the U(1) anomaly or the topological
charge (such as the q- 3v decay and the neutron

dipole moment). As we will see in some simple
examples here, these corrections required by the
real world can sometimes be considerable.

1. Effective Lagrangian. An effective Lagrang-
ian, in terms of phenomenological fields involving
the physically observed mesons and obeying all the
current-al. gebra and PCAC conditions, but not
including the U(1) anom'aly, has, of course, been
known for a long time. " Recently, in a detailed
analysis, Witten~ has pointed out that the leading
terms of the 1/N expansion of QCD automatically
imply an effective-Lagrangian description of the
physical mesic interactions. Now, the fundamental.
QCD Lagrangian automatically obeys the current-
algebra constraints, and so one may expect that
the effective Lagrangian deduced from it in the 1/N
expansion be similarly constrained. The only way
this could not be true would be if the current-alge-
bra constraints did not obey the 1/N conditions
(i.e. , mixed different orders in 1/N) That th.is
is not the case, can be seen from the following con-
sideration. Let E represent the strength of any of
the interpolating constants coupling the bilinear
quark currents to the mesic fields (e.g. , for the
0- nonet of mesons y, one has (0~ qQy' —,

'
X,q ~ q, b)

=iq"F,~). In the 1/N expansion one has F-v N.
Now from Befs. 6,, and 7 one may see directly
that current algebra implies that an arbitrary
n-point contribution to the effective Lagrangian,

-N'-"~'. This is precisely the constraint required
by the 1/N expansion. '

The above discussion represents then i deriva-
tion of the earlier effective Lagrangians" ' from the
fundamental QCD theory. These Lagrangians do
not include the effects of the U(1) axial anomaly,
(—,')~ ~2N, (g2/32v2)F F, since these are 1/N smaller
than the leading mesic terms. (Here N, = 3 is the
number of light quarks. ) This effect may be included
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by introducing an additional "anomaly field" K (x)
which couples to Kogut-Susskind-type poles, "'
such that Q(x) -=3@" is the topological charge
density. ' The total effective Lagrangian now has
the form

& = —~;3„V,+ '. ~:~-„-.'W. ~-.,~, +„(3.—K,}'

( )21l N2F-1 ~ 8 Kg+ g ()t 3 KIl) 83 glk

Here y„y,", a=1, ~ ~ ~, 9 represent the nonet of
pseudoscalar meson fields (we are using first-
order formalism), the set (}l„]are all the mesic
fields, ~„ is the remaining parts of the current-
algebra Lagrangian (excluding the y, kinetic ener-
gy, but now including interactions involving 8 K ),
and p,,~ (diagonal in a, b = 1, ",7) is the pseudo-
scalar meson mass matrix arising due to the
breakdown of chiral symmetry. (Note p.,~

—0 in
the chiral limit. ) We will see below that the para, —

meter C is related to the strength of the topological
charge.

%e j)roc!ed as in standard current-algebra ana-
lyses" to require that Eq. (1) lead to the PCAC
condition for the axial-vector currents Af' with
anomaly:

(2)

[This will be seen below, e.g. , Eq. (7) to deter-
mine the anomaly couplings of 2«. ] To see the
significance of the field K"(x), we first look at the
quadratic parts of Eq. (1). This leads to the free
field propagators b,,~

= f(T(y, y, })and a„„
= i(T(K„K„)):

(3)

a,„=-C(q„„/q'}+ (q„q„/'q')&,' C'(F"„)'(q'+m, ')-',

(4)

where I '„is the matrix inverse of I"„,and m, are
the physical masses of the pseudoscalar nonet.
Equations (3) and (4) include the effects of chiral
and SU(3) breakdown in the mass growth of the
pseudoscalar mesons. In the chiral and SU(3)
limit, however, when p„-0,E,9 -(N, /6)' E,6,9,
we immediately deduce all the results of Kitten.
Thus, one obtains then m, —=m„-0 while (m, )'
=- (m, , )2 4N, E,-RC, removing the paradox of the
light ninth pseudoscalar meson. (Note m„,'-I/N
since E, -v¹)Further, from @CD one may estab-
lish"

(5)

where ll =- (y, o ) represent all the pseudoscalar
and scalar fields. ' Thus by inserting the quad-
ratic parts of Eq. (1) that depend on K" into the
right-hand side and integrating, one obtains the
cubic structure

' =(-')'~'N [E ' Z E' ]y o 3 K" (6)

and so forth for the higher-point functions. "
Equation (7) then precisely guarantees that Eq. (2)
holds for these couplings.

The anomalous two-point WI originating from the
effective Lagrangian of Eq. (1) yield in the 8, 9
channels three equations for the F,&

(Ref. 16}:

where E(8) is the vacuum energy as a function of 8.
[The effective Lagrangian, Eq. (1), also produces
the identical result. ] Thus in the absence of
quarks (N, =O) Eqs. (3), (4), and (5) imply C
= (d'E/d8') e'-~"""' and so in the chiral limit

m„, -4N, E, 2(d'E/dt's) (6)

as obtained by Witten' in the 1/N analysis. " Fur-
ther, in the chiral limit with quails present, one
can showusingEqs. (3)—(5) that(d E/d8 }e& vanish-
es as desired since the vacuum energy should be
independent of 8 in this limit. Thus the simple
structure of Eq. (1) contains all. the fundamental
@CD properties, and will in addition allow one to
calculate physical meson processes directly.

As can be seen from Eq. (4), the satisfaction of
the two-point anomalous NI implies the existence
of two types of ghost poles: a Kogut-Susskind-
type q„q„/q'dipole ghost, ' and a q, „/q2 monopole
ghost (recall" C& 0). These ghosts, however,
couple only to the anomaly current K" and cor-
rectly cancel out in physical quantities such as
v -=i(T(Q(x)Q(0))). (Q = topological charge density. )
From Eq. (4) and the canonical commutation rela-
tions, one finds in the chiral limit that w(q' =0)—C.
Thus in the chiral limit, C represents the quantum
fluctuations of the topological charge. " Eouation
(1)also implies (0 ~8„K"

~
y,)= (-,')'~ N,CF,9' showing

the nonnegligible gluon content'0 of the g' and g.
We now turn to the structure of go„ofEq. (1)

which is obtained from imposing the current-alge-
bra relations and PCAC on the interaction Lagran-
gian. In the absence of anomalies, the techniques
for doing, this are well known. ~ The anomaly in-
troduces additional couplings involving topological
charge density 8„.K" only, which, however, are
determined in terms of the nonanomaly couplings
by the PCAQ condition Eq. (2). For example, the
nonderivative couplings&K involving the spin-0
fields are obtained by iterating the equation
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(m„E„)'+(m„,F„)'=~(c~+c„)——,'c, ,

F„(E„+ME„)m~'+F„(F„+ME„)m„'=c„
(10)

scalar fields

Uy U & yl 8[(2)l l2N
] 1E (12)

(E„+~F98)'yn „'+(E„+ME99)'m„'= 3 c.+ 4 N, 'C,

(11)

where c,= E, —m, , cx Fr——mx'. In the SU(3) and
chiral limit one would have E« E,' E——» ——g 6C/yn„. ,
and Esg 0:Eg8 One may, however, solve these
equations rigorously for E», E„,and E» in terms
of E„=E„.Thus one finds

~ F89~ = (m„,)-'[-,'(4' + 4c„—c,) —m„'E„']'~'.

To obtain an estimate of E» we set E„=E~ =115
MeV and find with chiral and SU (3) breaking that
e —= E»m~/Essex = 0.6, which is not small. The
corresponding formula for E„involves the anomaly
parameter C. From Eq. (3) one might estimate
C by C= (F„)(m„'—m„')/4N, ' =5c,andthen &2E98
+E„=+e[BN, 'C/m„'(1+ n')]'~'.

These results illustrate that sizable corrections
arise in the real world from SU(3) and chiral
breaking.
2. Stxovg&P-violating effects. The effectsof 8
on physical processes arise due to the breakdown
of chiral symmetry. As pointed out by Baluni, "
these aspects are more easily seen when a U(1)
transformation is made, which eliminates the 8

dependence of the fundamental QCD Lagrangian
from the gluon sector transforming it into a CP-
violating mass matrix 5Zc~ in the quark sector:

= 8iu„m m, (m„mz+m„m,+m~m, ) 'qiy'q

One may make the identical U(1) transformation on
the effective Lagrangian of Eq. (1). The axial-
vector current A"„associated with the U(1) sym-
metry transformation, satisfies the PCAC condi-
tion without anomaly, i.e. , 9 A" =E ~p,~y, and
is related to the gauge-invariant current A.,"by
&," =&," —(3) N, &,slf". [Note that inthe chiral limit
this implies Q,'is conserved and indeed one may
explicitly verify that Q', commutes with the
Hamiltonian of Eq. (1) in this limit. ] The trans-
formation that eliminates the topological charge
term -88„K"of Eq. (1) is then" U(8)
= ex p[i8[( ,')' ~ N, ] t—@95],where Q~9-=fd~xAS In addi-.
tion one must make a chiralSU(3) & SU(3) transforma-
tion so that the perturbing Lagrangian 5 Z~~ is cor-
rectly an SU(3) singlet, in conformity with the
theorems of Dashen and Nuyts. " This can be achi-
eved by determining the coefficients P, which min-
imize the quantity F(P, ) =(0~ V ', (q,')V~ 0), where
V(P, ) =-e px(iP, Q', ), Q', are the axial charges of
SU(3) &&SU(3), and y,' are the transformed pseudo-

These transformations, of course, leave the kine-
tic energy terms invariant. In precise analogy
then with the fundamental QCD Lagrangian, " the
existence of the chiral-breaking mass terms of
Eq. (1) give rise to a CP-violating interaction.
Thus to linear order in the fields, Eq. (12) pro-
duces a 5&~~ of the form"

6 ~ca = 8[(-',)' 'N, D '»] 'FQ, V Z„v,(x), v, =—(v Zy'). ,

(13)
where D,~

=—MZ '„p,~(v Z) '~~ and (v Z), is the wave-
function renormalization matrix of Glashow and
Weinberg. '

The factor 1/D'» is proportional to the bare
mass matrix p,,~ and hence vanishes in the limit of
perfect chiral symmetry. Thus the effective
Lagrangian contains the corresponding properties
of the fundamental Lagrangian. Further, by
equating the vacuum matrix elements (0 j[Q5„

]~ 0) of the two formalisms, one obtains the
relation (for N, =3)

(D-' )-'(~Z E )'

=-,'m„m~m, (m„m~ +m„m, +m~m, ) '(0~qq~0),

(14)

which represents a sum rule for the q and g'
chiral mass matrix.

There are of course additional CP-violating
terms arising from other chiral-symmetry-
breaking effects required by current algebra and
appearing in the interaction parts of "~~ of Eq.
(1). The simplest decay to consider that proceeds
via strong CP violation is that of g —2p. These
additional effects actually cancel for this process
in the soft-pion and m, —~ limit (corresponding
to nonlinear representations of the 0' states' 4).
One obtains then the identical result for this decay
as Crewther et al. ' calculate from the fundamental
QCD Lagrangian. The formalism presented here
al.lows, however, for the incl.usion of arbitrary
breakdown of chiral and SU(3) symmetry, and for
hard-pion corrections. Perhaps the most interest-
ing application of the techniques developed here is
to determine the strong-CP-violating effects on the
neutron electric dipole moment, which can be cal-
culated with the above formalism without soft-
pion or bag approximations. " 'This calculation
will be considered elsewhere.

Vote added. After completing this work we be-
came aware of the paper by C . Rosenzweig,J.Schechter, and G. Trahern [Phys. Rev. D 21,
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3388 (1980)]. This work also gives an effective-
Lagrangian description of the U(1) problem, but
considers only the SU(3) symmetric, 0-model
coupling of spin-zero mesons. In this approxima-
tion, our Eq. (7) reduces to the Rosenzweig et at.
results. %'e should like to thank Dr. Veneziano

for bringing this work to our attention.
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