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A concept of "statistical distance" is defined between different preparations of the same quantum system, or in

other words, between different rays in the same Hilbert space. Statistical distance is determined entirely by the size

of statistical fluctuations occurring in measurements designed to distinguish one state from another. It is not related,

a priori, to the usual distance (or angle) between rays. .One finds, however, that these two kinds of distance are in fact

the same, a result which depends on certain peculiarities of quantum mechanics.
J

I.'

INTRODUCTION: PHOTON POLARIZATION

If someone tosses a coin one hundred times and
finds that "heads" occurs thirty times, he will
conclude that the probability of heads is roughly
0.30 (the coin is weighted unusually). However,
because of the unavoidable statistical fluctuations
associated with a finite sample, he cannot know
the value of this probability exactly. In the above
example the probability of heads may well be
around 0.26 or 0.34. The same thing happens in
quantum measurements. If a finite ensemble of
identically prepared quantum systems is analyzed
by some fixed measuring device, the observed
frequencies of occurrence of the various outcomes
typically differ somewhat from the actual prob-
abilities. Because. of this statistical error, one
cannot necessarily distinguish (in a fixed number
of trials) between two slightly different prepara-
tions of the same quantum systems. We can say
that two preparations are indistinguishable in a
given number of trials if the difference in the
actual probabilities is smaller than the size of a
typical fluctuation.

In the present paper we use this idea of disting-
uishability to define a notion of distance, called
"statistical distance, "between quantum prepara-
tions. The definition involves counting the number
of distinguishable states between two given states,
when all states are analyzed by the same measur-
ing device. Statistical distance is determined en-
tirely by the size of statistical fluctuations, and has
nothing particularly to do with the usual distance be-
tween pure states, i.e. , the angle between rays in
a Hilbert space. We shall find, however, that nature
rather mysteriously makes these two kinds of dis-
tance identical. This will be our main result. It
shows that there is a definite mathematical connec-
tion between the ubiquitous statistical fluctuations
in the outcomes of measurements and the geome-
try of the set of states.

The concept of statistical distance is most easily
introduced in terms of photons and polarizing
filters. Imagine a beam of photons prepared by a

polarizing filter and analyzed by a nicol prism.
Let 9 c [0, v] be the angle by which the filter has
been rotated (say, clockwise as viewed from the
nicol prism) around the axis of the beam, starting
from a standard position (8=0) in which the filter's
preferred axis is vertical. The filter is unmarked
so that one cannot tell just by looking at it which
axis is the preferred one.

Each photon, when it encounters the nicol
prism, has exactly two options: to pass straight
through the prism (call this the "yes" outcome)
or to be deflected in a specific direction char-
acteristic of the prism (the "no" outcome). Let
us assume that the orientation of the nicol prism
is fixed once and for all in such a way that ver-
tically polarized photons always pass straight
through. By counting how many photons yield each
of the two possible outcomes, an experimenter
can learn something about the value of 0 via the
formula p = cos'8, where p is the probability of
yes.

Let us now suppose that the experimenter, in
making his determination of the value of 8, has
only a limited number of photons to work with,
so that precisely n photons actually pass through
the filter to be analyzed by the nicol prism. Then,
because of the statistical fluctuations associated
with a finite sample, the observed frequency of
occurrence of yes is only an approximation to the
actual probability of yes, the typical error being
of the order of n ' '. More precisely, the experi-
menter's uncertainty (root-mean-square deviation)
in the value of p is"

p(l-p) '"
n

(This expression for hp follows from elementary
probability theory without any input from physics.
The same formula would apply, for example, if
one were trying to find the probability of heads of
a weighted coin. ) This uncertainty causes the, ex-
perimenter to be uncertain of the value of I9 by an
amount
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dP
~p

dP P( —P)
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Thus, we can associate with each value of 6I a
region of uncertainty, extending from 0 —Ag to
8+ LH, whose size could in principle depend on 8
since both p and dp/d8 on the right-hand side of
Eq. (1) depend on 8. Let us call two neighboring

~8 —8 ~-~8+t 8 . (2)

We now define the statistical distance d(8„8,)
between any two orientations 9, and 9, to be

orientations 8 and 8' distinguiskgblein n trials
if their regions of uncertainty do not overlap, that
is, if

I

d(8„8,) = lim x[maximum number of intermediate orientations each of which is
tl

distinguishable (in n trials) from its neighbors].

In other words, the statistical distance is obtained
essentially by counting the number of distinguish-
able orientations between 0, and 9,. The factor
n ' ' is included so that the limit will exist, the
number of distinguishable orientations going as
n' '. The statistical distance is intended to be a
measure of how far apart 8, and e, are in a statis-
tical sense. It does not have anything to do,
a priori, with the, usual notion of distance (or
angle) between 8, and 8„which is

~ 8, —8, ~
. We

now show, however, that these two kinds of dis-
tance are in fact the same.

From Eqs. (1)-(3) we obtain the following ex-
pression for statistical distance in terms of the
function p(8) (aseuming that 8, ~ 8,):

" d8 " Idpld81
2~8 2[p(1-p)]»2 '

Upon substituting the actual form of the probability
law p(8) = cos'8 into this expression, we find that
the statistical distance is

d(8„82) = 82 —8j;
that is, it is equal to the angle between the two

orientations. This equality expresses the main re-
sult of this paper as it applies to the simple case
of linear polarization of photons.

The fact that the proportionality constant be-
tween statistical distance and "actual distance" is
unity is not particularly significant; it is due to
our decision to divide by Mn in Eq. (3) rather than

by some multiple of ~n. However, the propor-
tionality itself is nontrivial and depends on the
fact that

something which would typically not be true if
the probability law were different from p(8)
= cos'8. In fact, the only periodic functions (with

period 2v) satisfying Eq. (4) are those of the form

P(8) = cos' —(8 —8,)

where m is an integer and 90 is a constant. Thus,

I

if one were to demand of nature that the statistical
distance be proportional to ~8, —82 ~, the cos
shape of the probability function would follow ne-
cessarily.

Another way of stating the above result is as
follows. In the sequence of orientations given by
(8=0, 8=q, 8=2g, .. .), all the orientations are
equally distinguishable from their respective
neighbors. This would follow trivially from rota-
tional invariance if the nicol prism were allowed
to be rotated. But w'e have assumed that the
prism is fixed, and this is why the result is not
empty.

In the above discussion, we defined statistical
distance directly on the set of orientations of the
polarizing filter. In the more general case —in-
cluding measurements with more than two possible
outcomes, also including elliptical polarizations in
the case of photons —we must use a more round-
about approach. We first define in Sec. II the
concept of statistical distance on probability
space, a concept which applies to any probabilistic
experiment, such as the throwing of dice. We then
adapt this idea to quantum measurements in Sec.
III. Finally, in Sec. IV we discuss the possible
significance of the equivalence between statistical
distance and angle in Hilbert space.

II. STATISTICAL DISTANCE ON PROBABILITY
SPACE

The concept of statistical distance is quite in-
dependent of quantum mechanics and can be de-
fined on any probability space. To emphasize
this point, we now define the statistical distance
between two differently weighted coins.

In a case such as this where there are exactly
two possible outcomes, the probability space is
one-dimensional, every coin being characterized
by its probability of heads. The statistical dis-
tance d(p„p2) between two coins with probabil-
ities p, and p, of heads is defined in a way anal-
ogous to that of the preceding section:
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tinguishable in n trials. For a given set of pro-
babilities p„.. . ,pN, the actual frequencies of
occurrence f„.. . , („of the outcomes (after n
trials) are distributed according to a multinomial
distribution, which can be approximated by a
Gaussian when the number of trials is large'.

P($1, . . . , $)») ~exP —
2
n ((;-p;}'

j,a].
(8)

where 5p,. =p,. —f ', This completes the definition
of statistical distance on the (N —1)-dimensional
probability space.

To find an explicit expression for statistical
distance, let p"' and p"' be two points in proba-
bility space, and let p(t), 0 & t &1, parametrize a
smooth curve lying in probability space and con-
necting these two points; thus p(0) =p"' and p(1)
=p"'. According to the above definition of statis-
tical length and the criterion (9) for distinguish-
ability, the statistical length of the curve p(t) is

Let us define the region of ence' taint' around
the point p=(p„. . . ,p~) to be the set of all points
(f„.. . , $)&() for which the exponent inEq. (8) is Iess
in absolute value than —,'. (This —,

' is chosen so that
the present definition will agree with our earlier
definition of distinguishability in the case where
N= 2.) Two points p and p' will be called distin
gnishable in n trials if their regions of uncertainty
do not overlap. For large n, this will be the ease
if and only if

N

d(p(1) p (2)) = cos 1 x(1) (2)

j=l

cos 1 (p(1&)1/2(p(2))1/2 (10)

Equation (10) is our final expression for the sta-
tistical distance between p" ' and p"'. In a sense
this is the most natural notion of distance on
probability space, since it takes into account the
actual difficulty of distinguishing different prob-
abilistic experiments (e.g. , differently weighted
dice).

It is a straightforward matter to generalize the
above definition of statistical distance to the case
where the number of outcomes is eountably in-
finite. Let the outcomes be labeled by i =1, . . . , ~.
As a first approximation, let us regard all the
outcomes with i = R+ 1,N+ 2, . . . , as just one out-
come, and compute the statistical distance on
that basis. If N is large enough, the probability
p„„=)~,."„„p,. of this one outcome will be very
small. In this approximation the statistical dis-
tance between two points p"'= (p,"',p,"', . . .) and
p'" = (p,"', p,'", . . . ) is, according to Eq (10), .

x space.
The statistical distance between p"' and t)

"' is
therefore the shortest distance along the unit
sphere, between the points x"' and x'" defined
by x'1 = (p 1

) / and x = (p' )1/ This shortest
distance is equal to the angle between the unit vec-
tors x" ' and x"' and is given by

One could now perform a variational calculation
to find the shortest curve between p'" and p"',
and thereby to find the statistical distance. But
such a calculation is not necessary. If we change
variables from p,. to x, , defined by

p
l/2

then the above expression for l becomes

We define the exact statistical distance to be the
limit of this quantity as N goes to infinity. Thus,

d(p p )= cos Q (p. ) (p 2))1

j.-l J

Notice that the concept of a probability ampli-
tude is quite foreign to the above derivation.
The square roots of probability appearing in Eq.
(11) come ultimately from Eq. (8), which in
turn is based on the familiar combinatorial argu-
ment that leads to the multinomial distribution.

III. STATISTICAL DISTANCE EQUALS
HILBERT-SPACE DISTANCE

This is the usual Euclidean length of the curve in
x space. The requirement that the curve p(t} lie
in probability space is expressed by the condition

Thus the curve x(t) must lie on the unit sphere in

gee now wish to use the above ideas to define the
statistical distance between two different prepara-
tions of a general quantum system. We will con-
sider only preparations of pure states, which can
be represented by rays in a Hilbert space. The
question is therefore: What is the statistical dis-
tance between two rays g") and g(2)?
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W'e imagine the following experimental setup:
There are two preparing devices, one of which
prepares the state g"' and the other of which pre-
pares tt'2'. An experimenter who does not know
which device prepares which state analyzes, by
means of a fixed measuring device, the quantum
systems (e.g. , photons) emerging from the two

preparing devices. The statistical distance be-
tween P"' and P'2' is intended to be a measure of
the number of distinguishable preparations "be-
tween" g"' and g'".

The new feature involved in treating quantum
systems, as opposed to dice, is this: Whereas
for dice there is only one possible experiment to
perform (namely, rolling the die), for quantum

systems there are many, one for each different
analyzing device. Furthermore, two preparations
may be more easily distinguished with one an-
alyzing device than with another. For example,
the vertical and horizontal polarizations of pho-
tons can be easily distinguished with an appro-
priately oriented nicol prism, but cannot be dis-
tinguished at all with a device whose eigenstates
are the right- and left-handed circular polariza-

- tions. For this reason, we will speak of the sta-
tistical distance between two preparations g"' and
g"' neith respect to a particular measuring device.
The absolute statiStical distance between |i~"' and
g"' is then defined. as the largest such distance;
that is, it is the statistical distance between P"'
and g+' when they are analyzed by the most dis-
criminating apparatus.

To translate this definition into mathematics,
let &f&„. . . , jb„(X may be infinity) be the eigen-
states of a measuring device A by which g"' and
g"'are to be distinguished. Let us assume that
these eigenstates are nondegenerate so that there
are N distinct outcomes of each measurement.
The probabilities of the various outcomes are
f(qb, , rp"') f' if the preparation is @"'and f(P, , @"')f'
if the preparation is tI"'. (Here the objects |t'"
and (t),. should be interpreted as unit vectors be-
longing to the appropriate rays. ) Thus, according
to Eq. (11), the statistical distance between g"'
and g"' with respect to the analyzing device A is

d (0'" 0"')=cos' g ~(e 0"')~ ~(e;, tt'")~ (12)

One can easily convince oneself that this quantity
achieves its maximum value if one of the eigen-
states of A (say, P, ) is the same as P'" (or t/r"').

In that case only the i= 1 term contributes to the
sum in Eq. (12), and we find that the absolute sta-
tistical distance is.

d(q'" q"') = os ' ~(q"' q"')
~

.
This is our main result: that the (absolute) sta-

tistical distance between two preparations is equal
to the angle in Hilbert space between the corres-
ponding rays.

The angle in Hilbert space is the only Riemann-
ian metric on the set of rays, up to a constant
factor, which is invariant under all unitary trans-
formations, that is, under all possible time evo-
lutions. In this sense it is a natural metric on the
set of states. It is interesting that the same metric
irises from quite another starting point, namely,
the analysis of statistical fluctuations in a finite
sequence of measurements.

IV. niSCUSSIOX

The above result is in a way very appealing. It
is as if nature defines distance between states by
counting the number of distinguishable intermed-
iate states. One can hardly imagine a more natu-
ral way of defining distance, and yet we cannot
claim at this point to understand physically this
connection between statistics and geometry.

We saw in the case of photon polarization that
the cos' shape of the probability law follows from
the requirement that the statistical distance be
proportional to the usual distance (or angle) be-
tween orientations of the filter. It is interesting
to ask whether this kind of deduction could be
made more generally. By requiring that: the dis-
tance between states of a general quantum sys-
tern be determined by the number of distinguish-
able intermediate states, could we conclude that
the set of' states as a whole must have the geome-
tric structure of the set of rays in a complex vec-
tor space'2 We have seen that the concept of sta-
tistica, l distance is capable of converting a flat
probability space into a section of the unit sphere
in a rea/ N-dimensional vector space, with pro-
babilities being the squares of real amplitudes.
However, there is nothing in the above analysis
which would tell us, if we did not already know,
that the actual set of states exists in a complex
space. Therefore, if statistical distance is in-
volved in determining the geometry of this set, it
is not the whole story.

Nevertheless, the equivalence between statis-
tical distance and Hilbert-space distance remains
surprising and raises the interesting possibility
that statistical fluctuations in the outcomes of
measurements might be partly responsible for
the Hilbert-space structure of quantum mechanics,
a structure which seems too rich not to have a
deeper foundation. ' These statistical fluctuations
are as basic as the fact that quantum measure-
ments are probabilistic; so it is not inconceivable
that they could play such a fundamental role.
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