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The gauge dependence of the effective action of quantum non-Abelian gauge theories is studied. An alternative
effective action is proposed and its equivalence with the usual effective action is discussed, as well as the equivalence
with 't Hooft's effective action.

I. INTRODUCTION

The background field is a device which has been
used to aid the discussion of formal properties of
quantum field theories' and there has been some
discussion of its use as an alternative to introduc-
ing external sources. ' In the case of field theories
with no gauge invariance or at most an Abelian
gauge group, there seems to be no particular ad-
vantage to formulating the theory in terms of a
background field (although one must use a back-
ground field to determine the ground state of the
system. )

In quantum field theories, a classical source is
generally used for one of two purposes. First,
variations of the source yield matrix elements of
the operator to which the source is coupled. In
this context, matrix elements in the presence of
the source form generating functionals of the var-
ious operator matrix elements and, formally at
least, one can deal with all matrix elements si-
multaneously. Second, the source may represent
another large (classical) system which responds
weakly to the quantum system being studied. In
the case of a non-Abelian gauge field (either those
having internal symmetries such as the grand uni-
fied theories or coordinate-invariant general rel-
ativity), the complexities associated with the op-
erator gauge. invariance render either use of an
external source less attractive. In the first case,
one is calculating the generating functional of ma-
trix elements of operators which depend upon the
choice of operator gauge. These matrix elements
have no direct physical significance and the pro-
cess of obtaining gauge-invariant answers to phy-
sical questions, though mell understood in princi-
ple, is fraught with opportunities for error. In
the second case, the physical significance of a

. specified source depends upon both the global top-
ology and the local values of the fieM to which the
source gives rise: one does not know what one has
wrought in specifying the source until one has spe-
cified the associated field as well. ' (The source is
determined by its components in a given set of ba-
sis vector fields but the relationship between the

basis vectors at different points is determined by
the gauge field itself. Different choices of, e.g. ,
operator gauge or boundary conditions can dras-
tically change the physical significance of the pre-
determined components of the source. )

Superficially, one avoids these problems by
working in the background-field formul. ation. In-
stead of studying how the system responds to a
change in a source (external current or stress-
energy tensor), one studies how the system re-
sponds to a change in the background field. Noth-
ing essential is lost by the change because one is
dealing directly with the matrix element of the
field and, by studying the effects of small changes in
the gauge field at large space-time separation,
one may still recover all the scattering informa-
tion which one usually obtains from the Green's
functions. In the case of a specified background,
there are no problems of interpretation because
one is specifying both the global topology and the
local geometry at the same time.

The background-field method has been used ex-
tensively since Lee and Zinn-Justin4 first dis-
cussed the gauge and renormalization properties
of the non-Abelian gauge field coupled to scalar
fields with spontaneous symmetry breaking. The
effective Lagrangian is a functional of the expec-
tation value of the field which, in turn, may be
taken to be the background field. This develop-
ment is reviewed in Sec. II and the definition of
the effective action and its dependence upon the
choice of operator gauge are reviewed. The ef-
fective action is a functional of the background
field, Q, which, when expanded as a power series
in @, is the generating functional of the single-
particle-irreducible vertices of the theory. These
vertices depend upon the choice of operator gauge
in a nontrivial way, but the effective action, when
evaluated at a field corresponding to a vanishing
source, is independent of the choice of gauge.

The resultant effective action determines the
classical gauge of the background field as well as
the operator gauge. One would like an alternative
procedure which is invariant under classical
gauge transformations- and operator gauge trans-
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formations, and which describes the same physics
as the original theory. In a series of lectures,
't Hooft has proposed an alternative effective ac-
tion which exhibits these properties with the ex-
ception that the equivalence of his formulation with
others is unclear and the procedure for calculating
his effective action is somewhat vague. In Sec.
III an alternative procedure is outlined which is
clearly equivalent to the usual theory. The pro-
cedure for calculating the effective action is ex-
actly the same as for the usual theory except that
the operator gauge condition is taken to depend on
the background field and some explicit additional
terms appear. A general discussion of the gauge-
transformation properties of the action is given
and it is shown that the action and all physical ma-
trix elements are independent of both the classica1.
and the quantum gauge choices. It is shown that
the field equations derived from the gauge-invar-
iant effective action may have additional solutions
which are unphysical and a criterion for physical
acceptability of the solutions is provided. The
form of the resultant gauge-invariant effective ac-
tion depends upon the operator gauge choice as do
the solutions of the field equations; however, the
action when evat. uated at a solution does not depend
on either the operator or the classical gauge.

In Sec. IV the relation of 't Hooft's procedure
to the procedure described in Sec. III is briefly
outlined ~ The effective action derived by 't Hooft's
procedure is quite different but possesses the
same solutions and describes the same physical
situation.

While this work was underway, I received a re-
port from B. DeWitt' which discusses the general
problem of the background-field method in con-
siderable detai1. and addresses many of the same
questions.

II. GAUGE-THEORY QUANTIZATION

li for gauge fields or pi for general relativity) and
the index i denotes the group index (i or li). The
fields (Q) include all the fields in the theory and

may be taken to include Fermi fields as well as
Bose fields but in this paper only Bose fields will
be explicitly considered. In the case of a gauge
group based on a non-Abelian internal-symmetry
group, the vector gauge fields transform as

here the matrices can~ are totally antlsymmetrlc,
imaginary, and form the structure constants of the
internal-symmetry group. In the case of general
relativity, the gauge field is the metric itself which

transforms as

big„„(x)= 6),. „+5(„.,

Because the classical action is invariant under
gauge transformations, the functional integral de-
fining the quantum theory cannot be taken over all
fields; it must be restricted to fields which are
gauge inequivalent. The gauge condition which
picks out the fields over which the integral is eval-
uated will be taken to be linear,

Ci pa gi

where the gauge-fixing operators C', may be taken
to be either algebraic (e.g. , the axial gauge A', =0)
or differential (e.g. , the Lorentz gauge 8 A,"=0)
and are arbitrary provided that they unique1. y de-
termine the gauge; The gauge condition may in-
volve scalar fields as well as the gauge field but
we will not explicitly consider such conditions.
The choice of operator C defines the operator
gauge and the functional measure defining the field
theory is4'

A quantum gauge theory is the quantum theory
based on the classical action

W„= )tdx g((f)),

which is invariant under a local gauge transforma-
tion

d exp i dxZ ——', C C &,C,

where the Faddeev-Popov determinant'

&[Q, C] =DetCD(P)

is the Fredholm determinant of the operator CD
which results from the change in CQ under a gauge
transformation,

(2)

where the 5$'(y) are the infinitesimal local gauge
functions. The index a denotes the field index (i,

6,'CP ='C,D', g g' .

The time-ordered matrix element of an operator
functional E[&f&j is given by
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&out
)
T(F[(]))J}) in& = &out I in&&E[g]&

d I' exp i 2 ---,' C~C b, , C

d dy dXE exp j & ——,
' C C +XCDX (6)

where the Faddeev-Popov determinant has been
written as an integral over the anticommuting var-
iables X and X.' The in and out states are deter-
mined by the values chosen for Q on the initial
and final surfaces. If the operator I' is chosen to
be

+[(t]=exp i dxQ'(x)J, (x) =exp i pJ ~, (9))'

then the matrix element of any operator may be
obtained by functional differentiation of the matrix
element of I', that is,

~ ~ ~

out exp~«QZ in -=(out~in)~

= exp(iW[J, C])

= )[ett[ft)x]ft)x[ e*pIt f Ie(p) —] c"pc +ex cc)x(peep[I (io)

is a generating functional for all matrix elements
of Q and Z is the external source. Except for the
exp(if O'(t)) factor, the integral is invariant under
the Becchi-Bouet-Stora (BHS) transformation'

y =D (q), 6~X',

~' =6~(yC')',

6,~ ]«k = --,' «'(i,j,k)6zy«p,

where the indices (i,j,k) in the operator «'- include
the space-time indices which are also summed
over and the parameter Q is an anticommuting
number. The operator g is the structure function
of the gauge group and is defined by

6g«( ) t6~«( )
( t tltyt t )6~k( )

t

(i2)where

, «(„)=&x~«D",~.= dy(xl, «D" ly&, .
( ).

In the case of a non-Abelian internal-symmetry
group,

«'-(i, x;j,y;k, s) = igc«»5 (x-—y) 5( y —z),
while in the general-reI. ativity case,

~(],x;., y;~,.) =(6,„6:-6„„6„)6(x-y)6(y-.).
The Lee-Slavnov identities4 ' may then be de-

rived using the invariance of (~ y« ~) under the
Becchi-Bouet-Stora transformation, which is sim-
ply a change of integration variable:

0= 5~(out~ y'(y)
~
in)/5X

= (out~ C«, (t)'(y)
~
in)

+t dxJ x out TD&y XX~ Y ln, 13

or, defining the ghost propagator g,
i(~'(X.'»X*(y))& =- 8"(x, y),

and the vertex Z,

i&T( «X'(x)X'(y)»=-i~ «S"(.,»,
C«. (x) = C'.(@')(x)= (-i)(J.Z',. g'«)(x)

58'

a
= (-i) (g 'Z'Z)(x)

The expectation value of (t)' does not satisfy the
gauge condition unless the external source van-
ishes. The operator C is arbitrary and should
have no physical significance. A variation of C
yields

e exp((tp[Z, C])=i(eet f [XeCXt(P)X -Pile CP] iex), (i6)

but invariance under the Becchi-Bouet-Stora transformation implies that
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0 = —fb (out
~
T(y~(x)(bc» &f&)( y))

~
in&/6X

»a

=-i out T C~ x 5C ~
y —y~x 6CDy y —i X~x 5C y drJz D'y z in

which implies, when (x, i) and (y, i) are set equal
and summed over, bw[J, c]=gf gbJ. &y & &y —&bc."'c',(y'&

0=-t' out 5C C in +i out XOCDy in

—.—ocr
~

(x)dx out T y'(x) JDX in
1 5
i5J

and

+bC* Z",J,}

(pa& ter—»J@r»iJ = f(erg J)»

(22)

(23)

where the operator 5/5J does not act on the expli-
cit J.

This result, when subtracted from the variation
of exp(iw) with C yields, since bw/5 J=(»t)&,

b W[J C]= — (P&bCrgr Z~J-i —.—bC'grZr
I J1

C ibJ j

»»i)IIC"C(») —i —.—IIC ); Z")Z. 1O

(i9)

The effective action 8' is independent of C pro-
vided J is first set equal to zero. 'The final term
may be rewritten using the ghost equation motion
which implies

CZg =f
and defining r by

QQC

dy G"(x, y)I"„(y),

Bc''= — C~5C + Tr 5CE' J, , (20)

where

(b I
I~'

( i&

=o(i', 5')(a'li'(5')li) il„,— a' —c Ea))a&}
, 1

-= G(b, b')r"'fg, s, ') (21 )

with coordinate indices suppressed and repeated
indices summed over. The factor in curly brack-
ets is a projection operator orthogonal to C~ on
the right and orthogonal to Z~ on the left.

To summarize, the general variation of S' is
given by

where the coordinates associated with c and i have
been suppressed, and where G is the gauge field
propagator, to find

(~,&

5W

5J, (24)

may be solved for J' as a functional of (»t)& and per-
forming a I.egendre transformation. The effective
action is then defined as

r [&y), cl = w[J(&4&), c]-J.&y ) .

The general variation of the effective action is

(25)

br = bw —bJ.&qp& —J.b&y&

J.((e&)b-(e'& —(0'&bc,"c',(0'&

+ ZC' Z'~.J (26)

The variation of l with respect to (p& holding C
constant yields, when set equal to -J, the effec-
tive field equation for (»3I)&. The equations possess
the full range of solutions with whatever boundary
conditions are appropriate. If the gauge is varied,
8' and r do change because the functional form of
I' changes. The expansion of r as a power series
(»|)& yields the single-particle-irreducible vertices
each one of which depends on C. However, when
evaluated at a solution to the source-free field
equation,

gr
6(Q'(x)&

(27)

the resultant action is independent of C. Hence
the associated matrix element, exp(ir), is inde-
pendent of C and no physical quantity depends upon
C.

The Lee-Slavnov identities, Eq. (23), and the
variation of S" with changes in C are the basic
gauge-transformation properties of the theory.
Any physical. quantity must and will be invariant
under such transformations when the external
current J is set equal to zero.

The usual effective action may be obtained by ob-
serving that
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III. THE GAUGE-INVARIANT EFFECTIVE ACTION

Solving

(y) = aW[J]/aJ (29)

for J and defining the effective action by

p[&p&] w p[&=p&i'f p[&—p&]&p&, (30)

we obtain the field equation

51'/5(&t&) = —J . (31)
An alternative way to obtain the same result is to
introduce a background field T&) and only couple J
to the field &t)[= P —T(). Then

exp(iW]p, pl) =f[Cp ]expIi f ['e(p+ p )+ pa ]j''
d exp i +J

ei

= exp i [W] pfZp-
~el

(32)

As a prelude to the treatment of the gauge-theory
background field, consider a scalar theory

exp((W[p])= f [ep] exp(& f ]c(p)cpa] j. (Xe)

If the external current J is determined by re-
quiring that 5' be an extremum under variations of

0 = 5 W[J, T&&]/i&J= (6 W[J] /5 J) —
&f& = (&t)) —&t),

(33)

then the background field T&& is the expectation value
of the field (Q), and J is the current which pro-
duces the expectation value (Q) =7&). As a result,
if W is evaluated at the stationary value J[Q], we
obtain

W J[T&)1, T(&
=I' [T(],

the same effective action that results from the
standard Legendre transformation.

If the same procedure is followed for a gauge
theory, one again obtains an effective action. The
action is not the same as one obtains from the
Legendre transformation. It does, however, yield
the same physics. To show this, define W[J', T&&, C]
by

(34)exp((w[Z p C])= f[ap'][CX][CX]expI(J [e(p+p ) — p C Cp -', 'Xc"c(p'+"p')X+Zp'[j,
/

where the gauge condition is on &t&' rather than &t) = T&)+ ct&' and the source couples only to &]))'.

As with the scalar theory, one may translate &t
' by -(t& to obtain

I

exp(iw[z, p, c])=f [ep][ex][&)x]expIi f Ix(p) ——', pc'cp+xcc(p)x(z+ pc'c)p —zp —, pc'cp] j'-
~8

=exp i W[Z+C'CP, C]- f(pp+ ,'pC Cp)- (35)

W[Z, p;C]=w[Z+ pc"C, C] —f (pp+-', pC Cp) .

Under an arbitrary variation of J, &t), and C, the results of the standard theory, K&I. (20), yield

QQ7 QJ a a + P ff J + CT &Ct b b u a
FACT &C& b b + gC& ab J

(36)

(37)

wherethe functioned' and (&I)) are functionals of the
current J+ &]))CrC. Only J appears in the K term
because of the projection operator orthogonal to C.
The Lee-Slavnov identities imply that

Cl (ya) f~ Tf f ~r (J +[&Cr ))C)e yc)

I

a functional of T(& and C which may be related to the
usual effective action

w[zc]=p[z wc+, pcc], f(ape ', pc'cp-)-
or (3S)

W J+ C~C, C — J+ C~C

((ya) ya) Zgrf pr ]f)J
the gauge condition is on (&t)') rather than (&t&).

The quantity %' evaluated at the J extremum is

+1 CTC (39)

Hence W, when evaluated at the J + QCr C such that
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= P, becomes

w=rly, cJ=r(y, c)+-', f yc cy" (4o)

in the case of a non-Abelian gauge field or

CP'-(v-gg "h„„)~
--,'0-gg" h„„„

=~-g(h, „:"--.'g""h„„,„), (46)

~,e' =D(7+ 0')~h D(4)~-$ = T'0'~h'

and D(Q +P')X transforms the same way as P',

(42)

~D(4+0')x ='r'(W)«'. (43)
f

Thus, the change in the C-dependent terms is

where

5 C CT'5$'-

(44)

If F is an appropriate effective action, it must
yield the field equations when its variation is set
equal to -J. It does since

0=~i/~y +z. =ter/fy +(z. +C."c',y') (4l)

is the old equation with the current 8+ Crcg. If
a physical solution is sought, J must be set equal
to zero and the equations are identical if the fur-
ther gauge condition Cp=0 is imposed.

In the original formulation, the gauge condition
was imposed on $; in the new formulation, it is
imposed on P' = Q —Q, but not on Q. As a result,
one may choose any classical gauge for Q. To
understand this, note that if a gauge transforma-
tion is made on Q, then the same gauge trans-
formation may be made on the integration varia-
bles P = Q+ Q', y and y. Under that transforma-
tion, if J=0, the path integral is invariant except
for the gauge-fixing quantities involving C; how-
ever, under a gauge transformation,

where the covariant derivatives are taken relative
to the background metric g. The gauge choice is
now covariant under simultaneous classical gauge
transformations of Q and P [in the general-rel-
ativity case, the sum over gauge conditions
&f& C CQ must include a factor of (g"'/4-g) to make
the gauge term a scalar,

C C — d+-g Qq„'" -2g" jg„~.q

r QI =r[y, c(y)l, (48)

which is a gauge-invariant function of P and every
solution to the field equation, Eq. (4l), for J=0
is also a solution to the field equation,

vr[y]/ap =o. (49)

To see this observe that

+~~I — ~
—J +~C

x (h.„'"--.'g"~h„, .).
The field P is, in principle, distinct from Q but
should be topologically equivalent to P so that
it may be continuously deformed into Q. The
theory which results is then invariant under si-
multaneous gauge transformations of Q and Q,

r[y, c(A)]=ry+DW)«, c(e+&(Rti01 (47)

The two fields, Q and Q, may now be identified.
Then, the field equation results from varying &f&

while holding P fixed. However the effective
action I' ls

%e find that F is invariant under the simulta-
neous classical gauge transformation of Q and
the change of operator gauge 6&C. Thus, given
a solution Q, to 5r/5Q =0 for a given C, the
classical gauge transformation of Q will be a
solution for a different C. However, I', when
evaluated at a solution, is independent of C.
Hence one may find a solution for any classical
gauge choice, C. Q =0; the solution will not be
the gauge transform of the solution for a different
C but F evaluated at that solution will be indepen-
dent of C and C.

In order to obtain full invariance under classical
gauge transformations of the background field,
the operator gauge must transform covariantly
under classical gauge transformations. This
may be achieved by making C a functional of a
new gauge field Q, for example,

Cp' —(5' &„—igc, ~,A„b)y. (45)

or

~r/~p =-z. +(~c',/~y )z'&

Given a solution Q, to 5r/6P =0, J, =0 and,
therefore 5r/5p' =0.

The solution J'(Q) =0 may not be the only solu-
tion. From the definition of the operator E', Eq.
(20), there is a projection operator

P ' =1+sC'g'Z'

acting to the left on the a index. It will be con-
venient to define other projection operators,

0 1

+ & =I yCro rg)r

C'g' D'
0 1 0

where Q0 satisfies
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~g =0

From the Lee-Slavnov identity, Eq. (38), t', when
determined by the condition (P) —P = 0, must sat-
isfy

Hence a solution for which J does not vanish must
be an eigenvector of j:I with eigenvalue II' =0, 1.
For II' =0,

o=rrJ=P 'J
Z'J =0 (52) but

and, since F is invariant under classical gauge
transformations, it must satisfy

O=D 51'/5P =-D (1 -LP, )J=O,

where

(LP, ') ' = (5C', /5y )(K".)(P,'),.'.

(53)

(1 -L)P,c =P, BP,c. (54)

In the classical limit, L =0 and P, =P,~, hence

where LI vanishes in the classical limit and may
be taken to satisfy

P LI =1I =LIP1

Then,

and the field equation for P reads

5r/5y = [1 -P,~P-, ' -li)Z =0

The condition, Eq. (52), on J is the covariant
conservation requirement, including the quantum
effects, while the covariant conservation of
51'/5P is the statement of gauge invariance, which
implies covariant conservation of the source
(1 -LP, )J. In the classical limit, Z =(-i)D and
the operator L vanishes; the two statements are
equivalent. Because ZJ =0, the invariance
requirement, Eq. (53), implies

D (1 —LP~c) ~AP0c.

Multiply by P, from the right to find

D (1 L)P,c =—0

or since P, is orthogonal to D from the left,

O=P ~P J=P J=J
In this case J vanishes and the solution is the
usual solution. For II' =1,

or

0=(P c P~-)J=P~J= —C g [D J].
Thus,

0 =D 4 = (D —iZ )J .

The difference between D and iZ is simply the
radiative corrections to the conservation equation.

I know of no reason why such a solution should
not exist. Such a solution, if one does exist, is
nonclassical. The operator II is a quantum cor-
rection, the leading term of which is of one-loop
order. Thus a Q is required such that II[A have
a unit eigenvalue and that J(Q) be the unit eigen-
vector. Such a solution is nevertheless unphysical
and must be rejected. The variation of I' under
changes of C must still vanish and, in particular,
one may consider the variation of the Q dependence
ofC, or

ec or er
5(f& 5C — 6Q

for the hypothesized solution. Such anomalous
solutions cannot occur in perturbation theory for
Q (they may appear if one calculates I' perturba-
tively and solves for Q nonperturbatively). The
anomalous solutions, if they exist, may be elim-
inated by imposing reasonable classical boundary
conditions or by calculating I'[P, C(Q)], varying

Q and then setting Q =Q. The resulting non-gauge-
invariant equation need not be solved, the resul-
tant J(Q) may be evaluated to check that a solution
to 5I'/6Q =0 is also a solution to J(Q) =0.

(P,'P, '+il)Z =Z.

Since

P,~J=J,
II1= (1 P~)Z =P ~J-

and since

P cP DJ —P EJ-J
1 1 1

we have

2J=IIP &J=IIJ

(55)

IV. 'T HOOFT'S METHOD

In his work, ' 't Hooft used a slightly different
but essentially equivalent procedure. In this sec-
tion, the two procedures will be compared.

Instead of requiring that the J be determined
by the vanishing of the variation of W[Z, Q, C(Q)]
with respect to J holding Q and C(Q) constant,
't Hooft regards J as an unknown functional of

The equation for J is then
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5W 5CI, 5W 5J„5W'

Apparently, this is a straightforward equation for
~; however, & depends explicitly on J. If the
general variation of W, Eq. (37), is used to eval-
uate &W/&P ', Eq. (56) reads

-J, = -J, +.C'C((e) 0)—+(5J /5P)((0') —0'j
—(ip ) —P)(5C /5P)C, ((p') —P)
+ (5C',/5P)E"iJ, , (57)

—,(LJ) . (68)

The right side vanishes for 4 =0 and the equation
is then equivalent to simply varying J, but in
general the equation is not equivalent to the 5W/5J
=0 equation. Eventually, the current 4 will be
set equal to zero, hence it may be regarded as
small and P must be chosen to be such that for

and the current appears explicitly on the right.
The current is presumed to be determined unique-
ly by Q, hence the matrix 5J/5Q must be non-
singular, and, using the Lee-Slavnov identities,

5J /5y (&y'& -y') =i.(C'g'Z'J)
— ((e) -e)(5C'/5e )8'~'J

(Q) - P J is small. Then, J will be a functiona, l
of P such that (Q) will be equal to P with correc-
tion terms which vanish as J goes to zero. When
W is evaluated at the solution, Js, to Eq. (58), it
becomes the effective action

r„Ã)=WPg), y, Cg)t.
Then,

o =(5l'.lit/«T) =-J,

(59)

(60)

which immediately implies (Q) = Q and that Q satis-
fies the same equation as before: the theories are
the same. However, before J is set equal to zero,
f' is a different functional of P than is I'». The
two effective actions are physically equivalent in
that they produce the same solutions and the same
matrix elements when evaluated at a solution to
the source-free equation.
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