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The nonlinear o model in four dimensions is discussed in the context of the loop expansion. Since the model is
perturbatively nonrenormalizable, divergences not of the form of the Lagrangian are of course expected; what is
perhaps surprising is that there are divergences which appear not to be invariant under the original nonlinear
symmetry. We demonstrate, however, that these apparently noninvariant terms do not contribute to on-mass-shell
quantities and may be eliminated order by order by a field redefinition involving space-time derivatives. The linear o
model is then examined in detail; it is shown how the nonlinear model, including the apparently noninvariant terms,
emerges as the limit of the linear model as the o. mass goes to infinity. Finally, we compare our approach with other
treatments of the "noninvariant" terms in the nonlinear model.

I. INTRODUCTION

In a recent paper, we studied the effects of
heavy, strongly interacting Higgs particles on the
low-energy weak interactions. ' The natural mass
scale for strongly interacting Higgs bosons is of
order 1 TeV, well beyond currently accessible
energies. The gauged nonlinear 0 model, which
is the formal limit of the standard model as the
mass of the physical Higgs particle goes to infin-
ity, was found to be an extremely useful tool for
organizing and cataloging all possible effects.
The basic idea of the analysis was rather simple:
Because the nonlinear model is perturbatively
nonrenprmalizable, divergent structures appear
in the loop expansion which are not of the form
of the original Lagrangian. The power or loga-
rithms of the cutoff which multiply these struc-
tures can be interpreted as powers or logarithms
of the Higgs mass ~„of the linear model. This
is because the linear model with finite ~H is re-
normalizable. ; the new divergences only appear as
the limit M„- ~ is taken (thereby generating the
nonlinear theory). Thus, all effects which grow
with M„ in the linear model can be summarized
by writing down the new divergent structures
which appear in the nonlinear model. The dimen-
sion and form of these structures is determined
simply by power counting and by the explicit non-
linear chiral symmetry.

However, in the implementation of this program,
a problem arises which is worth studying in more
detail. The nonlinear c model, even without
gauge fields, generates off-mass-shell diver-
gences in the loop expansion which do not appear
to be invariant under the nonlinear symmetry of
the Lagrangian.

This phenomena must be clearly distinguished

from simple nonrenormalizability of the theory.
One of course expects divergences in perturba-
tion theory which are. not of the form of the origi-
nal Lagrangian; what is surprising is that some
of these divergences do not even appear to have
the original symmetry off the mass shell. Although
we discovered this phenomenon independently, its
existence has, in fact, been noted previously by
several authors.

In the complete analysis of the renormalization
properties of the two-dimensional model by
Bardeen et a/. ,

' it was found that the symmetry
could be preserved by a simple redefinition in
which the new field at any space-time point is a
given function of the old field at that point. How-
ever, in four dimensions the situation is more
complicated. As we will see, the necessary re-
definitions invlove space-time derivatives of the
fields. Approaches not involving field redefinit-
ion have also been suggested' '; we compare those
methods with our own at the end of Sec. II and in
the Conclusion.

Another question which needs elucidation is the
precise manner in which the linear model acts as
a regulated version of the nonlinear model. In
particular, how is it possible that apparently non-
invariant terms can be generated from the linear
model, which is certainly invariant under the
original linear symmetry in each order of the
loop expansion? Our discussion will make clear
the origin of these terms and show explicitly why
they do not contribute to on-mass-shell quantities,
at least at one loop. An understanding of the re-
lation between the linear and nonlinear models is
certainly critical for the type of analysis per-

: formed in Ref. 1; it is also necessary in order to
discuss power (nonlogarithmic) divergences in the
nonlinear model since dimensional regularization
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sets all such divergences to zero. (The only other
chirally inva, ria, nt regularization scheme we know
of is lattice regularization, which is calculation-
ally difficult. ) As an example, we use these
methods to demonstrate that the quadratic diver-
gences do not violate the Ward identities of the
gauged nonlinear theory.

The subtleties of the loop expansion in theories
with nonlinear symmetries have been a matter of
interest for some time. A decade ago, when the
nonlinear 0 model was being used extensively as
a shortcut to current-algebra results, it was dis-
covered' that the careful preservation of the
chiral symmetry in the Feynman rules was nece-
ssary to prevent violation of the symmetry by
one-loop quartic divergences. In contrast, the
present work deals with a different kind of ap-
parent violation of chiral symmetry which first
appears in the one-loop logarithmic (and, in a
certain sense, quadratic —see Sec. V) divergences.
As mentioned above, a major goal of this study
has been a deeper understanding of the preserva-
tion of nonlinear symmetry in order to apply the
techniques to Bef. 1. In addition, the nonlinear o.

model seems to be a good place to begin the study
of more complicated nonlinear symmetries which
appear in, for example, some supergravity
models. These models may have additional comp-
lications which set them apart from the cr model';
still, it seems logical to learn as much as possi-
ble about the simpler case first. Finally, four-
dimensional gauged nonlinear a models, of the
type discussed in Bef. 1 and in Sec. V of this pa-
per, have recently been used in a description of
the strong interactions. ' As a phenomenological
model, "massive gauge-invariant quantum chro-
modynamics (QCD)" (as the theory is called in
this context) has some rather attractive features
(e.g. , confinement by vortices) which appear in
a nonperturbative, semiclassical treatment. A
thorough understanding of the loop expansion in
the nonlinear model may help to shed light on this
approach.

The organization of the paper is as follows:
Sec. II establishes our notation, discusses some
of the general features of the nonlinear 0 model,
and exhibits the one-loop invariant counterterms.
In Sec. III, we calculate the one-loop m self-ener-
gy and 47) scattering graphs in a particular para-
metrization of the theory, and note that the log-
arithmic divergences are not of the form of the
invariant counterterms. It is then shown that the
apparently noninvariant terms can. be absorbed
into a field reparametrization. In Sec. IV, we
generalize this calculation for arbitrary initial
parametrization and for graphs with arbitrary
numbers of external lines by using the background

field method. Section V treats the linear model,
showing how it can generate the apparently non-
invariant terms as I„-~ and why these terms
can be absorbed into field redefinition. We also
discuss the gauged model and describe how the
linear theory acts as regulator, preserving the
Ward identities in the case of the quadratic diver-
gences. A summary and some comparisons with
other work appear in the final section.

II. GENERAL PROPERTIES
- OF THE FOUR-DIMENSIONAL NONLINEAR o MODEL

We begin by writing down the SU(2)~ && SU(2)s
nonlinear model and describing some of its prop-
erties. The fields are represented by the two-by-
two matrix

~(x) -=o(x)+zr v(x), (2.1)

which is enforced by requiring

o (x) = [f' —w'(x)]1/'.

The Lagrangian is then simply

&„,=-„' tr(e M)ts. m.

(2.3)

(2.4)

It is useful to make explicit the invariance under
the isomorphic group O(4) = SU(2)~ x SU(2)„. The
set p(x) = (a(x), m(x)) transforms as an O(4) vec-
tor, with m transforming linearly under the "ro-
tation" or "isospin" subgroup SU(2)~+ SU(2)/1.
Under the remaining transformations (the
"boosts"), m transforms nonlinearly:

(2.6)

where & is a set of three infinitesimal parameters.
The nonlinear Lagrangian in its O(4) form is

The model (2.4) or (2.6) can be viewed as a
limit of a spontaneously broken linear theory

~„„=-.'(s.v)'+-', (s,~)' —(o'+~' f')'.
If X- ~ with the vacuum expectation value f fixed,
the potential term in (2.7) becomes a & function
in a functional integral and the nonlinear model is
generated, at least formally. Equivalently one
can take the Higgs mass,

(2.7)

M~2 = 2' 2, (2.6)

which' transforms from the left and right accord-
ing to the I,—,) representation of SU(2)~ && SU(2)s.
The nonlinear constraint is given by

(2.2)
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large, still holding f constant. Of course, the
limit M„- does not exist in perturbation theory,
which is simply a reflection of the perturbative
nonrenormalizability of the nonlinear model. It
is, in fact, an old idea" that the linear theory
with finite MH can be thought of as a regulated
nonlinear theory. In Sec. V, we will make more
precise this connection and use it to discuss some
of the more subtle properties of the nonlinear
model.

The parametrization of the Lagrangian in terms
of the m fields in (2.4) or (2.6) is, of course, not
unique. (In fact, we will discover, in Sec. III,
that it is necessary to redefine the fields in order
to keep manifest the nonlinear chiral symmetry. )
The freedom of reparametrization can most eas-
ily be expressed in geometric language. " If the
w' are thought of as coordinates on a three-sphere
of radius f, the Lagrangian (2.6) takes the form

j.
Nz, =~ ge 7T ~ 77

where the metric g, is given by

g, , = &,~+ m, m, /(f' —w') . .

(2.9)

(2.10)

Singe the isospin subgroup of SU(2) && SU(2) is an
ordinary global symmetry which is linearly re-
alized, we anticipate no difficulty in maintaining
explicit invariance under this subgroup. We are
thus led to consider general coordinate trans-
formations which keep the isospin subgroup linear:

~(x) —Z(x)a(m '(x)). (2.11)

H is an arbitrary function of m ', subject only to
the conditions required for the invariance of S-
matrix elements: that H be nonsingular and that
H(0) be nonvanishing. " (Later we will find it use-
ful to generalize this redefinition to involve space-
time derivatives as well as the fields themselves. )

Under the transformation (2.11), the metric
becomes

g, , =a(72)&„+b(W 2)m,.m, , . (2.12)

where a and b depend on H and its derivatives with
respect to m'. Expanding a and b in power series
with coefficients a„/f~ and b„/f, and absorbing,
if necessary, a multiplicative constant into m, we
have the most general chirally invariant Lagrang-
ian with, at most, two space-time derivatives":

z= —,'(s„~)2

~-Rn[~ (& 2)n(s &)2+ I (&2)n-1(& s &)2]
n=j.

(2.13)

Note that only one set of the coefficients a„and b„
are independent; specifying the a„, say, deter-
mines H, which then determines the b„. (For

example, b, =1 +2a,.) The Lagrangian (2.13) is
invariant under the usual linear isospin transfor-
mation on m, and under the nonlinear boost trans-
formations, which now take the form [replacing
(2.6)]

7- m+ W(m ')+ (e 'F)R(m'), (2.14)

where

(2.16)

and G(w') fs given by"

|, 2FF'
(2.16)

z=—tr(s. U)'s„U. (2.16)

Now let us imagine that we are computing with a
dimensionful, chiral-invariant regulator A. (A

might be the renormalized mass ~„of the linear
model, or the inverse lattice spacing if lattice re-
gularization is used. ) We define D as the dimen-
sion of a counterterm which appears at L loops.
Knee the fields are dimensionless, D simply
counts the number of derivatives. Let n be the
number of powers of f' and r the number of powers
of the regulator ~ which accompany this counter-
term. Dimensional analysis gives

D+2n+x =4. (2.19)

The number n is easily determined because f '
multiplies the entire Lagrangian (2.17) and hence

We remark that because the three-sphere ~, is a
symmetric space, the general covariance of the
Lagrangian [Eq. (2.9)] automatically implies chiral
[O(4)] invariance (and vice versa). Also note that
to each of the above parametrizations, there cor-
responds a "linear" theory, in which the m field
in (2.7) is redefined before the limit X- ~ is taken.
Finally, we emphasize that because the choices in
(2.13) are related by redefinition of the 2 field,
they all give the same results on the mass shell.

It is now possible to examine the structure of
the divergences generated in the loop expansion.
Because the model is nonrenormalizable, the di-
vergences will not have the form of the original
Lagrangian; instead, there will be a finite number
of new "counterterms" (divergent structures)
which are generated in a given number of loops.

A simple power-counting argument" determines
the structure of the invariant counterterms at each
order. First, we define dimensionless fields by
writing the matrix M of (2.2) in terms of a unitary
matrix U,

(2.17)

The Lagrangian (2.4) is then simply
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is a loop-counting parameter:

n=1 —I.
We thus have

D=2+21 -~.

(2.20)

(2.21)

trUtU = 2. (2.22)

The absence of quartic divergences in a chirally
invariant perturbation calculation is well known. '

The only invariant D = 2 structure is tr[(B„U) B„U],
which is of the form of the original Lagrangian.
We would thus expect that the quadratic di-
vergences may be absorbed into wave-function re-
normalization of the w field and a redefinition of
the parameter f.

The new counterterms at one loop are, there-
fore, logarithmic divergences with D = 4. Using
the unitarity of U and trace theorems for SU(2), it
can be shown that there are only three such struc-
tures:

~, = o.,tr (&' U'8, U) tr (&"U'S „U),

&, = ~,tr(S'U'&"U)tr(&„U')(&„U),

~=n, tr( U' U),

(2.23)

where the numbering corresponds to the notation
of Ref. 1. Equivalently, in the notation of Eq.
(2.9), they take the form

,=(,/f')(, , „.* '.')'
&, =(4,/f )(g s, 's ')', .

& = (2ojf4)[g„D'v'D'v'+ (g„s,v's'v')'j. ,

(2.24)

where D' is the covariant d'Alembertian

D' ~ =o&'+ r. ~ &'8 ~'qkv u (2.25)

with r',.~ the Christoffel symbol,

]g ski+ ~St gdk
em' em~ em'

I

We have thus enumerated all possible chirally

(2.26)

This determines the dimension of possible coun-
terterms and thereby enables us to enumerate
them. At I loops, new counterterms, with higher
dimensions than those previously seen, will appear
as logarithmic (r =0) divergences; counterterms
that were first generated at I -1 loops will appear
with quadratically divergent coefficients.

Focusing on the one-loop graphs, we see that
there may be quartic divergences with D =0, quad-
ratic divergences with D =2, and logarithmic di-
vergences with D = 4. There are, in fact, no quar-
tic divergences since the only invariant with no
derivatives is trivial:

Z„,=-,' tr(I, „)'+-,' tr(D.m)'D"M, (2.27)

where I', „=S W„—S„W„+g[W„,W„j and D
+gW, . As before, the constraint is ~ =fU, with
U unitary. To Z,„„must, of course, be added
ghost and gauge fixing terms. We will always
work in the Landau gauge; where ~„W vanishes,
the ghosts do not couple directly to the scalars
and there is no quadratic term mixing m and W, .
In terms of the o and v fields of (2.1) and (2.3),
we have

invariant one-loop counterterms.
Surprisingly, explicit calculations show —as we

will see in Sec. III—that when the external lines
are off the mass shell, the one-loop logarithmic
divergences cannot be canceled by the counter-
terms (2.23) or (2.24). This fact has been known
for some time. ' A plausibility argument for the
existence of the phenomenon was given by Honer-
kamp, ' who pointed out that ordinary perturbation
theory is a noncovariant procedure in this context.
Imagine calculating loop diagrams by the back-
ground-field method (which is equivalent to ordi-
nary perturbation theory). The expansion of the
Lagrangian (2.9) around the background field in-
volves the derivatives of &:&&/&m', &'&/&m'&m',

... . Because these derivatives are ordinary,
not covariant, derivatives with respect to m, the
calculation produces apparently noninvariant re-
sults. Honerkamp then went on to show that one
can replace the usual background-field method
with a procedure involving covariant derivatives
which gives the same results for physical ampli-
tudes on the mass shell and is invariant for all
values of external momenta. Similar methods
have been suggested by other authors. 4 We em-
phasize that these procedures are not equivalent
(off the mass shell) to ordinary perturbation
theory for any parametrization of the original
Lagr angi an.

In Sec. III, we suggest another approach to the
problem. Instead of redefining perturbation
theory, we merely redefine (order by order) the

f field (or equivalently, the chiral transforma-
tions). Such "field-dependent renormalizations"
can appear even in the renormalizable two-dimen-
sional nonlinear model'; the only unusual aspect
of the present redefinition is the fact that the new
fields are functions not only of the old fields, but
of their space-time derivatives as well.

In Sec. V, we will have occasion to refer to a
version of the nonlinear model in which the SU(2)~
group is gauged. This model is discussed in great
detail in Ref. 1; here, we merely list a few rele-
vant features. The gauge field is W„=W„' r/2i
and the gauge-invariant Lagrangian is
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&,„,=g tr(&, „)'+2~~'(W, )'+-,'(&„m)3+-,'(s, cr)'

where

+—W„'(ma, o —oe„w+m x&,s), (2,23)

FIG. 1. The one-particle-irreducible 27t Green's
function at one loop.

g2 2 2
2 f R

(
2 2)

4
(2.29)

III. THE NONLINEAR 0 MODEL AT ONE LOOP

In this section, we examine some of the one-loop
structure of the nonlinear 0 model as revealed by
direct computation with dimensional regulariza-
tion. Comparison with the counterterms (2.23)
allowed by the symmetries of the model will show
that divergent pieces exist off the mass shell
which do not have the structure of these counter-
terms. It will then be shown that the additional
pieces can be eliminated through a (cutoff-de-
pendent) field redefinition, generalized [from
(2.11)]to include space-time derivatives.

In order to determine the coefficients in all
three of the counterterms (2.23) and to exhibit
the additional off-shell divergences, it suffices
to compute the 27t and 4p Green s functions. For
simplicity, the original form (2.6) of the nonlinear
I agrangian is used, corresponding to the choice
a„=0 in Eq. (2.13). The background-field dis-
cussion in the next section will, however, make
use of the more general form (2.13).

The only one-loop contribution to the 2z Green's
function is shown in Fig. 1. The apparent diver-
gence (nonzero at q = 0 and therefore violating the
Adler condition) is well known not to be present

in chiral-invariant perturbation. theory. The
quadratically divergent term proportional to q
is defined to be zero with dimensional regular-
ization. (In a regularization scheme with a dim-
ensional cutoff, such as regularization by the
linear model, this term will be nonzero but it
will amount only to a renormalization of the orig-

1

inal I agrangian —see Sec. V. ) It is clear from
Fig. 1 that there can be no piece proportional to

q (logarithmically divergent). Thus the counter-
term &, (2.23), which produces a 2p vertex with
four powers of momentum, has a vanishing co-
efficient at one loop.

The one-loop contributions to the 4p Green's
function are shown in Fig. 2. The quartic and
quadratic divergences are dealt with as they were
in the 2p Green s function. It is the remaining
logarithmic divergences, proportional to four
powers of the external momentum, which are of
central interest. Those which do not vanish on
the mass shell require the use of the counterterms
2& and 2, (2.23) and signal the nonrenormaliza-
bility of the theory. In order to separate off these
pieces and then focus attention on the remaining
off-shell parts, it is helpful first to record the
structure of the 4z vertices generated by 21 and

Using the external line nomenclature of Fig.
2, the counterterms are

4' V"', = 4
' 5. ..5... (-st —su+ (q$'+q2')(q3'+q4')]+perms,

~1 ~ ~ ~ ~4
(3.1)

', ' y'I' „= ', ' 5„.,5„„[-2ut—st —su+2(q('q2'+q~'q~')+(q('+qp')(q3'+q4')]+perms. (3.2)

The logarithmically divergent part of the one-loop amplitude is

4 (&,'I'. ., + &,I.'..„)+ g
—45„„5„„(2s(s+t+u)-( q(' +q'2)( q,

'
+q '4)]+per ms, (3.3)

where &=4 —n and s+t+u=+;a; . We first con-
sider expression (3.3) on the mass shell. The
term in square brackets then vanishes and a com-
parison with the counterterms (3.1) shows that
the cutoff dependence can be canceled by the
choice

1 1
16m' l2c '

Q2

+ crossings

(b)

1 1
2 16m

2 6

(3.4)
FIG. 2. Graphs contributing to the one-loop 47t Green's

function.
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Without the mass-shell restriction, the counter-
terms now remove the first term of (3.3), leaving
the second term as a logarithmically divergent
contribution to the 4p Green's function.

Since this piece vanishes on shell, it poses no
problem for one-loop computations. However,
it would, at the very least, complicate higher-
order computations and so it is important to
understand its origin. We shall show that the
extra term corresponds to a I agrangian repar-
ametrization, generalized from (2.11) to include
space-time derivatives.

We start with a power-series expansion of
(2.11),

1+~0 2+ ' (s.5)

1+ ' 'y~ +~d

(s.6)

To see this, we first observe that the residual
piece in (3.3) corresponds to an effective inter-
action Lagrangian

&&"=+ z 4 lg(w 77)'+2(s m)'(w. v)] .
16m ff

(s.7)

which gives the Lagrangian (2.13) from (2.6). To
discuss a 4m Green's function, it suffices to work
to order g' in the series expansion, a fact which
remains true even when generalizing to include
space-time derivatives. The residual piece in
(3.3) can in fact be understood in terms of the
following generalization of (3.5):

IV. A BACKGROUND-FIELD COMPUTATION

(4.1)

where v, is a classical background field and Q,.

is a quantum field, the Lagrangian can be ex-
panded in quantum fields about the background
field. The Lagrangian is taken to be (2.9), with
the metric g, &(w) given generally by (2.12). The
zeroth-order term in Q, gives the original Lag-
rangian, the sum of all tree graphs, and the lin-
ear term gives the equation of motion.

The quadratic term yields the one-loop effec-
tive Lagrangian. The logarithmically divergent
part can be calculated simply using 't Hooft's
algorithm, " and that has in fact been done by
Tataru. ' After the correction of some cancel-
ing sign errors, the result for the divergent part
(not the counterterm) is

16m &
(4.2)

where F„„and X are given in terms of the p
fields by

(4.s)

Here I'» is the Christoffel symbol (2.26), and
&'», is the curvature tensor given in a sym-
metric space by'

1
(fA! f 2 (gl leak gfkg pi) '

Finally, the factor S is

(4.4)

Perhaps the simplest way to obtain the full one-
loop effective Lagrangian is the background-field
method. By letting

Now consider the change of variables (3.6) with

g~ set to zero in order to focus on the derivative
terms. It precisely cancels the incremental piece
(3.7) providing

The field equation is simply

S =0,

(4.5)

(4.6)

16m c' ' 4pc (s.s)

What this result suggests is that the term in
square brackets in (3.3) is not really noninvariant.
Such a structure would, in fact, have been present
in the original Lagrangian had the more general
parametrization, given by (3.6), been employed.
Although this discussion has been limited to the 2m

and 4w Green's functions and to the initial para-
metrization (2.6), those restrictions can easily
be lifted. This will be done in the next section,
and then some of the problems and implications
of this sort of derivative reparametrization will
be discussed.

so that this piece contributes only off the mass
shell.

With a little algebra, AZ can be written in the
for-m

~a=+ ——[Q e ~'s"&~)1 1 1 2

16' f 3~

+ 2(g „s„v*s„v')']+~Z', (4.7)

where &~'contains S as a factor and therefore
does not contribute on the mass shell. The mass-
shell part agrees completely with the counter-
terms (2.24), where the coefficients o'& and o.'2 are
given by (3.4). (Note that the counterterms are
defined to have the opposite sign from 42. ) The
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improvement over the previous section is that
the full one-loop effective Lagrangian, not just
the 2m and 4g Green's functions, is given and it
agrees on the mass shell with the counterterm
structure. In addition, there is no need to specify
a particular parametrization of the metric g;& in

the original Lagrangian (2.9).
Similar remarks apply to the additional piece

It is the complete one-loop result and it is
computed for a general g&&. Comparison with
the direct 4g computation (3.7) can be made by
keeping only the 4p.terms in &&'. The result is

az'""=+-, —, [(-', g, '+ 5g, + 2)(w w)'+ (3a, + 2) (s„w)'(m m) + ag'~'( m)' —2&i( w . s„m)(m s'v)]

+ a total derivative (4.8)

1
dq= 2 (2+3a~),

8w ~

a~8)=
4p ~

'

(4.10)

and, again, this reduces to (3.7) for the choice
a( =0.

To summarize, the Green's functions of the
nonlinear g model at the one-loop level in the
usual perturbation expansion cannot be rendered
finite even by the inclusion of the new (nonre-
normalizable) counterterms allowed by the orig-
inal symmetries of the theory. Additional logar-
ithmically divergent pieces remain off shell,
which can only be eliminated by a field redefini-
tion involving space-time derivatives. Alter-
natively, the additional pieces may be viewed as
invariant under a redefined symmetry trans-
formation, where H in (2.11) and (2.14)-(2.16)
involves space-time derivatives. The trans-
formation will remain local order by order in the
loop expansion. We conclude this section mith
some comments on this result.

(1) It is clear from (4.8) that there does not

and it agrees exactly with (3.7) for the choice a&

=0.
More generally, it can be seen that for any

choice of metric g, &(v), the incremental diver-
gent piece &' can be canceled by a, field trans-
formation involving two space-time derivatives.
To exhibit the transformation to order p, it suf-
fices to generate (4.8), the 4w piece of b,Z ', and

the requisite transformation is

w,. -w, + ~~v;v &v+ ~&v, (~„v)

, 4(s„v,)(v s"~)+ ', (7)' v. + ",
(4.9)

where

c~ ——
2 (3+ 10a~+ 9a~ ),1 2

16m z

exist a choice of g&, that is, a choice of metric
g,.&(w), which makes all the pieces of &2' vanish.
The phenomenon exists with any coordinate choice.

(2) In higher orders, divergent structures with
more than four powers of the momentum will be
encountered. Those that do not correspond to
the allowed counterterms will presumably cor-
respond to higher terms in the transformaii. ~,.
(4.9), involving more than two space-time deri-
vatives. A two-loop computation, for example,
would proceed first by rendering the one-loop
subgraphs finite. This would involve the use of
the counterterms (2.24) along with the trans-
formation (4.9) to eliminate the additional off-shell
one-loop divergences. The full tmo-loop graph
could then be rendered finite through the use of
the new two-loop counterterms and the higher-
derivative terms in (4.9).

(3) As far as we know, there is no discussion
in the literature of field transformations in quan-
tum field theory which involve space-time deri-
vatives. The classic theorems on the invariance
of the on-shell 8 matrix are restricted to point
transformations (no derivatives). However, in a
functional integral context, a finite number of
derivatives poses no special problems and the
on-shell 8 matrix should again be invariant. A
finite number is sufficient to any finite order in
the loop expansion and thus the transformation
will remain local and will not change the uni-
tarity properties of the theory. Whether these
transformations could be viewed as canonical
transformations is not clear to us.

(4) It seems likely that the phenomenon discussed
here is a general feature of nonlinear quantum
field theories. With some standard parametriza-
tion to begin with, the perturbation expansion mill,
in a sense, induce reparametrizations involving
space-time derivatives. Since this never happens
in a linear theory, some insight into the phen-
omenon can be gotten by reexamining the nonlinear
theory as the X -~ limit of the linear theory (2.7).
This is done in the next section, ' in the Conclusion,
a comparison is made between these considera-
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tions and the generalized background-field ap-
proach of Honerkamp and others.

V. RELATION TO THE LINEAR MODEL

The Lagrangian of the linear model is given by

(2.7); its formal nonlinear limit, by (2.6). We will
work only with this explicit O(4) parametrization
of the models. Since the symmetry of the linear
theory is spontaneously broken, one makes the
shift

(5.1)o=o'+f.
The effective action r»N(o', w) (the generator of
one-particle irreducible graphs) is then invariant
under the transformation of the classical fields

w w+ c(o-' +f), o' - o' —a 'w, (5.2)

as well as simple isospin rotations of w. Equiv-

alently, we may define a function of the unshifted

field o, r„,„(o,w) =- rL»(o', w); the transformation
law may then be expressed simply as

7l' 'F+ 40') 0' 0'- 6 'W ~ (5.8)

To generate the nonlinear effective action r„~(w)
from r~1N(o', w) is a two-step process. F'irst,
one must sum up all "trees" which can, be made
from r»„(o', w) by connecting o' lines, with no

o' lines left external. This is because r«(w) is
defined to be irreducible with respect to m lines
only; o' is determined in terms of 7) and does not

appear explicitly in the nonlinear theory. As
is well known, the sum over trees for any action
functional may be simply obtained by evaluating
the action at its stationary point. The second step
consists, of taking the limit as the coupling con-
stant X goes to infinity, with the parameter f held

fixed. Of course, since higher and higher powers
of ~ appear as the order in the loop expansion in-

In the three parts of this section, we examine

how the nonlinear model emerges as the A, -
limit of the renormalized linear theory. We focus
our attention, in particular, on the apparently
noninvariant terms of the nonlinear theory and

expalin, in subsection A, how such terms can
arise despite the Goldstone-realized symmetry
of the linear model. In subsection 8, we show

why the noninvariant terms do not contribute to
on-mass-shell quantities. Finally, subsection C

briefly discusses the regularization of the gauged

nonlinear model. We demonstrate that the linear
model provides a dimensionful cutoff MH, which

preserves the chirsl Ward identities (in the case
of the one-loop quadratic divergences). An alter-
native, a simple cutoff in momentum space, is
shown to be inconsistent.

A. Generation of "noninvariant" terms

I'„1(w)= lim I »N(o w)
NH

where o is defined by

(5.4)

5r UN (o~ w)

Ger a=a

5r~(o', w)

5o' a '= a-f
=0. (5.5)

Let us make a loop expansion of 1"„„,I'L,„and 0'

r„L(w) = r„'L(w) + r„'„(w) +

r»„(o,w)=r»0„(o, w)+r»„(o, w)+ ~ ~ ~, (5.6)

0=op+0, + ''',
where I"~» is of course just the classical action
of the theory and o, is therefore the solution to
the classical equation of motion:

5 r1.1N(o~ w)

50 a ap

M
o'0 — w (o'02+ w

2 —f2)o'o ——0.
2

(5.7)

Putting (5.5) into (5.3) then gives

r „1(w) = 11m r„~(e„w),
NH~

rN„(w)= 11111 r11N(oo, w)

(5.8a)

(5.8b)

where, by (5.7), a term proportional to o, in
(5.8b) vanishes. Also from (5.7), it is straight-
forward to find o, as a power series in f /M„:

f2 f4
Op —Zp+M 2 Z~+~ 4 Z2+

H H

where

(5.8)

creases, the limit X- ~ does not exist in pertur-
bation theory. We will only be interested in com-
paring the linear and nonlinear models at a given
number of looPs; in particular we will concentrate
on what happens at one loop. To go beyond a loop-
by-loop analysis, one would have to treat the
models in some nonperturbative way. "

Some comments are necessary here about the
renormalization of the linear model. With dimen-
sional continuation, the parameters X and f' are
multiplicatively renormalized. " (Equivalently,
one may replace f' with m' —= —Xf', the negative
mass-squared term of the unshifted theory. ) We

define X and f' to be renormalized quantities made

finite by minimal subtraction. For notational
convenience, we will describe the theory in terms
of the parameters f' and M„', where M„' is de-
fined by (2.8). (Note, however, that Ms is only

equal to the mass of tile o' particle in the tree
approximation. ) Our operating assumption is then

that the nonlinear theory is generated by the limit
M„-~ with f' fixed; we will show that this is
correct at least through the one-loop terms which

grow with M„. We may now summarize the rela-
tion of the two models by writing
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z, = (f'- It')"',
QZ,Z~=-
Z0

2 Z, 3(ZJ'
~2 —— 2 5 ~

0 2 Z0

(5.10a)

(5.10b)

(5.10c)

where &„L is just the nonlinear Lagrangian (2.6)
and is clearly invariant under (2.5). However,
I"~„will contain terms growing as powers of M„'
which can combine with the higher-order terms in
o, to produce divergent, apparently noninvariant
results. In other words, we may write, from
(5.8b),

I'I (II)= lim [1"I „(Z,II)+I' (II)], (5.12)

where

It is now easy to see how the apparently nonin-
variant terms of the nonlinear model are genera-
ted. The nonlinear transformation (2.5) are just
the linear transformations (5.3) with o replaced
by Z„and if o, in (5.8) were just equal to Z„ then
I'„'L(II) and I"I„L(II) would be explicitly invariant.
For I'„'„, one immediately discovers that the cor-
rection terms in (5.9) do not contribute in the
limit M„- ~; one simply gets

r„'„=f d'x(-', (d, ir)'+-'. (&.}J']=fd xd'
(5.11)

expansion, noninvariances can come both from
terms in o, that are nonleading in f2/M„' —as oc-
curs here —and from higher-loop corrections to
o.)

As an example, we calculate in this way the
noninvariant divergent terms in the 2m and 4p func-
tions of 1'„~. We expect to reproduce the result
of Sec. III, (3.7), for the logarithmically divergent
terms; in addition, we will find noninvariant
quadratic divergences.

When expanded in powers of the p field, Z, and

Z, start at order z', we therefore only need I'„»
to order II' to get I"' to order II'. I IL»(v, II)

[=—I"L'IN(g', II)] is the sum of all one-loop graphs,
irreducible with respect to 7t and the shifted field
o'. According to (5.13), we evaluate the deriva-
tives of I'„"I~ at(I'=Z, f, which a—lso starts at
order m'. We thus need only calculate the follow-
ing irreducible Qreen's functions: Q„, G,„„and
Q,~„where the subscripts indicate the number and
type of external lines. The graphs for these
Green's functions are depicted in Figs. 3, 4, and
5. Including only those terms which will contri-
bute to divergences in I'N~, we calculate with di-
mensional regularization and minimal subtraction
in the linear model,

3z M4G„=-,—~ (lnM„' —1+$),

2 ~I a

pl( )
—f LIN

M H
P

2,
:0 0

(5.13)

G„„(k)=—,", [41nMs2 —3+5)+in(-k2)]
321T2 2

+ ~ 0 ~ (5.14)
~

' 4

G,„,(k, q) =- 32, ", [31nM„' —2+4)+in(-k')]

with integration over space-time variabl. es im-
plied. Although I'ILIN(Z„~) is invariant under (2.5),
I'I(II) is not and furthermore does not necessarily
vanish as M~-~ because of the powers of MH'

that appear in I'„». (In higher orders of the loop

M
", lnM„'(q'+k q)+ ~ ~ ~,

where ( —= c+lnII (c is Euler's constant) and
represents terms of order MH' or less. I"~,„is
then given by

iI"',„(o',II) = G„o' (0) + —,', g' (k) g '( k) G„,(k)

+ —,
' 2, 2, (I'(k)II(q) ~ II(-k —q)G, ~, (k, q)+ ~ ~ ~

Putting (5.15), (5.14), and (5.10) into (5.13), one
gets, after some algebra,

M}' ( }=,. (} I ' — (()f d ( 9 )

lnM ' (o} (b}

(5.15)

+2(& II)'(II ~ CFr) + —,'[(s„II)']']
+O(II )+finite as MH-~. (5.16)

FlG. 3. Graphs contributing to G,. Dashed lines are
0' fields; solid lines are m fields. With dimensional
regularizations, graph (b) vanishes.
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k
l

Fgo. 4. Graphs contributing to G~ ~. (k).

Let us first discuss the terms in (5.16) which
grow like lnM„' as M„-~ (the terms which are
logarithmic divergences of the nonlinear theory).
Note that with the identification

lnM „-I/a, (5.17)

we generate the residual term (3.7), which is not
of the form of any invariant counterterms. In ad-
dition, however, there is a logarithmically diver-
gent term in (5.16), proportional to [(B„m)']',
which does contribute to an invariant structure
[specifically, to 2,—see (2.24)]. This implies
that we cannot simply ignore f'(7) in constructing
I"~»(~) through (5.12) even if we are only inter-
ested in on-mass-shell quantities. f' (w) contains
all the one-loop noninvariant structures but not

only these structures.
Terms growing like M„' or M„'inM„' (quadra-

tic divergences) are new to us. since they were
defined away when the nonlinear model was di-
mensionally regulated in Secs. III and IV. Note
that the quadratic divergence of (5.16) is of the

form of a term in the original Lagrangian (2.6).
Nevertheless, it is not invariant under the trans-
formation law (2.5). Recall that the only invariant
structures with two powers of derivatives is pro-
portional to S„„;since the quadratic divergence
in 1' has a term with four 7t fields, but no term
with two m fields, it cannot be proportional to 2„„.
Alternatively, if this divergence is removed by de-
fining renormalized quantities w„and f„,

(5.18)

then one immediately sees that the transformation
law (2.5) is violated for the renormalized quanti-
ties since Z WZ'. (In particular, f' contributes
to Z' but not to Z. )

To obtain I'„„(vr) in its entirety, not just the
apparently noninvariant terms, one must, by

(5.12), simply add the explicitly invariant
I"~«„(Z„7r) to 1'(7). We have done this to find all
divergent terms in the 2z and 4m nonlinear model
irreducible Green's functions. A straightforward,
but lengthy, calculation shows that (a) as expected, '
there are no quartic (M„' or M„'lnM„') diver-
gences; (b) after making the identification (5.17),
the logarithmic divergences are precisely those
found in Sec. III [Eq. (3.3)] by dimensional regu-
larization of the nonlinear model; (c) the quad-
ratic divergences are given by

M 2 iT's 1T

M H

(5.19)

Z' = 1+——;™,(6 lnM „'+6$ —7) + ~ ~ ~,
327T2

(5.20)

Comparing (5.19) with quadratic divergences in
f'" [Eq. (5.16)], one easily sees that the additional
terms coming from I'„»(Z„7) are proportional
to the original Lagrangian and hence are indeed
invariant under (2.5). For future reference, we
note that all of the one- loop quadratic divergences
may be canceled with the choice

1g=l —— + ~ ~ ~

32m f

I

where ~ ~ ~ represents terms of two-loop order
which would have a coefficient f '.

Parenthetically, we remark that the quadratic
divergences appear in a straightforward way in

our calculations, in contrast to previous work. "
By a judicious finite renormalization of the linear
model before the MH, -~ limit is taken, one could
avoid encountering these divergences explicitly
in the nonlinear model; however, we see no par-
ticular reason to do this. At two-loop order, the
quadratic divergences would not be of the form of
the original Lagrangian and therefore could not be
eliminated by such a procedure.

k J
r

(b)

(e}

FIG. 5. Graphs contributing to G~ «@,q) ~

(c)

+ crossing

B. On-shell invariance

Although the exposition thus far has shown how

the apparently noninvariant structures of the non-
linear model are generated from the linear model,
it has not made clear why the explicit nonlinear in-
variance is maintained on shell. To answer this
question, we adopt a technique similar to the
background-field method described in Sec. IV.
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We start with the functional integral expression
for the generating functional of 7t'-field Green's
functions in the linear model Wr, rN(J):

exp[i WL,„(J)]

df der exp i d xg „g,m+J 7r

z(s, p;Tr) -=-,'(s, p)'+-,'(s, s)'

M
2 2", (p'+s'+2Z, s+2T[ p)'

+ sK, (Tr)+ p ~ K~(T[),

sc, (Tr) = —-z, ,

(5.29)

(5.30)

M~C1o+ ", ((r'+ rr' f')o-=0, (5.23)

(5.21)

where 2»„ is given by (2.7). We expect that the
nonlinear-model generating functional W»(J) is
related to W„,„(J) simply by

W»(J) lim Wr rN(J) (5.22)
N~~~

The linear-model equations of motion, which de-
termine the stationary points of the action in (5.21)
are

(5.31)

Note that 2 contains linear terms in s and p, with
"sources" E, and K» because Z, (J) and Tr(J) are
not exact solutions of the linear equations of mo-
tion.

Now, since&„,„(Z„Tr)=&„L(rr), and since Tr(J)
is the solution to the nonlinear equation of motion,
the first term on the right in (5.27) just generates
all the nonlinear connected tree diagrams. There-
fore Q»(Tr), defined by

(5.24) QN„(Tr) lim Q„rN(Tr)
M~~ ~

(5&2)

Tr -Tr(J)+ p,
(r z,(J)+-s,

where Z, (X)
—= [f' —Tr2(J) J ' and Tr(J) is the solution

of the equation

(5.25)

(5.26)

where we have used (5.23) to simplify (5.24).
If one were interested only in the linear model,

one might now proceed by shifting o and Tr in (5.21)
by the solutions to (5.23) and (5.24). However, the
previous discussion has shown that the separation
of explicitly invariant structures from apparently
noninvariant ones is performed most easily in
terms of the quantity Z, =—(f' —rr')' ' and not the
solution to (5.23) or (5.7), oo. We therefore make
the shift

must generate all the nonlinear connected loop
diagrams. At one loop, in fact, QNz, (Tr) is equal to
the effective action I'»(Tr); however in higher loops
Q„~(Tr) will contain one-particle-reducible graphs
such as Fig. 6, which is not in I'»(rr). Evaluating
QNr (Tr) at Tr =Tr(J) just replaces each external line
by the sum of all trees.

A confusing point in this development is the fol-
lowing: Q»(T[) is supposed to generate all dia-
grams with at least one loop; yet Q~,„(Tr), as de-
fined in (5.28), clearly contains some tree dia-
grams since & has linear terms in s and p. How-
ever, these extra trees vanish as M„-~ (they are
just the difference between the linear and nonlinear
trees) as can be easily checked in graphs with low
numbers of external w lines.

Let us now discuss how Q»„(Tr) and Q„„(Tr) trans-
form under the nonlinear transformation

Note that Tr(J) and Z, (J) satisfy the linear equations
of motion only in the limit M„-~; (5.26) is, how-
ever, the exact nonlinear equation of motion.

Putting (5.25) into (5.21), separating off the
terms which are independent of the new integration
variables p and s, and using (5.26) on the remaind-
er gives

rv„,„(J)= Jd s[x„,„(p,(J), rr(J))e J s(J)]

+ Q„gv(J)), (5.27)

Tt' r+ ZZO,

Zo- Zo —E m.

A linear change of variables in (5.28),

p~p+&S q

S S —& Pq

(2.5)

(5.33)

with the following definitions:
p

exp[irr„,„(ir)]-=f [dp][ds]exp i fd' (s, P;rsr)x

(5.28)
FIG. 6. A graph contributing to QNL(7j) which does

not contribute to I'NL(7t).
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makes clear that the noninvariance under (2.5) of
Q»„(v)—and hence of Q„„(m)—is due only to the
presence of the source terms sE, and p ~ K~ in 2.
Explicitly, the variation in QL,N(v) under (2.5) is
given by

(o) (b) (c)
FIG. 7. Graphs contributing to the Mz divergence of

the W-27r vertex. Wiggly lines are Wfields; solid lines
are 7) fields; dashed lines are 0' fields.

(5.24)

where the symbol ( ) denotes the connected vacuum
expectation value calculated with the Lagrangian

To make connection with the methods of Sec.
VA consider dividing Q»„(m) into two sets of
graphs: those that do not contain the sources K,
and K~, and those that do. An explicit one-loop
computation shows that the former set gives pre-
cisely the invariant contribution I'L,N(Z„ v) in
(5.12), while the latter gives the noninvariant con-
tribution I' (w). This is as expected, since it is
the difference between Z, and the exact solution of
the linear-model equation of motion which leads
to the presence both of I"'(w) in (5.12) and of the
source terms here —generating noninvariant struc-
tures in each case.

It is now not hard to see why apparently nonin-
variant terms in Q»(v) do not contribute to on-
mass-shell quantities. To calculate the S matrix,
one must first set v= v(J) to "dress" Q„„with ex-
ternal trees; by (5.26), the variation in Q„„in
(5.84) is then proportional to J. On the mass shell,
the variation now vanishes because the quantity
(s+ p ~ v/Zo) has no poles at k' =0: The s field is
massive (mass =M„) and the second term is at
least quadratic in massless fields. Note that our
argument holds to all orders of the loop expansion.

%e conclude this discussion with two remarks:
(1) What has been shown here is that the varia-

tion of 0» vanishes on the mass shell. As de Wit
and Grisaru point out, ' this does not automatically
guarantee that 0» is a sum of an invariant term
plus a term which vanishes on the mass shell; 0»
could also have a noninvariant term which did not
vanish on shell but whose variation did. However,
we do not expect this possibility to be realized in
this model —it certainly does not occur at one

loop, as the explicit calculations in this section
and the previous sections show.

(2) We have discussed here the loop functional
Q»(v) which is not equal to the effective action
I'»(v) except at one loop. It may be possible to
extend the result of on-shell invariance to I'»(Tr)
by an induction argument since the reducible
graphs which contribute to Q and not I" are al-
ways made of irreducible parts, each of which has
fewer loops than the whole graph. However, one

would have to worry about the internal lines which
may be off shell.

C. Comments on the gauged model

(b) {c)

FIG. 8. Graphs contributing to the Mz divergence of
the W mass.

Finally, we discuss the regularization of the
gauged nonlinear model (2.27). The renormaliza-
tion of this model in two dimensions has been dis-
cussed by Bardeen and Shizuya"; here we make
some simple comments about the four-dimension-
al case. Suppose, first, we regularize by using
the renormalized linear model. [The Lagrangian
of the gauged linear theory is just (2.28) without
the constraint o'+ w' =f', with the potential term
-(X/4) (o'+ w'- f2) added, and with the o field
shifted in the usual way. ] The presence of the
gauge field does not lead to any new' quadratic
(M„') divergences in the 2v or 4v Green's func-
tions, so we still expect tI])e quadratic divergences
to be removed by renormalization of 7r and f as
in (5.18), with Z and Z' given by (5.20). Equations
(2.28) and (2.29) then imply that the quadratic di-
vergences in the 2m-W vertex and in M~' should
also be removed by Z and Z', respectively. Com-
putation of the appropriate graphs (Figs. 7 and 8)
shows that this is indeed the case. Ward identities

' relating the different vertices are thus preserved;
this is true despite the fact that Z*Z' (which we
have described as an apparent noninvariance).

On the other hand, if the nonlinear model is
regularized by a momentum-space cutoff on Feyn-
man integrals, one easily finds that the quadratic
divergences coming from the 2n, 4m, 2W, and
2m-W Green's functions are inconsistent with the
Ward identities. This is presumably because such
a cutoff is akin to a Pauli-Villars m-mass term
and therefore breaks chiral invariance.

The logarithmic divergences of the gauged non-
linear theory can be studied directly with dimen-
sional regularization; there is no need to regular-
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ize with the linear model. Once the redefinitions
of the v field (as described in Secs. III and IV)
have been performed, the chiral symmetry ap-
pears explicitly. See Ref. 1 for a detailed discus-
sion.

VI. CONCLUSION

We have analyzed some features of the loop ex-
pansion of the nonlinear o model. The theory is
nonrenormalizable so that new counterterms are
required at each order to define the theory. At
one loop, they are s, and 2, of Eq. (2.24), both of
which must absorb logarithmic cutoff dependence.
In addition to nonrenormalizability, however, a
new problem arises in the nonlinear model which
was our main concern in this paper. Even the new
counterterms which are allowed by the nonlinear
symmetry are not sufficient to remove all of the
cutoff dependence of off-mass-shell Green's func-
tions. These apparently noninvariant, logarithmi-
cally divergent pieces, which vanish on shell, are
exhibited for the one-loop 4n Green's function in
the second line of Eq. (3.3). They can also be seen
in the full one-loop effective Lagrangian [Eq.
(4.2)]. In Eq. (4.V), the off-shell piece of this ef-
fective Lagrangian, not removable by the invari-
ant counterterms, has been separated into the
third term &&'.

It was pointed out that these terms correspond
to (or, equivalently, can be eliminated by) a a-
field redefinition involving space-time derivatives.
The most general form of the transformation,
needed through one loop, is shown in Eq. (4.9).
Several issues involved in making transforma-
tions of this sort were discussed at the end of
Sec. IV.

In order to elucidate further the properties of
the nonlinear model, we examined in detail the
way it emerges from the linear model in the limit
of large M„(o' mass). In particular, we identi-
fied the origin of the off-shell, divergent one-loop
terms (now meaning terms which grow with M~),
which are not removed by the invariant counter-
terms. It was also shown that these terms do not
contribute to mass-shell quantities in any order of
the loop expansion.

The entire discussion was in the context of con-
ventional perturbation theory: The direct compu-

tation of Green's functions in the nonlinear model
(Sec. III), the use of the background-field method
to generate the full, divergent one-loop effective
Lagrangian (Sec. IV), and the analysis of the
large-M„ limit of the linear model (Sec. V). A

rather different approach to dealing with the ap-
parently noninvariant divergent terms was sug-
gested by Honerkamp' and others." They treat
only the nonlinear model and employ a modifica-
tion of the usual background-field method in order
to maintain the nonlinear general covariance at
all stages. This leads to a modified set of Feyn-
man rules off shell, which in turn lead to one-loop
Green's functions whose divergent parts corre-
spond precisely to the allowed counterterms. The
offending off-shell divergences simply do not ap-
pear.

While this second approach seems elegant and
natural from the point of view of the nonlinear
theory, its use of modified Feynman rules, and
the resulting form of the Green's functions, make
the connections to the linear model more remote.
If the linear model is used, as in the heavy-Higgs-
boson analysis of Ref. 1, to regulate and there-
fore define the nonlinear model in a physical way,
ordinary perturbation theory is certainly appro-
priate. In the limit of large I„, the apparently
noninvariant terms arise but, as we have shown,
they do not contribute to on-shell quantities. Our
method of eliminating them even off shell through
a 7t-field transformation would then be applied to
the linear model before taking the M„-~ limit.
In that sense, the approach suggested here gains
physically what it perhaps loses in geometric
elegance.
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