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The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic
field with Lorentz-invariant spectral density c~:co is obtained. The nonstationary process for the position is solved

by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared
with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an

initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting

probability density for the position turns out to be equal, to within radiative corrections, to PP* where P is the

Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding

expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this

problem, no renormalization is required in stochastic electrodynamics.

I. INTRODUCTION

but (2)

From a purely classical point of view a back-
ground radiation field mainly due to distant matter
must exist everywhere in the universe since

(i) electrons in atoms have an accelerated motion
and therefore they must radiate,

(ii) the radiation field at a given point is the vec-
tor sum of the fields radiated by all the atoms of
the universe because of the classical superposition
principle,

(iii) the radiation field decreases with distance r
as r ' while the number of atoms contained in
spherical. shells concentric to the point considered
and of constant thickness hz increases as x' in a
homogeneous universe.

Consequently, it is not possible to consider an
"isolated atom" either in the intergalactic space
(the background field is practically independent of
the near matter) or in a superconducting cavity.
Indeed the radiation does not bounce back on the
cavity walls. Because of the superposition prin-
ciple, the radiation emitted by the atoms of the
walls superposes to the radiation entering the
walls and produces changes and correlations in the
random phases 8, so that the oscillating dipoles in
the walls undergo a force, the so-called Casimir
effect (see the review paper by Boyer'). However,
either inside or outside the cavity the electric fiel.d
can be represented by

E(x, t)= fd kE, (k, i, 6,)exp[(i+i —k x)], (i)

where the complex amplitude E,(k, t, 8,) is such
that

The mean value of the fluctuations is not changed
by the screening (as is also implied by calculation
of the Casimir effect).

From the requirement that the "background ra-
diation" be the same for all. inertial observers, it
turns out' that its energy per normal mode must
be proportional to the angular frequency , and,
hence, its spectral energy density Gz(w) must vary
as ~'. This leads to the identification of the back-
ground radiation with the so-called "quantum elec-
tromagnetic vacuum" or "zero-point electromag-
netic (em) field", whose power spectrum is given
by

Gs ((u) = h(o'/2m'c',

where 5 is the reduced Planck's constant and c is
the light speed. Recently, Surdin' has given a hint
to obtain the constant of proportionality between
G~ ((u) and +' in terms of the average density of the
universe and of the Hubble radius so that 8 would
be a derived quantity. A more plausible justifica-
tion of the Surdin approach will be given in a future
paper. In this phper the proportionality constant
S(2m'c')-' is taken as an initial assumption.

As a consequence of the zero-point em field a
charged particle' is subjected to a rapid random
action leading to a stochastic motion which could
explain the stability of the atoms. In other words,
an atom, on average, should radiate what it ab-
sorbs from all the other atoms.

The above considerations are the basis of the re-
cent random (or stochastic) electrodynamics. '
However, the present work will not l.ean on the
papers quoted in Ref. 1, not even on other authors' '
who tried to obtain the Schrodinger equation assuming
that all particles are subj ected to a Brownian motion.
Indeed a Brownian motion' is the one of a particle sub-
ject to random impulses whose correlation function
is represented by a Dirac ~ function and therefore
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their power spectrum is white' (i.e. , independent
of &o). Now a charged particle, in motion with re-
spect to the observer which sees an isotropic ra-
diation (or isotropic impulses), undergoes a fric-
tion because of the Doppler effect (the radiation,
or the impulses, are more intense in the forward
direction than in the rear direction). The expres-
sion of the braking force has been obtained by
Einstein and Hopf" in the case of a charged har-
monic oscillator of charge e, mass rn, barycen-
tric velocity V, frequency e, [for a more readable
deduction see Eq. (51) of Appendix A by Boyer in
Ref. 1]. It is (c is the light speed)

F = , 7T'V- e—'(mc') '[G (e,) —-', &y (dG /d&g), ],

compared with a similar result obtained in quan-
tum electrodynamics.

In Sec. III the probability density of the position
is obtained by the elementary propagator starting
from an initial distribution confined in a small
volume and also taking into account the initial dis-
tribution of the velocities. If the initial volume is
much smaller than the considered final volume
in which, for example, the minimum vatues of the
position probability density are of the order of 1(PO

of the maximum values, the final probability den-
sity is a "quasi-transition probability" and is de-
noted as "effective propagator" . To within radia-
tive corrections it turns out to be equal to the re-
sult obtainable by quantum theory.

which is zero only when the spectral density G~
(+) is given by (3). The result (4) can be applied
even to a free particle, as shown in Sec. II (see
also Appendix A).

For a white spectrum, as the one Of a Brownian
motion, the second term of (4) is zero and the first
term cannot be canceled. Consequently, a Brown-
ian motion cannot be frictionless and is therefore
unable to describe the reversible processes of
quantum mechanics. Hence, all the preceding
authors (who have tried to obtain the Schrodinger
equation from a Brownian motion) have implicitly
been forced to assume another hypothetical force
balancing the friction force. One author" expli-
citly assumes the existence of particles which
would produce the Brownian force without fric-
tion." Besides the above drawback, tricks are
contained in Ref. 5 and inconsistencies in Refs. 4,
6, V, and 11, as shown in Appendix B.

The resulting motion of a charged partic1. e' sub-
ject to the random radiation with spectrum (3) is
stochastic but not Brownian since the spectral den-
sities for acceleration, velocities, and positions
(see Appendix A) are different from the correspon-
ding spectra of a Brownian motion. An attempt
for the derivation of the Schrodinger equation has
been recently done by de la Pena-Auerbach and
Cetto' who, however, obtained an equation in the
phase space which they have not succeeded in sol-
ving. '4

In the present paper a more limited probIem wilI.
be treated but it will be completely solved by sto-
chastic electrodynamics: the propagator of a free
particle. This problem has been developed in an
approximate way by Santos" in the case that the
probability density p(v, t) in the velocity space is a
Dirac 5 function at the initial time t (i.e. , for dd
= 0). The relevant propagator, calculated in Sec. II
of the present paper in a rigorous way, is denoted
as elementary propagator and its dispersion is

II. THE ELEMENTARY PROPAGATOR
OF STOCHASTIC ELECTRODYNAMICS

We study the stochastic motion of a charged par-
ticle' under the action of the zero-point em field
but otherwise free. If we join successive points of
its path by small segments of lengths A&, the sto-
chastic motion is equivalent, to within distances of
A& order, to a random walk. If X={X,.) is chosen
so that the average change of the direction of the
particle velocity v is m/2, then X is the mean free
path of the equivalent process of random flights
with isotropic scattering. We are interested in
finding the distribution function (called probability
density, if normalized) of the particle position af-
ter the particle has performed many equivalent
free flights starting from an initial point x, . We
can therefore exploit a fundamental result relevant
to any random walk with a large number of flights.
Such result, shown, for example, in Sec. IVD of
Ref. 8, states that the distribution function is
Gaussian, independently of the particular function
v&(x&) where r&(xz) d'x represents the probability
that the displacement in the jth step lies between
x& and x~ + dx~. We can therefore write for the
probability density which is a Dirac 5 function cen-
tered on the point xo at time t (Green's initial con-
dition)

P„,(x, t + 6 t
~
x„t)

= (2vax') 't'exp[- (% —x, —9,z t)'/2sx'], (5)

where the velocity vo of the center of mass of the
probability cloud remains constant since the sto-
chastic motion is frictionless (i.e., the average
braking force is zero) because of the isotropy of
the zero-point radiation in every inertial frame.

The mean-square fluctuation hx' depends on the
function rz(xz) characterizing the various flights.
One could use the Markoff method (Sec. IV of Ref.
8) if 7 (x,.) were known. In our case r,.(x,.) is very
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complicated since the effect of the zero-point em
field is similar to vibrations due to trains of oscil. —

lations, each of different frequency. Fortunately,
we know the spectrum of the zero-point em fieId
and we can obtain the velocity power spectrum G„.

(cv} of a particle having charge e and mass ~,
subject to the random radiation whose spectral
density is given by (3). As shown in Appendix A

(see also an earlier paper"), we obtain

G~((o) = (8(o r/vm)/(1 + i'(o'),

where r =2e'/3mc'. Then the mean-square fluc-
tuation along the x axis of the particle position is
rigorously given by the Wiener-Khintchin inverse
relationship (see Appendix A)

—exp(-&t/r)E i(&t/r)

—exp(~t/r) Ei(-t t/r),
Ei being the exponential integral. "

By (12) and (14) we obtain for the transition
probability

(8)

t x2 =([x(t+~t) —x(t)])

=2 d~ G ~ 1 —. cos ruat
0

= (h7'/vm)B(&t/r),

where the result has been obtained with the use of
(6) and B turns out to be given by

B(t t/r) =1.1544+ 2 ln(at/r)

(„ t y gt~ x t) —[2grm ~B(at/r)] '~' e-xp[-(x —x, —v,&t)'/2hvv-'rn 'B'(&t/&)]. (9)

We denote (9) as elementary propagator since it
is relevant to no dispersion at time t. For 4t«7
the mean-square dispersion is proportional to At2,
as shown by Eq, (A17) of Appendix A and as is
characteristic of any random walk in the Ornstein-
Uhlenbeck theory. ' For At » 7 the mean-square
dispersion increases as In(b t/r), as shown by Eq.
(A16). These two approximate expressions (either
for ht «v or ht » r) have been already found by
Santos." The rigorous expression (8) gives all the
intermediate evolution and shows the rapidity by
which the asymptotic expression is reached.
Practically (8) reduces to the first two terms of its
right-hand side after a time ~t just larger than
~ =2e'/3mc' [see Eq. (A2)] which is v' the time
taken by light for crossing the classical electron
radius.

The procedure of Appendix A also shows how it
is possible to apply the Wiener-Khintchin inverse
relationship to a nonstationary process, as the
one for the position distribution which increases
with time. Indeed, by a procedure parallel to that
leading from (A10} to (A12) one relates the correl-
ation function of the velocity to that relevant to ac-
celeration, hence to the acceleration spectrum
given by (A9). Now the stochastic process for the
acceleration is stationary and the Wiener-Khint-
chin relationships can be applied.

Finally, (A15) can also give the mean-square
dispersion of the position if an upper cutoff is in-
troduced in the spectral density (3). The absence
of a cutoff in (3) is one of the causes of the diver-
gences in quantum electrodynamics. The mean-
square dispersion &x' in the position calculated
by stochastic electrodynamics converges when the
upper cutoff tends to infinity, as shown by (A15),
and that is why we have not considered it so far.
However, the mean-square dispersion of the par-
ticle velocity v~ diverges if no cutoff is -introduced.

I

Indeed, by the same procedure followed from (A10)
to (A15), but introducing an upper cutoff uy„, we
find

&v '=~x '
px'

'&v
= 2 tkd G„-co [1 —cos(cokt)]

0

d(d
2hv "& sr[1 —cos(&oh, t)]
Fm p j +, ~2T2

7rm T 1+x

which diverges for x„=~„7.—~. A reasonable
cutoff is that corresponding to pair production,
i.e., ~„=c/Rc, where Rc=h/mc is the electron's
Compton radius. Consequently, x„=2R~/3Rc
=2o./3, where R~ =e'/mc2 is the Lorentz radius
and e the fine-structure constant. By this value
we can neglect x in the denominator of the inte-
grand in (10) and we obtain, by also expanding the
logarithm,

&22 v . 2n&t4v 2= —c2 —-2 sin
77 3 Q~t 37'

2n4t+ 2 2 1 —COSa'&t' 37

which for nest» T tends to Av~'=2o!c'/3v. In quan-
tum electrodynamics, this value corresponds to
the transverse self-energy of the electron under
the em fluctuations of the vacuum.

By the same cutoff, the mean-square fl.uctuation
of the position results in

~x' = (nT/vm)B, (~tl ~),

where, with an error less than 10-4,
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B (At/7) =2y+In, —2Ci(2n At/37)' . 2n. At
C 1+ 2a' 3 3T

4@v . 2cy4t 7' 2e4t+ sin +2, cos —1

For At»7/a, since (2a/3)2=2. 368xl0 ', (l2)
tends to

1.1544+ 2 ln
2a 4t

mm "3T (14)

lim Ax„„;,„„;=2(x) =2 du G„(u),
p

(16)

where we have denoted Gz(&u) =G„.(&o)/~'. Welton
has used (16) which is valid for a stationary pro-
cess. In our case of a nonstationary process,
namely, of a particle subject to the fluctuations of
the zero-point field (but otherwise free) the
spreading increases with time and diverges, al-
though logarithmically, for 4t -~. That is why
Welton is forced to introduce a (otherwise unjusti-

compared with (A16), which corresponds to &u„—~.
The difference is only in an attenuation by a fac-
tor 2a/3 =4. 8 x10 ' in the argument of the loga-
rithm, or alternatively, in a constant 2 1n2o/3
added inside the square brackets of (A16). For
extremely large o. At/X values, the two expres-
sions have the same dependence.

Because of the logarithmic dependence in (14),
Ax' ranges from about 0.25o.Rc' when Af =Rc/c
to 15o.R~' when 4t =10-' sec, which is the typical
time taken by an electron for reaching the screen
in a two-slit interference experiment.

When 4t is the average period of revolution of an
electron in a hydrogen atom, i.e. , At=2mo 'Rc/c,
then 4x' = 2. 7R~'. Let us compare this value with
that of Welton" who assumes the same upper cut-
off of the present paper and starts from his Eq.
(2) in which the radiation reaction is neglected.
The time independence of the spreading ((Aq)')
= Ax' found by Welton is due to the fact that he,

instead of using the Wiener-Khintchin inverse
relationship (7) which gives Ax', actually calcu-
lates (q') =(x') = fade&G„(&o), which gives half the
mean-square dispersion after an infinite time.
Indeed one gets from (7)

Ax =(x (i+ At)) +(x (f))

2(x(f + Af)x(f)—)
Now in any stochastic process the correlation
(x(t+At)x(f)) vanishes for At- ~ and the same
fact occurs for the term containing cos(a&At) in
(7). Moreover, in a stationary process, (x'
((+At)) =(x'(t)) so that (7) becomes

fied) lower cutoff k, in the wave-number spectrum
and finds a logarithmic expression for (x ). In our
notation his Eq. (59) reads (x') =2m 'aR, ln
(2/Rck, ). Only in a bound state the stochastic pro-
cess becomes stationary for large 4t values and
therefore Ax' tends to (23). This is the case of an
electron in the 1S state in a hydrogen atom. This
case has been studied by Bethe" for finding the
relevant effect of the vacuum fluctuations. If one
substitutes the Bethe cutoff in the Welton expres-
sion, he finds (x') =3.85o.Rc to be compared with
our value b, v' = 2. 7eR~. I do not know more re-
cent work on this subject in quantum electrody-
namics.

HI. EVOLUTION OF THE PROBABILITY DENSITY
STARTING FROM AN INITIAL SMALL

VOLUME: THE EFFECTIVE PROPAGATOR

As in the kinetic theory of the gases, it is very
difficult to follow a single particle undergoing a
stochastic motion. What is feasible is to consider
a small volume 4xp4yp4zp in similarly prepared
systems, theoretically constituting an ensemble.
The present purpose is to calculate the evolution
of the position probability density starting from
+xp+pp+zp and with an isotropic mean-square dis-
persion 4vp' in the velocity. It is assumed inde-
pendence between the distributions of the veloci-
ties and those of the positions. This can be due
either to independent sources which produced the
given distribution or even to a single source but
after a long time. Indeed the cross correlation
between position and velocity vanishes after a long
time in any stochastic process. For instance in a
Brownian motion, the joint probability distribution,
which is a bivariate Gaussian distribution given by
Eq. (178) of Ref. 8, tends to

p(r) u) =2-"'q-'t "'P"' exp[ Pv-'(2q)-'-
-6'r'(4qf)-'j

after a long time.
In order to have the same initial conditions con-

sidered in the Kennard wave packet, the position's
initial distribution is assumed to be Gaussian.
The velocity's initial distribution is also taken to
be Gaussian. For this it is sufficient that the par-
ticle was free during a time At & ~/n before the
considered initial time. Indeed, if we join succes-
sive points of the stochastic process in the velocity
space, we have an equivalent random walk to which
we can apply the result of Ref . 8, i.e., that the
distribution becomes Gaussian after many free
flights. As we have seen in Sec. II, the zero-
point field is so intense that the asymptotic condi-
tion for the velocity dispersion (ll) is reached af-
ter a very short time At & i/o. . Consequently,
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even the most intense macroscopic fields met in
practice produce negligible modifications as far
as the velocity fluctuations are concerned. We
can therefore assume for the joint, initial distri-
bution function

[p,(x„v,) = (4v'av, ')-' '(ax 'b, y 'az ')-' '
x exp[- (v, —v)'/(2b v, ') —(x,'/24x, ')

—(y, '/2&y, ')'- (z,'/2b, z,')]. (17)

The time evolution of (17) is obtained by a super-
position of the results of Green's type, by dividing
the distribution (in the phase space) in infinitesi-
mal parts, each one of the Green kind, i.e. , hav-
ing single velocity v» (with an infinitesimal spread
around it). Each part (of the initial probability
cloud) which has a velocity v, ~, diffuses with a dif-
fusive radius slowly increasing as given by (7) and

(8) [see also (A16) of Appendix A] around a point
A~ (with k=1,2, 3, . . .), which moves along a
stra, ight line with constant velocity v» (see Fig. 1).
Since the distance of A~ from the initial cloud is
increasing proportionally to ~t, the "envelope",
i.e., the total effect due to all the parts (with the

different initial velocities) is spreading (for large
b t values) proportionally to ht.

'Let us give a mathematical form to the above
considerations. Each domain p, d'x, d'v, main-
tains its velocity v, and diffuses as given by (9).
The time evolution of (17) is obtained as the su-
perposition of the single parts, i.e., as the con-
volution of (17) with (9):

P„,(x, kt)= f d'x,
~ OO

x d vapo(xo, vo)P„O(x, t + ot
~ xo, t). .

~ QQ

(18)

Taking into account that

OO &1/2 y2
dxexp(-a'x'+ax) = expa 4a

(18) becomes

P„,(x, n t) =P, „(x,o t)P„,„(y, o t)P„„(z,at),

(20)

where

P„„(y, &t) = [2v&y, '+ 2w&vo'&f 2+2k~m 'B(O t/7)l '~'

& exp{-(y —v&t)'/[2hx '+ 2&vo'&t '+ 2@Tv 'm'B(&t/7)] I, (21)

and similarly for P,«, and P,«, by substituting y
and z, respectively.

If Ly, ' «nv, 'Af' (and similarly for bx, ' and

hz, 2), (21) is a "quasipropagator" and we denote

&p+~~&',.; - .

ri. ~

. «, .'+00 p:;- ~ .+ ~ '

A '.;i&

V04

j~g ~ ~ ~
p

"'~4
&.g':.

~ t y

Frictionless diffusion of an initially concentrated probability cloud having an initial spreading in the velocity.
As an example, five different initial velocities v,z are shown. The center of mass of each domain {of the initial proba- .

bility cloud) having velocity v has an uniform motion in absence of external forces since the zero point em field
does not produce a friction, on average. Around each center of mass {having velocity v~) there is a spreading which
slowly increases as given by Eqs. {14)and {15)due to the zero-point em field. The resultant diffusion is the convolu-
tion of the spatial spreading due to the initial dispersion in the velocity and the diffusion {further due to the zero-point
em field) around each point moving with uriiform motion.



t . CAVALLERI

it as effective propagator since it takes into ac-
count the initial distribution of the velocities which
cannot be disregarded if an initial (small) volume
is considered. The elementary propagator found
in Sec. II is useful from a theoretical point of view
only. For instance, it has been used to obtain (21)
and will be exploited in a future paper to deduce
the fine-structure constant.

If we let 7-0, (21) becomes equal to g* with P
given by the Kennard wave packet for a particle
having an initial Gaussian distribution. " We
therefore find for a free particle what we found
for a harmonic oscillator (see Hefs. 13 and 15),
i.e. , that the result given by quantum mechanics
is the approximation obtainable by stochastic elec-
trodynamics for 7 —O. If we keep ~ with its true
value, stochastic electrodynamics gives for the
harmonic oscillator the same result of quantum
electrodynamics. For a free particle it should be
so but we do not have, at present, the correspond-
ing result found by quantum electrodynamics. It
is this the first case in which stochastic electro-
dynamics precedes quantum electrodynamics.
There are only the old, partial results of Welton"
and Bethe" discussed in Sec. II, but (21) (or a
corresponding expression with radiative correc-
tions) has not yet been found.

Finally, stochastic electrodynamics eliminates
any problem of renormalization.

Note added in proof. Another achievement of
stochastic electrodynamics has been obtained by
A. Rueda [Nuovo Cimento 48A, 155 (1978)] who
explained the origin of the cosmic rays as due to
the continuous action of the zero-point, random
em field.

m x = eE +f„+m 7'x, (AI)

where

~ = 2e'i3m c', (A2)

with e being the light speed. As known, (A1) has
exponentially increasing solutions. These "run-
away solutions" have been thought of as the cause
of the electron Zittexbemegung. ' However, in
order to evaluate the spreading only due to the
zero-point radiation field 8„, the Zittexbezoegung
is considered as an ordered motion inside a
sphere having- the Compton radius. Hence, in
order to calculate the spread due to E„and the
consequent power spectrum of the position x, the
runaway solutions must be eliminated. For this
purpose we use, instead of (AI), the following
equivalent integro-differential equation:

mX =Jt ps[exp (-s][eE„(t+vs) +f,(t+ Ts)]
0

= F„(t)+f„"(t) . (A3)

Indeed, if we differentiate (A3) with respect to t
and take into account that inside the integral sign,
8/8t =7-'8/Rs we get, integrating by parts,

APPENDIX A: DEDUCTION OF THE POSITION
POWER SPECTRUM IN STOCHASTIC

ELECTRODYNAMICS

The object of this appendix is to derive Eqs.
(13), (14), and (15) from the zero-point, e!ectro-
magnetic power spectrum given by Eq. (3). I,et
us consider a particle having mass m and charge
e, subject to an external force f and to a stochas-
tic field E. Its nonrelativistic, I orentz-Dirac
equation of motion, projected on the x axis is

mx= — ds[exp(-s)]& [eE„(t+7s)+f (t+ rs)]
0

1 00 ] oo

=—[exp (-s)][eE„(t+vs) +f (t + ~s)] + —
as[exp (-s)][eF.„(t+ ~s) +f (f + ~s)] .

0 0
(A4)

(A5)

The first term in the last side of (A4) is equal to 7'[eE„(t)+f„(t)—], while the second term, because of
(A3), is equal to mx. Consequently, (A4) is equivalent to (A1). It is easy to show that (A3) has the same
solutions of (AI) except the runaway solutions.

Note that (A3) has the formal appearance of the Newton law for a particle which is subject to a random
force F„besides the external force f„*(t). The acceleration x=F„(t)/m, caused by the equivalent ran-
dom force F„(t) [i.e. , when the equivalent external force f„*(t) is zero] has a power spectrum Q(&o) which
can be derived from that of a component of E. Indeed, the energy density of a random, isotropic, elec-
tromagnetic, pure radiation field (for which E=H) can be written in one of the following expressions:1, 1 3, 3u= G (v)sdv =~&E'+H') =~4E') =~&E„')=4 Gs„(&o)d&u.

0 0

Identifying the second and last step of (A5) and using (3) of the main text gives

G „((o)=4vG ((o)/3 =2a(o'/3mc'.

Now G„-(&o) can be obtained by the usual expression2'

(Ae)
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G„(~)=- dT'(x(0)x(r)) exp(-i(t}T).
17 0O

(A7)

In the case f„=0, let us substitute (A3) in (A7), exchange the orders of integration, and set T =y+ T

x(s —s') We obtain

00 00

G ((d) =—
~ ds ds 'exp[-s(1 —i(dT) —s'(1 +i(dT)]P
p p

] 0O e'Gz. ((o)
dy(Z (t+ Ts)E (t+ Ts+ y)) exp(-ivy) =

r x m (1++ 'r
(A6)

1 2he'
G ——G"

(o' " 3vc'm'(I + (O'T') ' (AS)

which, with the use of (A2), is equal to (13) of the
main text. For finding (15) we start from

~x' = ([x(t+ ~t) —x(t)]')

Finally, with the use of (A6) and the properties"
of the spectrum of differentiated quantities we get

I

By performing the integrations we obtain"

czp( —ot/t} pt(t t/T) +exp(Et/T) E)(—ot/T)}

= 1.1544+ 2 In(ht/T) —exp(- b, t/T) Ei(t).t/T)

—exp(at /T) Ei(- &t!T), (A15)

B= lim 2 y+ln —x~ —Ci —x„—ln(1+x~ )
N

dtgV„ tj CP2 V„ t2 (A10) where y=0.5772 ss the Euler constant,

If we set T= t, —t, so that dt, dt~=dt, dT (the Jacobi-
an is unity), we have

t+6 t t ty+b t
ax'= dt, dT(v„(t, )v,(t, + T)) . (A11)

t t-t
1

Since the correlation is the antitransform of the
spectrum (Wiener-Khintchin inverse relationship),
(A11) becomes

C((y)= f ttyy 'cosy

= y+ lnx+ dyy '(cosy —1)
p

the cosine integral, and Ei(x) = f dyy ' exp(y)
the exponential integral. For At & v the last two
terms of (A15) give a very small contribution to
the first term so that

t+d, t t-tz+~t OO

+x = dt) . dT d(d G'((d) cos(t)T
t t ty p

t),x' = (KT/vm)[1. 1544+ 2 In(b t/T)],
4t&v'. (A16)

=2 d(o G„(o (d 1 —cos o)4g
p

(A12)
For t t «T a second-order expansion of (A15) in
t}.t/T gives

Substituting (As) in (A12), with the use of (A2), and
setting x= &~, gives

hT " 1 —cos(xht /T) ht
&x — xmm, x(1+x') wm T &

'

(A13)

Ax' = (ht}t'/7rmT) In(T/tt. t),

APPENDIX B: STOCHASTIC MECHANICS
WITH A BROWNIAN MOTION CANNOT

BE EQUIVALENT TO QUANTUM
MECHAMCS

(A1 7)

x cos(xb, t/T)+ X
p +X (A14)

where we have set xAt /T=y in the first integral.

Multiplying the numerator of the integrand of (A13)
by (1+x'-x'), gives

1-cosyllm dy2m0op p 1+%

The power spectrum of the random impulses
causing a Brownian motion is white'" and there-
fore, because of (3), the motion of a charged
harmonic oscillator cannot be frictionless. This
already excludes the possibility of describing
quantum mechanics by a Brownian process. How-
ever, other drawbacks of the approach to quantum
mechanics by a Brownian process will be empha-
sized, also for showing that all the authors who
claimed to have obtained the Schrodinger equation
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by a stochastic approach, have assumed a Brown-
ian motion so that their procedure cannot be cor-
rect.

The power spectrum of the x component of the
position in a Brownian motion is given by '

G„((o)= (2D/v uP)/(1+ 7 ~'(o'), (Bl)

where D is the diffusion coefficient and the relax-
ation-time constant 7 is zero in the Einstein-
Smoluchowski' approximation and r*e 0 in the
more refined Ornstein-Uhlenbeck theory. ' By the
Wiener-Khintchin inverse relationship [given by
(7) of the main text] one obtains

&x'=2D&t for &t» v*,

bx'=Dht'/T* for ht«~*
(B2)

(B3)

V = d'gq d' P ~, V~, (as)

with V~being the particle velocity and p(V~, Q the
joint probability for position and velocity. Indeed

[a factor 2 has been neglected in Eq. (4.17) by
Santos"]. One immediately sees that (B2) repre-
sents an irreversible process which cannot de-
scribe the reversible quantum processes governed
by the Schrodinger equation.

The transition probability for a Brownian mo-
tion (starting from an initial probability density
given by a Dirac S function centered on point x —f
a't time f) is '

P~(x, f + &t ~x —f, f)

= (4vDr t) '~'e~[-(~ V~f)'/4D~f], —(B4)

where V is given by

7 is denoted as mean particle velocity by Kershaw4
[after his Eq. (15)] and drift velocity by Bess'
[just before his Eq. (1)].

From (84) one can obtain a generalization of
(B2), i.e., for V=0,

($,5,)=2D~ts, , (as)

=P,(5) 1+2 P, 5,.-(,(P,V, --,'V,.V,.~f

+ —$, $,.U, V,.
~

1
J) (av)

where

(Bs)P ($) = («D&T) @ exp[- ($,.f,.)/(4DZ f)].
Substituting (B7) and the expansion of V in the
Fokker-Planck equation and truncating after the
terms in b, t and f, $~ gives.

(where S,, is the Kronecker symbol), which is Eq.
(12) of Nelson, ' used in his Eqs. (22) and (23).
Even Surdin' implicitly uses (Bl)—(BS) since it
starts from the Fokker-Planck equation as found
in the classical paper by Chandrasekhar, ' where
Brownian motion only is treated.

Kershaw' and Bess' use (B4) in the Fokker-
Planck method applied to the probability balance.
This use is inconsistent since the velocity appear-
ing in (B4) is the mean velocity of the probability
cloud representing the entire particle (or all the
particles). The above authors expand the propaga-
tor P~ given by (B4) obtaining

P,(x, , t+~f ~x,.—(, , f)

1= +,(&) ~m
2 I~;&; - &;V,», - -,

' r,.&;a~lI

oo

p+ its, p= d'$P~($)~ p+ —$,V, — V ht ——$, (qB, Vq+ ., $, $. ~V,.V—,. —(,B,p+ ,' ],),B,q'p-. .
~co

Since

———),V, (~Bop+ V (,B,p~. .i t )
l

"transport" velocity v,. defined as

d I~ =1, g I'~, =0,

(alo)

pe, = pV; -D&;p,

so that (Bll) becomes

8&p = — (pBv;) .

(B12)

(B13)

where 5,, is the Kronecker S, one gets by (B9) and
(B10) after some simplifications

B,p = -B,.(pV,. —DB,.p) .
At this point the above authors" introduce the

Indeed (B13) is obtainable from the Schrodinger
equation provided g,. be the mean, local velocity,
given in quantum physics, by

(B14)

But (B12) is meaningless in a frictionless motion
since the relationship between v and V depends on
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all the preceding history of the particle. That is
why a double integration appears in Eqs. (11) and
(13) of Gilson'4 [see the comments of his Eq. (13),
where Gilson emphasizes the second criticism
against the Brownian stochastic picture; his first
criticism is that the same v must appear in the
propagation kernel and in the continuity equation].
In a frictionless motion, any velocity depends on
its initial value and on an integral over time of
the acceleration undergone starting from the ini-
tial condition. This is valid even for the diffusion
velocity, which therefore loses its meaning. W'hat

are meaningful are the differences of velocities
relevant to a very small time'interval At and to
two near points. This is not the case of 0 —V, the
first velocity being pertinent to a given point
which may be very far from the center of mass (of
the probability cloud) which has velocity V. Con-
sequently, what is always meaningful in a friction-
less motion are the accelerations, like the "dif-
fusion acceleration".

As said, Gilson'4 has shown that a necessary
condition for having equivalence between quantum
mechanics and a stochastic approach is that the
velocity v appearing in (813) must be equal to the
velocity appearing in the propagator. This is not
the case for the Brownian motion. In other words,
the diffusion coefficient D appearing in (812)
should be zero.

It is surprising that, despite the above three in-
consistencies, Kershaw' (who does not use tricks}
find the correct gj~e-independent Schrodinger
equation. However, in order to find the pipyzg-de-

pendent Schrodinger equation by the same pro-
cedure, Bess' had to introduce ad hoc quantum-
mechanical forces.

Let us summarize the four drawbacks of the
above approach.

(i) A Brownian motion cannot be frictionless.
(ii) The diffusion coefficient D cannot vanish for

ht-0 (see Gilson") or, equivalently, the velocity
appearing in the continuity equation cannot be
equal to the velocity appearing in the propagator
(84).

(iii) It relates the local velocity with the mean
velocity of the complete probability cloud. This
is wrong since such relation must depend, in a
frictionless motion, by all the preceding history
of the probability cloud.

(iv) Either the time-independent Schrodinger

equation is not obtained4 or quantum-mechanical
forces have to be introduced. '

Nelson' cannot avoid drawback (ii) and replace
(iii) by another drawback. Indeed he introduces
two different local velocities 0= b+ b~ and u = b -b~
related to his forward velocity b and backward
velocity p~. By contrast, in any macroscopic
stochastic process one has a single local velocity
and this occurs even for quantum mechanics where
v is given by (814). Nelson' apparently avoids
drawbacks (i) and (iv} by defining the acceleration
as half the sum of the forward derivative of the
backward velocity and the backward derivative of
the forward velocity

a = 2(Db~+D~b) . (815)

This strange definition (different and irreducible
to the macroscopic acceleration) is justified by
Nelson' by his restriction to the Einstein-Smolu-
chosky theory' where dx= b(x(t), t} dt+ tv is not
differentiable since his Eq. (12) implies

(dx, dx, ) = 2D6, ,dt+ b,b, dt'. . . (816)

&dx,.dx,.& = &v,')&, , dt'. (817)

Consequently, x(t) is differentiable and Nelson's
pretext is no longer valid. What is still worse is
that (817) is different from the initial assumption
(816), which is also used in Nelson's' Eqs. (22)
and (23).

For a similar and more detailed criticism
against Nelson's paper' see Kracklauer. " How-
ever, Nelson's paper' can be saved if not intended
as based on classical physics, as shown by de La
Pena-Auerbach and Cetto, "contrary to what is
asserted by Nelson himself in his introduction. '
In this interpretation, Nelson's paper' is a new
recipe for first quantization and has nothing to do
with classical physics, as emphasized by his def-
inition (815) for the acceleration. If strictly con-
nected to (815), even Nelson's Brownian motion
is something different from classical Brownian
motion and therefore his first assumption (816)
is uncorrelated (in the classical sense) with the
result (817) obtainable by Nelson's procedure,
thus eliminating the contradictions.

But the final result of Nelson, i.e. , the Schrodinger
equation, is such that with the use of the propaga-
tor (21) of the main text when both Ly,' and 7 van-
ish,
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