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A graphical parallelism between (ff)P' and (|ty)P interaction theories is investigated by means of skeleton

diagrams. It is shown that the nonrenormalizable (|tP)P theory can be made renormalizable, provided it contains a
bound state expressed by the composite field y = PP. In order for the quartic interaction theory to be
renormalizable it is necessary that the renormalization constant for the y field vanishes in the corresponding

Yukawa-type theory. A concrete example in which such a situation is realiied is given by a new soluble model —a
hybrid of the Lee model and the Ruijgrok-Van Hove model. The corresponding quartic interaction model is seen to
be renormalizable due to the renormalization scheme presented here.

I. INTRODUCTION

In recent years several authors' have suggested
that some types of nonrenormalizable theories,
such as the Nambu-Jona-I asinio theory, ' can
be made renormalizable, provided the theory
contains bound states. The essential points com-
mon to those works are (1) they use the auxiliary
field method and (2) if the four-fermion coupling
constant G is expressed as G =g'/5 p,

' with a dim-
ensionless constant g and a dimensional para-
meter 5p. , then g plays the role of Yukawa coup-
ling constant in the Lagrangian for the auxiliary
field.

Eguchi observed the possible renormalizabil-
ity of the Nambu-Jona-Lasinio theory by com-
paring it with the linear 0 model. He compared
formally the I agrangians for the two cases, and
concluded that the Nambu-Jona-Lasinio theory
can be renormalizable if the renormalization
constants for the composite field and for the
four-meson vertex vanish. '

His formal comparison, however, suffers
from obvious defects.

(1) The induced four-meson vertex coupling
constant X has no corresponding parameter
in the original Lagrangian, ' there exists no graph-
ical parallelism at this point between the two
theories.

(2) The comparison is ambigious due to the
Fierz identity.

Furthermore, it is an open question whether
the vanishing of the renormalization constants
can occur at all.

Tamvakis and Guralnik developed a renormal-
ization scheme of four-fermion theories by means
of a mean-field expansion. They adopt a vac-
uum with a spontaneous breakdown so as to allow
the massless fermion to possess a nonvanishing
mass rn proportional to the mean field. Using

the path-integral technique they succeed in ex-
pressing the meson mass and the induced me-
son-meson coupling constants in terms of the
fermion mass and the renormalized coupling
constant g '. Thus, their work is free from
the defect (1) in Eguchi s paper. Instead, the
renormalized Yukawa coupling constant g
depends on the cutoff parameter.

In this paper we investigate in detail the graph-
ical parallelism between the Yukawa theory and
a quartic interaction theory. To avoid the prob-
lem of the ambiguity due to the Fierz identity,
we adopt a nonrenormalizable model with the
Lagrangian density

2

&=g(zI —m&)g+ 2(e&$& p —p p )—

We arrive at a conclusion similar to that sugges-
ted by Eguchi: In order for the theory to be re-
normalizable it is necessary that the renormal-
ization constant in the corresponding Yukawa
theory vanish. This vanishing guarantees that
the theory is free from an ultraviolet cutoff. It
is our belief that our criterion of renormaliz-
ability is valid for more general cases.

To accomplish the renormalization we must
assume the vanishing of the renormalization con-
stant. It is, however, a hard task, since the
problem should be treated in a nonperturbative
way. Therefore, to obtain a vanishing renormal-
ization constant, we present here a soluble toy
model —a hybrid of the Lee model' and the
Ruijgrok-Van Hove model. ' In this toy model
the renormalization constant for the composite
field does vanish if the renormalized charges
satisfy a specific relation, and the correspond-
ing quartic interaction model turns out to be re-
normalizable due to our renormalization scheme.
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Unfortunately, one of the elementary fields should
be a ghost, and we need the indefinite metric.

II. ANALOGY IN THE SKELETON GRAPHS

S'= 2'(f x

=-(ttS[, '4) -(xs2, 'x) - 2(4&~ '4)

+g(7@x)+g(x4 8), (2.6)
The quartic interaction theory (the "Q theory")

described by the Lagrangian density (l. 1) is not
renormalizable in accordance with simple power
counting. Nevertheless, if we regard the prod-
uct g(P as a composite field, the theory is graphi-
cally analogous to the renormalizable Yukawa-
type theory (the I' theory" ) with the Lagrangian

z' = y(i)[[ —m, ) (I(+ ,'(s „ys—"y ([(,'y—')

where S&, S2, and 4~ are the free propagators:

Vlj+
S(g(x-y)= 4 d'p 2

'
2(2v) m, —p' -ie

(i= 1, 2), (2.7)

1 4 1 -«0(& ybg(x-y)=(2, 4 d k 2 ~2 . 8
2g) p —k —z&

=x(iA- m)2x+4px+x4g. (2.1)
(2.8)

In Eqs. (1.1) and (2.1) we have suppressed the (([[

term which is not essential in the following dis-
cussions though it is necessary for the theory
to be renormalizable.

In order to see the graphical analogy between
the two theories we compare their generating
functionals. For the Q theory we have

w, [z, (, (, nnj fu, (u=((u( expIi sd'x)

x exp i(JQ) +i(gp) + i(tl((7)

Z Z.

(
(2.2)

where we introduced the source terms for the
products g(t[ and (C((P to investigate the dynamics
of the collective motion of this type. Here and
afterward the parentheses, e. g. , (J(P), stand for
integration over space-time. They will also be
used for integrations including a two-point func-
tion'.

To compare the two generating functionals we

perform the path integration with respect to the

X field in W2 to obtain

8'2 —— Q 5) s exp ——'i && - i Sq

+ig ([2((pS2 (pg) j

x exp[i(J(p) + i($7I) + i([7$) + ig()S2 p(p)

+ig($$S2 t') + i()Sr ()j . (2.9)

Obviously, the quantity -1/5m in W[ plays the
same role as 82„ in 5"2.

For the Yukawa-type theory we know that the
dressed inverse propagators can be expressed
by means of proper self-energy parts

S',,-'(p) = m I"' -p+ Z, (p) —Sm „
S,'„-'(P) =m, '"'- P+ Z, (P) —~m„

(2.10a}

(2.10b)

~,' '(I ') = i
'"' I'+ rr(u') -~p, ' . —(2.10c)

The proper vertex part I'[2(p, p'), as illustrated
in Fig. 1, has the structure

(A((&)=fd'ed' yA(x[&(x, v)(((y) . (2.3) (2.10d)

With the same notation we can write for the F
theory = I'2[(p', p) (2.10e)

(2.4)

We may also express the actions in the same way'.

S Zd4x

w, [z, (, (, qq[ fa( upax ,ux =u( exp(( z d'x)'
x expt'i( pJ) (+ i(qp) + i(gg)

+ i(b)+ i(x() j.

where &[2(S') ia a functional of dressed propa-
gators and vertices inserted into a skelton dia-
gram S'. If S' has 2n+1 vertices, A»(S') is pro-
portional to (g')" and contains n SI functions,
n 82 functions, n && functions, and 2n+1 I'&2

functions.
The resemblance in the structure of the two

generating functionals W& and 8'2 suggests that
we write

2

= —(('~i 0) (('~ 0[ (t(( q
P4. ) (2 5[-

Ss~ '(p) =Zs(p) —am (2.11a)



382 GAKU KONISI AND %ATARU TAKA, HASI

P-~ -P
II -=—(A,'')=-2k +A',

8k~

where

(3.lc)

FIG. 1. The vertex parts (a) &12 and (b) p2f.

8A'= —Z1 8p
1P

8A'= —g2
8p

2P

(3.2a)

(3.2b)

(2.11b)

(2.11c)

for the propagator of the composite field in the
nonrenormalizable Q theory. For the other func-
tions in that theory we write

sI,-'(t ) =mI" -P- z, (p) —~m„
~' '(k)=I ' -k'+II(k') —5P',

8
II

8k„

With the help of the identity

8P
s,(p) = s„(p)r's„(p)

(3.2c)

(3.3)

r„(p, p') =1+Z A„(s')

= rBi(p', p),

(2.11d)

(2.1le)
A" = A S'

S&
(3.4a)

the auxiliary vertex parts A1, A2, and & can
be expanded into the skeltons

where I'1& and I"~1 stand for the vertices illus-
trated in Fig. 2.

We note that the functions Z1, Z~, II, and I'fg
should have the same structure as Z1, Z2, II1 and
I'12 respectively, with respect to the dressed
propagators and vertices. S&

A', Si (3.4b)

(3.4c)

III. RENORMALIZATION AND THE NECESSITY
OF THE VANISHING OF THE RENORMALIZATION

CONSTANT

I'"-=—(S' ')= —y +A1 =8~ 1F (3.1a)

It is well known that any Yukawa-type theory
has the renormalization scheme by means of the
Ward-type identities. In the case of our Y theory
we can write

For a skeleton diagram Si with 4m+3 vertices,
A&(S') contains a. factor g"", 2n S', functions,
2n+2 S,'„ functions, (4n+2) functions, 2n+1AB
functions, and one I'2 function. If the number of
vertices is 4n+1, A& (S') contains a, factor g ",
2n S,' functions, 2n S2 functions, 4n I'12 func-
tions, 2z 4F functions, and one I,

1 function. It
is easy to give similar statements about A2 and
gV

For the Q theory we write, corresponding to
Eqs. (3.1), (3.2), and (3.4),

r,'-=—(s,' ')=-& +A,',
8f) 'F (3.1b) r;=- (SI ')= —r'+A, ,

QP F (3.5a)

and

rB ( BF ) ABs
8P

(3.5b)

W —= (b.„'')=—2k +Z
8k~

(3.5c)

(a) (b)
A" =- —Z = A'(S')

1 =8@ 1 1 r
Si

(3.6a)

FIG. 2. The vertex parts (a) p~~ and (b) p~g.

9
A, -=—zB=~A;(s'),

Pp, s&
(3.6b)
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&"=-—11= Z Z4($().8

8k (3.6c)

(3.7a)

(s 7b)

(3.7c)

(3.7d)

Fromthegraphicalconsideration, Ai, AB, and &

have the same structure as Ai, A&, and 4",
respectively, regarded as functionals of the
dressed propagators and vertices.

Next we introduce the multiplicative renormal-
izations. For the F theory we set

Si ——Z1S1(R)

S2F= Z2S2F
(R)

(R)+F Zy +E

r12 Z12 r12

S1F- blslE

BE ~B BF y

(R)

F= be~F' 'j

r„=~„-r„,1 (R)

(S.lla}
(s.lib)

(3.11c)

(3.lid}

g Sl &)B &)4 (R)2

~1B

Corresponding to Eqs. (3.9) we have

(3.11e}

completely determine the divergent constants Z„
Z„Z~, and Z„and all the renormalized propa-
gators and vertex functions as finite quantities.

%'e now try to follow the same procedure in the
()& theory. We set

2 1 2 &f) (R) '

g Z 2 =g
12

Z -1r (R )Q
1 —

1 1

r JJ, Z 1r (R ) 4I

2 2 2 )

(3.7e}

(s.sa)

(s.sb)

r(R)p
1 ' 1

+/4( (R) .$(R) $&R) g&R) Zl(R) p&R)4 p(R)4)
1%8 ~ 1EP BF ~ F y 1BP 1 ~ B

(3.12a)

p&R)4 /4(g&R). g&R) $(R) /(R& p(R) P(R }4 p&R&4)
B B + & 1Fy BFy F' y 1By 1 P B

—p (R}4(p g (R)) (3.12b)

W+ =Z 1$V(R) (3.8c)

W(» =-2Z k'

+ g (g&4&. $R(R) $&R) g(R) p&R) I &R&4 p&R&4)
1F y 2F& E y 12 y 1 y 2

(3.9c)

and

I R =Z +P (g ) $&R) $'R& g&R) I"&R&) (3 gd)

These equations, the subtractions on the mass
shell, and the differential equations

8 $(R) 1(p) —p(R)4(p)
P 1F 1 (3.10a)

Equations (3.1) and (2.10d) are now rewritten as
r(R) I

1 1Y

+z ~~' 's' ' s'"' ~' ' r'"' r' '" r' '"~
1'Lg & 1E & 2 y F y 12 y 1 y 2

(S.9a)

r2 —z2y(R) p. p.

yg4(~(R) ~ $(R) $(R) g(R) P(R) P(R)4 I (R&4)
2 A & lg y 2F & F y '12 & 1 y 2

(s.9b)

F(R»=-2S k"

+ g4(g (R). $(R) $(R) g (R& P& R) P&R}4 p(R}4)lE& BEy F y 1B y 1 y B

(3.12c)

1B 1B IB(g &, 1E& BFt+E )~&B)
(3.12(i)

%'e also have the differential equations corre-
sponding to Eqs. (3.10).

Owing to the graphical parallelism, the only
discrepancy between the two theories consists in
the term —bBy" in Eq. (3.12b). Therefore, Eq.
(3.12b) does not determine the constant bB as Eq.
(3.9b) does for Z, . Instead, the requirement of
the on-mass-shell condition for (3.12b) gives a
relation between the renormalized coupling con-
stant g' ' and the bound-state mass mB. Since
the perturbative expansion of AB '" contains ultra-
violet divergences in each order of g'R', this re-
lation between g ' ' and m B depends on the cutoff
parameter A, giving rise to the nonrenormaliz-
ability of the Q theory.

If, however, the condition
8. $(R)-1(p) I (R)4(p)

8P 2F 2 (3.10b) li.mA&R&4(m B,g&R&) = —y4
g~ oo

(3.13)

8 a (R)-1(y) ~&R)4(y)
8k„

(3.10c}
happens to be fulfilled for some finite values of
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m~ and g' ', the renormalization procedure turns
out to be valid as in the case of the F theory.

Comparison of (3.9b) and (3.12b) shows that the
condition (3.13) is equivalent to the condition

Q

(4.3)

lim Z, =O
A-+ ~

(3.14}

in the Ytheory. Namely, our Q theory is re-
normalizable, if (3.14) can be fulfilled for phys-
ically admissible values of the renormalized
masses and charges.

IV. GENERALIZED SOLUBLE MODEL and

(akka)= Jk ka~(k)ta(k)a(k),

(o(k) = (p.'+ k')'",
(4.4)

In this and Sec. V and 7I we attempt to construct
a soluble toy model in which the vanishing of the
renormalization constant is realized for one of the
participating fields.

There exists a class of well-known soluble Yu-
kama-type models: the neutral scalar model, '
the Lee model, ' and the Ruijgrok-Van Hove (RVH)
model. ' These models are soluble in the sense
that one can explicitly construct the one-particle
states.

Among these models the vanishing of the re-
normalization constant is realized in the neutral
scalar model and the HVH model. However, they
are not adequate for our purpose: In the neutral
scalar model the Z vanishes for the nucleon which
is the only fermion in the theory; in the RVH
model the vanishing of Z occurs simultaneously
for all the participating fermions. In both cases
there is no room for the elementary fermions.
Therefore, we seek another soluble model which
is compatible with our renormalization scheme.

(af)= fk'ka(k))(k),

1
(2)))"'[2 cu(k) j"'

(4.6)

n=1, G=g.

(ii} The Lee model:

(4.6)

f 0
g=2, C= (4 7)

(iii) The RVH model of order n:

The nucleon fields (1)„and (1)t (p, =1,2, . . . , n) and
the meson field operators a(k) and a'(k) satisfy the
conventional commutation rules of the annihilation
and creation operators.

This model, characterized by the arbitrary
coupling matrix |", contains all the soluble mod-
els mentioned above as special cases.

(i) The neutral scalar model:

A. A generahzed soluble model

We consider a system of n different spinless
fermions (nucleons) interacting with a neutral
scalar particle (meson). We assume that the nu-
cleons are heavy, and neglect the momentum de-
pendence of their energy. The Hamiltonian is
given by

0 g 0 ~ ~ ~ 0

0 0 g 0

~ ~ ~ ~

~ ~ 0

(4.6)

H= gtMo(j)+ (atQa) —)t)t fGt(af)+ G(a~f) j(j), (4.1)
Q ~ 0 g„

where
g 0 ~ ~ ~ 0 0

(4.2)

B. The solutions in the one-nucleon sector

(4.9)

We define a new meson operator n(k) which is a

Since we are interested only in the bound states
with the nucleon number N = 1, we confine our-
selves to the one-nucleon sector. It is then con-
venient to write the Hamiltonian (4.1) as a matrix
in the nucleon charge space:

H =M, + (a'&a) —Gt(af) —G(a~fj .



EQUIVALENCE OF NONRENORMALIZABLE THEORIES TO. . .

matrix in the nucleon space

n (k) =—a(k} —Gf(k)/(o(k)

g (+tg 1f) /k% -Q (otg 1f)

and rewrite H into a much simpler form:

(4. 1o)

(4.11)

(4.22)

The matrix U can be chosen to be Hermitian: U~

=U.
The right-hand side of (4.20) can be calculated

to be

and

M=-Mo —&G G

H =M +

(etQn�),
where

(4.12)

(4.1s)

(Z-1)v g (GtnGn) (L

where L is a divergent integral:

1 3» 1L=(f Qf)=.
( )~

d k (~)3.

(4.as)

(4.24)

1 3» 1a = (fQ-'f) =
( ), d'k

(~), (4 14

is a divergent integral.
In order to make the model soluble, it is neces-

sary to restrict the renormalized mass matrix M
to be a multiple of the unit matrix": G = A)A),

nl
(4. 25)

Let A., (i = I, 2, . . . , n) be the eigenvalues of G.
For simplicity we assume that they are nondegen-
erate. Then we have the spectral decomposition
of G'

M=mr (4.15) where
If the bare nucleon masses are so chosen to guar-
antee (4.15), we only have to solve the eigenvalue
problem of the second term of the Hamiltonian
(4.12).

Since the operator (n'Qn) is a non-negative def-
inite, we can easily see that the states l(t)
(i(=1,2, . . . , n) defined by the condition

n(k)lq)„=0 (i(=1,2, . . . , n) (4. 16)

are the degenerate ground states of (4. 12) repre-
senting the physical one-nucleon states with mass
m

In view of Eq. (4.11) the general solutions of
(4.16) are found to be

(4.17}

where l g)„'s are the bare nucleo~ states satisfying

a(k) l g)„=0 (for all k} . (4. 16)

C. The wave-function renormalization

The matrix U in (4. 17) should be determined so
that the

l $)„'s form an orthonormal basis:

n
~ ~ l g) ~ G

A] ——
a i ~ ~

f=1
&gW1)

(4.26)

is the projection to the eigensubspace belonging to
11

The matrix Z ' can be expressed in terms of the
A, 's as

Z-( el x(xg AtA
ig

D. The charge renormalization

(4.27)

G(~~ = U 1GU, (4.29)

owing to Eqs. (4. 17), (4.20), and (4.22). Using
Eqs. (4.27) and (4.29) we obtain the expression for
Z in terms of the renormalized coupling constants
(see Appendix):

The renormalized coupling matrix G' ', defined
by

(4.as)

can be easily calculated to be

(4.19)

(The raising of the index here implies adoption of
a general metric. In the next section we shall
need an indefinite one. )

If we define the "renormalization matrix" Z by

Z ~"L&])l.gA(B)tA(R)

where A ~"s are the eigenprojection of G' ':

A' '=U-'A V

(4.so)

(4.s1)

(z 1)la u(y l
sG (au f)e (o n f)

l y)

the orthonormal condition (4.19) reads

U'Z 'V=I

or

(4.2o)

(4.21)

V. A SPECIAL SOLUBLE MODEL AND RELATED
QUARTIC MODEL

In this section we are to specify the coupling ma-
trix G so that the generalized soluble model dis-
cussed in the previous section may have the de-
sired properties. Our requirements are the fol-
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(G",) = 0 0 g, (g,g, -=g') 0) .

0 g, 0,
(s.1)

It is now straightforward to calculate the renor-
malization matrix Z. It will be seen then that Z is
diagonal, and that Z, becomes negative if we take
the limit L- ~ with the renormalized charges held
fixed. To remedy this defect we introduce in ad-
vance an indefinite-metric tensor

0 0'

lowing:
(1) The matrix G~G should be diagonal. , in order

that the condition (4.16) may be satisfied.
(2) We regard one of the nucleon fields, say &(,

as corresponding to the composite field PQ in the
theory with a quartic interaction (g~P)(t&'. Ac-
cording to the postulate of the graphical paral-
lelism the interaction of y should be of the form
((t&t&()Q. This means that the &(t —

&( diagonal matrix
element of G should be zero.

(3) The renormalization constant Z for y should
tend to zero as L —~, while the other Z's remain
finite.

If n =2, we cannot find any model satisfying
these requirements. Among many possibilities
in the case of n =. 3, a choice of special interest is
obtained by choosing G as

'0 0 g

turns out to be diagonal:

Z,-' 0

((z-')")= 0 z -'
0 't

(s.9)

0

with the eigenvalues

Z -j.

0 Z-'
3

Z, ' = c('+ (1 —n')coshg'L —P'sinhg'L, (5.9)

Z,-' = coshg'L + (y' —1/P')sinhg'L,

(5.10)

The renormalization coupling constants given by
(4.29) are

(Z si2
g(&(&

i

~ g
3

g(R ) (5.11)

and

g(R)

Expressed in terms of these g';R"s the renormali-
zation constants have the form

(&i"")= 0 -1 0 (s.2)

0 0 0

Accordingly the commutation rules of the nucleon
operators are modified to

(s.3)
and

Z —1

Z, =n'&" +(1 — (& &()coshg L

+18(R) sinhg2L, (s. 12)

A =qAtg .
For example, we have

0 0 0

(s.4)

(G")=((zG'z):)= o o -g, . (s.s)

In the one-nucleon sector we replace the Hermi-
tian conjugation by the adjoint operation

Z, = coshg'L + (», —y'"" isinhg'L,

where n'"', p'"', and y'"' are defined by (5.10)
with g;'s replaced by the g(&R)'s.

%e now search for the desired situation in which
one (and only one) of the Z's tends to zero as L

This is realized by imposing the following
restriction on the g "'s:

.g3 -g2

(s. 5)

A, = (G -g)(G+ g)/(-g'),

a.=G(G+g)/2g' (s. 7)

A. =G(G -g)/2g'.
The Z-' matrix calculated by means of (4.27)

The eigenvalues A,; of G and the corresponding
projections A; are given by

X( ——0, Xm
——g, A, S

——-g (g = gg&gm ),

p (R)2
(R)2

or

g (s& —g(p&(g(&(& +g(p&)

Under this restriction we have

Z 1 y P(B& P(&(& e-g L

and

2
Z =e-' ~

3

(5.13)

(s. 14)

(s.1s)

(s.15)
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so that

Z, =1,
g 1 y P(R)2

Z3- 0

(5.17)

.d't
L, =-g(t) M, —i i(t)(t)

a'(t)
)
n —t—a(t) ~,

.d (5.18)

I,, = P(t)G((t)(a(t)f)+ P(t)G((t)(a'(t)f)

corresponding to the Hamiltonian (4.1) (but with
the indefinite metric). This Lagrangian is subject
to the graphical parallelism mentioned in Sec. II
with the Lagrangian

as L- ~.
To conclude this section we construct a quartic

interaction model in which the nucleon P, is pro-
duced as a bound state of g„)t)„and the scalar
meson. For this purpose we write the Lagrangian

L=L +L

posite" field vanishes, as was originally suggested
by Eguchi.

Although we worked in this paper with the (gP)(j)'
theory, to avoid the troubles mentioned in Sec. I,
it can be expected that our scheme is applicable to
more general cases.

In Secs. IV and V we showed that in some type
of renormalizable models the wave-function re-
normalization constant can vanish for one field
while those for other fields remain finite in the
large-cutoff limit.

An undesirable defect of our model -is that it
contains a ghost field. In the framework of our
generalized soluble model we could not avoid the
ghost for various choices of the coupling matrix
G. Although it is quite difficult to give a general
proof, the authors are inclined to believe that the
existence of a ghost field is a general feature of
the four-dimensional theories with vanishing re-
normalization constant. (If the space-time is two-
dimensional there exist some possibilities of real-
izing a ghost-free theory. ")
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APPENDIX

In this appendix we prove the equality (4.30).
Since the similarity transformation (4.29) .

g(R) U-lg U (A1)

does not change the eigenvalues of the matrix, the
eigenprojections for G'"' are given by (4.31):

"tg,(.(a'f)+( g.4. +g V(a-f)~.

The theory described by the Lagrangian L' is non-
renormalizable in the sense of power counting.
However, if the theory contains a bound state
which is expressed by the composite field

X=g 0 (a'f)+(-g 0 +a%)(af) '(5 20)

the renormalizability is guaranteed according to
the scheme developed in Sec. II and III.

A(i» = U-'A, U.

We choose U to be Hermitian and use (A2) to
write (4.27):

Z &= ~ L~i~)U &g'R)tUUP(R)U &~e i 7

or, since Z=U',

1= e LKi X~A(ReZA(R)
i

cj

(A2)

(As)

(A4)

VI. DISCUSSION

We have shown that the (g)t) Q' theory is renormal-
izable provided it contains a bound state expressed
by the composite field X =p(t). The existence of the
bound state means that the self-energy part of the
composite particle is finite owing to mutual cancel-
lation of the divergences appearing in the pertur-
bative expansion. The graphical parallelism then
shows that, in the corresponding Yukawa-type
theory, the renormalization constant for the "com-

(A5)

or

P(R)tZP(R) e"L))i))gj)) (R)tjt (R (A8)

Qn summing this equality with respect to i and j
we obtain the result

Z e-L) i)t~g(R)tg(R) (A7)

Multiplying (A4) by A',R" on the left and by A&") on
the right we get

g (R)fP(R) eL&i&~g(R+Zg(R)
i j ' i
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