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Thermodynamics of the Schwinger model
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%'e study the finite-temperature Schminger model by explicitly calculating the exact fermion two-point function at
finite temperature in the Coulomb gauge and thus obtain the canonical ensemble average of the Hamiltonian. The
theory is found to be equivalent to an ensemble of noninteracting, neutral, massive, Bose particles. Thus the particle
content is identical to that obtained at zero temperature.

The study of exactly soluble field theories in 1
space and 1 time dimension has received a good
deal of attention in the hope that they might shed
some light on the more realistic theories of 3
space and 1 time dimensions. One such theory
is massless 2-space-1-time quantum electrody-
namics. This model was first solved by Schwinger'
and has subsequently been the subject of extensive
investiga, tion. ' '

Although the model contains massless fermions
as fundamental fields, the explicit solution posses-
ses no massless quanta, but only a neutral, mas-
sive single-particle state of Bose character. This
is the well-known result at zero temperature. In
this note, we address the solution of the Schwinger
model at finite temperature. Explicitly, we calcu-
late the exact fermion two-point function at finite
temperature in the Coulomb gauge. The thermal
ensemble average of the Hamiltonian is then shown
to be equivalent to an ensemble of neutral, mas-
sive, noninteracting Bose particles with all mass-
less excitations absent. Thus the particle content
of the finite-temperature theory is identical to
that obtained at zero temperature. Similar con-
clusions have previously been deduced by Dolan
and Jackiw' and Fischler, Kogut, and Susskind. '
Dolan and Jackiw' calculate the one-loop vacuum
polarization at finite temperature finding the same
result-as at zero temperature. They thus conclude
that the finite-temperature theory contains a mas-
sive boson just as at zero temperature. Fischler
et al. ' study the Schwinger model by writing the
Coulomb-gauge Hamiltonian in a Bose-equivalent
form, thus showing its equivalence to a noninter-
acting massive field theory.

The above result is markedly different from that
obtained in those gauge theories in which the gauge
boson acquires a mass at zero temperature via
spontaneous symmetry breaking achieved with the
use of scalar bosons. In that case, there exists
a critical temperature above which the symmetry
is restored in the sense that the scalar vacuum
expectation value is zero and the gauge bosons are
massless. ' In the Schwinger model, of course, the

Bose particle is not fundamental, but a fermion-
antifermion bound state. Furthermore, while the
scalar nonzero vacuum expectation value is re-
quired to set the scale of the zero-temperature
vector-boson mass in the spontaneously broken
gauge theories, the mass scale iq. the Schwinger
model is set by the coupling constant, which be-
cause of the dimensionality of space-time, carries
dimension mass.

Let us commence by reviewing some of the sali-
ent features in the solution of the zero-tempera-
ture Schwinger model. This will also allow us
to introduce some notation. The Lagrangian for
massless electrodynamics in 1 space and 1 time
dimension can be written as

+ —ga" s„g+ ej "A.„,

where'

'Pa"qt-
Here g(x) is a Hermitian Fermi field which has a
two-dimensional multiplicity due to the nature of
space-time and an additional two-dimensional
multiplicity due to the charge degrees of freedom.
The real, symmetric Dirac-Majorana matrices
z" can be taken as

ji 0), (s 0)a =
/, a'=i

while the two-dimensional antisymmetric, imagi-
nary matrix operating in charge space is

(g 0)
We employ a metric convention so that the space-
time interval is x'=x"x„=-t'+y'. From this Lag-
rangian follows the Dirac equation

(Bp M/A~)g = 0

and the anticommutation relation
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[y(r, t), y(r', t)], =5(r -r').

Since the Lagrangian carries dimension mass
squared, it follows that the coupling z has the
dimension of mass and will set the scale for any
mass which might appear in the model. Further,
as with any gauge theory, we must fix a gauge.
We choose the radiation or Coulomb gauge and
thus fix

A, =O. (7)

The remaining component of the vector potential,
A.', is determined from the Maxwell equations to
satisfy

(8}

j (rt) = e f , r' d(r ter') (r tj)-' (9)

where

8 2+0 ~ 0

The solution to this equation has been discussed in
detail by Hagen. " He finds that for the charge-
zero sector, which is the sector relevant to the
present investigation, the solution is given by

functions in closed analytic form. These functions
are defined at zero temperature by

G(x„... , x,„)=(0ITg(x,)".y(x,.))Io), (15)

where one must remember to include a factor of
(-1) for each permutation needed to put the fer-
mion fields in the required time ordering. Al-
though the complete set' of Green's functions at
zero temperature has been obtained, "the vac-
uum expectation value of + only requires knowledge
of the two-point function G(x„x,). Likewise, we
shall only need the finite-temperature two-point
function to obtain the thermal ensemble average
of the Hamiltonian. Thus we shall concentrate on

G(x„x,).
By using the Dirac equations as given by Eq. (13)

in conjunction with the fact that the electromagnetic
current satisfies the massive Klein-Gordon equa-
tion

-s + —j "(x)=0,(, e'

Brown' has shown that the two-point function satis-
fies the equation

d2
, &(r r') =-5(r -r'),dr'

so that

(k + i~)2 (k - )' '

(10) (ae),G(x„x,) =5'(x, -x,}

+ (ae),E(x, -x, )q, q, G(x„x,),

where

d'k
E(x,-x,) = ie'

( -), t)., (k; 0)

(17)

Notice that due to its antisymmetry, +„„has only
one vanishing component E„which corresponds
to a longitudinal electric field, and hence is not
an independent degree of freedom. In this gauge,
the Hamiltonian density can be identified with

X= -.'y(r, t)a's„q(r, t)-

1" 1 1

2,(k,—ie)' (k, + ie)'

~~
l
k —l(ak.)'[e"&.i-*2& -1]( e''l

+

2.—j (r, t) f ttr (terr )j (r, t) (12)

as)(r, t) = ieqg(r, t) „dr'-S(r r')j '(r', t), -

and the Hamiltonian can be recast in the conveni-
ent form

3C = 4$(r, t)a-s)I&(r j t), (14)

where a" = (a', -a') = (1, —a').
The complete solution of the Schwinger model is

secured by expressing the complete set of Green's

which clearly exhibits the purely Coulombic nature
of the interaction. By using the expression for
A' [Eq. (9)], the Dirac equation (5) becomes

1
+( j P}k2+ '2 (19)

(A)&»=(Tre e") ' Tre ~"A, (21)

is the massive Klein-Gordon propagator at zero
temperature. The solution to Eq. (17) is readily
secured as

G(x„x,) = exp'(x, -x,)q, q,]G"& (x, —x,), (20)

where G&" (x,-x,) is the free-field zero-tempera-
ture Green's function.

At finite temperature, the prescription is to
replace the vacuum expectation value with the
ensemble average. For any operator A. , the can-
onical ensemble average is defined" by
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where P is the inverse temperature, P = T ', and
II is the Hamiltonian. The Tr in this expression
dictates a sum over a complete set of states of
the system. The cyclic property of the trace ahd
the Heisenberg equation of motion

A (r, t) = e'"' A(r, 0)e '"'

yields the symmetry condition

(A(r, t) B(r', t'))&T& = (B(r', t')A (r, t+ ip))& &, (23)

which holds for all operators A. and B. This per-
iodicity condition serves as the appropriate finite-
temperature boundary condition. For instance, if
we knew the ensemble average of the commutator
or anticommutator of any two operators

1 2)&i 5(k2+ &12)

+ ( t l (T) k2+ l12 zE exp)3(k + ll ) 2] -1
(28)

The first term is the zero-temperature expres-
sion, while the second term serves as a finite-
temperature modification. In terms of this finite-
temperature Klein-Gordon propagator, the function
F(x, x,)&-» is given by [cf. Eq. (18)]

d'k
F(x,—x,)(T)

——le
( ), t), (k, 0)(T)

1 1 1
2 (k, -ie)2 (k, +is)2

([A(x), tt(x')], )&,&= J 2, e"~ *'g(t), (24)
Xg k — 5k ' e'~(~& "2&-1e'l

VT j (z)

then the ensemble average of the product of the
operator is obtained with the aid of the periodicity
condition (23) as Alternatively, using the relation

(30)

;2(.-. ) g(k)
(A(x)B(x'))&T& =

(2 ), e' '" (25)
d, (k; 0),T, b.,(k; ll'), T,

= —,[h, (k; 0),T,
—d, (k; ll'), ,],

-1

(31)

G (xlt ''' t x )&T2))t(~(( (xl) 4( 2tt)))(T) ' (28)

Restricting attention to the two-point function
G(x„xg&T&, we proceed in complete analogy to the
zero-temperature case, except everywhere re-
placing the vacuum expectation value with the can-
onical ensemble average. Thus, by again exploit-
ing the fact that the electromagnetic current satis-
fies the massive Klein-Gordon equation (16), we
obtain the finite-temperature version of Eq. (17)

((28 )1G(xi) x2)(T) 5 (xl x2)

+ ((28),F (x,—x,)&T)G(x„x,)(T) .

(27)

Here, the function F(x,-x,)&T, has the same form
as in Eq. (18) except that the zero-temperature
function 6, (k; ll') is replaced by its finite-temper-
ature version a, (k; p, 2), T„which satisfies

d'k(-S'+ p,')a, (x; ll') = (-&)'+ ll') 2,e""&, (k; ll')

(28)

with finite-temperature boundary conditions. Ex-
plicitly, we have

Here, the minus (plus) sign in the denominator on
the right-hand side corresponds tog(k) being asso-
ciated with the commutator (antic ommutator) of
Eq. (24).

The complete solution of the finite-temperature
model is obtained by solving for the finite-temper-
ature Green's functions

which follows immediately from Eq. (29), F(x,-x,)&»
can be written as

d'k e'
F(xl —x2)(T) —

g. z (2 &2 6+(k; 0)(T)- b, , k;—
7T 77

( Ip)»

1 1 1
X— 2+

2 (k,-ie)' (k, +is)'

)((&k) [e' &"1 "2& -1]
%e note for future reference that

(32)

lim F(x,-x,),T,
2 xl

d'k=iv
(

„a,(k;0)„,-z, k;e

[k(. —.)I'
2 (k,—je)2 (k, + je)2 (&2k)

(33)

(a~),G"&(x,—x,)„,= 5'(x, —x,), (35)

with finite-temperature boundary conditions. This

which vanishes as (x,—x,)'. Having secured the
function F(x,-x,),T„we now solve Eq. (27) for
the temperature two-point function and obtain

G(x„x,), = exp[F(x, -x,)( ) q, q, ]G"&(x,-x,)(T). (34)

Here, G(o&(x,—x,),T, is the finite-temperature free-
field two-point function satisfying
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function is readily obtained since the free fermion
field anticommutator [g(o)(x,), g&0&(x,)], (and hence
its ensemble average) is the c number

[y&'&(x,), tj&'&(x,}],= ([y&'&(x,), y&'&(x,)],)&,&

the explicit form for G"'(x,-x,)&», is given by

(Q )&r)=(Q )(z, (&)+2J 2w &&j(i&+1'
t" dk, (k, ( (41)

= —Jl, e"&"). "2&2w&wk &)(k'}
67 0

(2w)'

x [e(k') —g (-k')]. (38)

Using this anticommutator and Eq. (25), the free-
field temperature two-point function is given by

G"'(x,—x,)(r) = (T(y")(x,)y")(x,)))(r)

(2w)'

2w) j)(k')
a'- g& g'~'lt+ l (37)

Qnce again, the first term is the zero-tempera-
ture result and the second term is a finite-tem-
perature correction. Note that in the limit in

which the two space-time points become coinci-
dent, only the zero-temperature contribution sur-
vives, and we find

(0) — ~ &w (xl x2}
lxm G (x& x2)&r)x xl 2m (Xl—Xq)

(38)

Vfith all the necessary apparatus now assembled,
we are in a position to study the canonical ensem-
ble average of the Schwinger model Hamiltonian
[Eq. (14)]. Using the definition of the two-point
temperature Green's function, the ensemble aver-
age of X can be expressed as

To evaluate the remaining contribution to (K}&», we
use the limiting forms for F(x,-x,)&» and G&0&

(x,-x,),r, [Eqs. (31) and (38), respectively] as
well as the properties of the Dirac matrices [Eq.
(3)] to obtain

lim, trq, q, aa, [F(x,-x,)(„)G"'(x,—x,)(r)]4 g2 xl

=-trq, q, a, (k;0)&
&

—a,ik; —I (k )'.

(42)

Furthermore, the antisymmetry of the charge
matrix, in conjunction with trace in charge space
implies that q, q, can be effectively replaced with
negative the identity matrix. Using the expression
for b.,(k; p2), r, [Eq. (29)] and recalling that the
tr, runs over Dirac and charge space so that trl = 4,
we find, after combining all the pieces, the en-
semble average

jk ] "dk, /kf
J 2 j j 1 J

I'- dk
2w exp'�(k, ' + e'/w)'~'] -1 ' (43)

Here we have extracted the zero-temperature piece
and have explicitly written only the finite-tem-
perature modifications. Moreover, since

(~)&» = ——lim, tras, G(x„x,)&» . (39)

Here tr implies a trace over the two-dimensional
Dirac space and the two-dimensional charge space.
The limiting procedure x,—g, dictates taking the
limit t,—t+, followed by z, -r, ." Using the explic-
it solution for G(x„x,)&» [Eq. (34)], and expanding
exp[F(x, -x,)q, qJ for x,-x, [cf. Eq. (33)], we find

dx ~
= dx

(44)

the above simplifies to

" dk (k '+e'/w)'~'
1

2w exp[P(k '+e'/w)' ']-1 '

(3}(r)= —— limf tr~s, G(o&(x,-x,),r,

lim+ trq, q, &w a,[F(x,—x,)&» G&'&(x,—x,)&»].
S2 gl

(40}

The first term is the ensemble average of the free
fermion field Hamiltonian, ($d ) r„which using

which is the ensemble average of a Hamiltonian
corresponding to a collection of noninteraeting,
neutral bosons with mass el&w.
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