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Infinite-dimensional family of vacuum cosmological models with
Taub-NUT (Newman-Unti-Tamburinoj-type extensions
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%'e show that the Gowdy metrics on T XE contain an infinite-dimensional subfamily of solutions which each
admit a Taub-NUT (Newman-Unti-Tamburino)-type extension. However we also show that the generic (diagonal)
Gowdy solution develops curvature singularities along the boundary of its maximal Cauchy development and thus is
inextendible.

I. INTRODUCTION

In a recent paper we studied the global Cauchy
development problem for the vacuum metrics on
~ xA which have two commuting, spacelike Kill-
ing fields. With a suitable choice of coordin-
ates these metrics take the form

ds' = exp(2a)(-dt'+ de') +g.„dx'dx'

det(g„) =t'.

Here x' =- & and (x')=(x', x') are periodic coordi-
nates on the three-torus and the function g and
Riemannian two-metric g,„are functions of f and
8 alone. The Einstein equations for these met-
rics are the hyperbolic analogs of the elliptic
equations studied in the stationary axisymmetric
problem.

We showed that any choice of initial data in a.

suitable Sobolev space determines a C solution
of the vacuum field equations without singularity
for all t in the interval (0, +~). Thus no sing-
ularities arise until the time function t (which
measures the area of the invariant two-tori tang-
ellt to 8/Sx ) app1'oaclles its 11IllitlIlg values of 0
and +~. We also showed that each such solution
defined on T x(0, +~) is in fact the maximal
Cauchy development of the given initial data.
This followed from the observations that trK(t)
[the trace of second fundamental form K(t) in-
duced on the hypersurface of constant t] blows

up uniformly as t -0' and that the curves of the
normal congruence of the slicing tend to infin-

ite proper length as t -+~.
The uniform blowup of trK(t) as t -0' means

that each solution has a crushing singularity in
the sense of Eardley and Smarr'. It is natural
to ask whether these solutions all have curvature
singularities at their crushing boundaries or
whether, perhaps, some of the solutions are ex-
tendible across Cauchy horizons. The purpose

of this paper is to show that there is an infinite-
dimensional subfamily of these solutions which
have no curvature singularities at their crushing
boundaries and which are extendible across
Cauchy horizons in much the same way that Taub
space is extendible to Taub-NUT (Newman-Unti-
Tamburino) space.

In spite of our result it remains quite plausible
that the generic solution (of the symmetry type
considered) does have curvature singularities at
its crushing boundary. Indeed, we can demon-
strate this explicitly for the special case of di-
agonal metrics of the type {1.1). These solu-
tions, which correspond to Einstein-Rosen waves

and admit only one polarization of gravitational
radiation, are determined from the solutions of
a linear wave equation on S'x(0, +~). We shall
show that the "regular" solutions of this wave
equation generate metrics which are extendible
across Cauchy horizons as described above,
whereas the "irregular" solutions (and hence the
generic, diagonal solution) generate metrics with
curvature singularities at their crushing bound-
aries.

To show that each of our regular solutions is in
fact extendible we apply a technique recently dev-
eloped by Schmidt . Schmidt considered another
variant of Einstein-Hosen waves which allows
solutions compatible with (future null) asymptotic
flatness. He constructs solutions in the interior
of a certain null cone which intersects 8', es-
tablishes the regularity of 8', and then shows that
a certain subfamily of his solutions are extendible
across this null cone to the past.

The solutions we consider were first given by
Gowdy who generalized the classical Einstein-
Rosen waves to allow the topologies T xR, S xR,
and 8 xS'xA. A proof that the generic, diagonal
Gowdy solution develops curvature singularities
was first given by Berger, who showed that the
square of the Riemann tensor typically blows up
as f, -o'. As we shall show here, one can suit-
ably restrict the solutions to a class (involving
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infinitely many parameters) in which the full
Riemann tensor is well behaved at the crushing
boundary. We then apply Schmidt's technique
to show that every member of this class is ex-
tendible (in two different ways) through a Cauchy
horizon. For simplicity we shall restrict our
attention to analytic solutions and require an-
alyticity of the extensions. A larger class of
extendible solutions could presumably be ob-
tained by considering all the solutions in a suit-
able Sobolev space as discussed in Ref. 1.

II. EINSTEIN-ROSENNOKDY METRICS ON T3 X 8

ies, etc. , we shall restrict the solutions to have
only finitely many of the coefficients (a„)and Ib„j
nonzero. A more general alternative would be
to restrict the coefficients so that 5' and &W/Bt

are initially in the Sobolev space H3 xH2 as dis-
cussed in Ref. 1.

The curvature tensor for the metrics (1.1) was
computed by Gowdy in Ref. 2 and expressed in
the orthonormal frame defined by

-a B

(2.7)

Specializing (1.1) to the diagonal case we write
the metric as In particular, for the diagonal metrics,

ds2 =exp(2a)(-dt'+ d2I') + te' (dx2)'

-2lV(d 3) 2 (2.1)
(i(r)' (i)r)' (2.8)

The function W satisfies

BS' 18%" BW
Bt' t Bt

whereas the function g is determined from

Bg BW BS'
2t

Be Bt Be

Ba 1 BH r' BR'ta +
i

+
st 4t . Bt ] se &

(2.2)

(2.3)

(2.4)

and we showed in Ref. 1 that, for all t such that
0&t «tp,

f/2
-2a&t0e& ~ -2a&tp0e)

tp
(2.9)

By considering the asymptotic forms of J0()2t) and

N0(nt) as f -0' we can easily show that R2;2; diver-
ges as

))iiii e ' i ——,
, )(+ " sin(iii + ii„))

1 1 2b„
w

(2.10)
The general solution to E1l. (2.2), with period 221

in the 8 variable, is given by

W= o(+ p lnt+ g [a„d0()2t) siri()28+ y„)
n=f

unless
1b„=o, P=-, ,

in which case

(2.11)

d~ t ——
g

=0. (2.6)

This integral is a conserved quantity-so the con-
dition need only be imposed on an initial surface.
The particular (nonsingular) solutions we con-
sider below all satisfy this condition automatic-
ally.

To avoid questions of the convergence of ser-

+ b„N0(nt) sin()2&+ |)„)],(2.5)
/

where (3., p, a„, b„, y„, and 5„, are real constants
alld Jp and Np are the regular and irregular Bes-
sel functions of zeroth order From E(.l. (2.3)
and the required continuity of z, it follows that
one must impose the condition

2 g Q„sin tl~+p„
iso

(

~

~

~

n

ri ~
4

+ a„n cos n6+y„
n

(2.12)

For these special solutions one can sharpen (2.9)
to show that e ' ' ' approaches a finite nonzero
limit as t-0'.

The significance of this result may be seen by
evaluating the curvature invariant

i
rii A ri rii

BY6
oBY6

),

4~(+2323) 2(+1220) 2(+1330) ] i (2

where + ' signifies a sum of additional non-
negative terms. If condition (2.11) is not sat-
isfied, the components R f22{) and Bf3$() behave as

))iirii =- Rii)iii 3e '
. 2 " cos(iii+ i„) + —,

' — () + g siii(iiii+ ii ))
2, 1nt V 2bnn 2bm

t . m m

(2.14)
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ds =-dt +t'd?I/+d8 +dP',

where we have put x = P and x'= &f&. This space
is the product of a flat two-torus (with coordin-
ates 8 and P) and Misner s flat, two-dimensional
model for Taub space. The extension of Mis-
ner's model to give a two-dimensional analog of
Taub-NUT space is discussed by Misner' and

by Hawking and Ellis. Evidently the flat Kasner
model admits a corresponding extension —the
extension being simply the product of Misner s
model for Taub-NUT space with a flat two-torus.
We shall now show that each of the nonsingular
solutions discussed above has an analogous ex-
tension.

For the regular solutions W [i.e. , those sat-
isfying Eq. (2.11)]we define b(t, 8) by

(2.15)

W.= ~ ln')+5,

so that

ds' = exp(2a)(-dt'+ d8 )

+ t exp(2b) dg + exp(-2b)dg,

(2.15)

(2.1&)

and 5 has the form

b(t, 8) =g a„&0(nt) sin(n8+ y„) . (2.13)

and thus cannot cancel the divergence of Rqqq& in
the curvature invariant. Thus if condition (2.11)
is not satisfied, C blows up almost everywhere
as t -O'. This result was given earlier by Ber-
ger. '

if, however, condition (2.11) is satisfied then
one can show by straightforward evaluation that
all the components of R-g;; have finite limits as
t -0' along the curves of constant (x'}. Further-
more, one can show directly that each of the
curves of this normal congruence has bounded ac-
celeration as t -0' and that the basis fields J&„)

define a Fermi-Walker transported frame along
each of these curves. Thus one may regard the
normal congruence as a preferred family of space-
time filling "observers" who fall into the crush-
ing singularity with bounded acceleration without
experiencing infinite tidal forces. One can also
show that the (time-dependent) Lorentz trans-
formation which carries e&~) in a parallel-prop-
agated basis along each world line of the normal
congruence i.s well behaved as t -O'. It follows
that the components of R-g„-, in a parallel-prop-
agated basis also have finite limits along each of
the normal trajectories.

It is natural to ask whether these nonsingular
solutions are extendible. The special, homo-
geneous case with P =-,', g„=5„=0 is the well-
known flat Kasner solution

We may solve the remaining Einstein equations
(2.3) and (2.4) by setting, for t &0,

The functions g and 5 satisfy

llm(a(t, 8) —b(t, 8)) = 0
C 0+

(2.20)

sa(t, 8) sb(t, 8)
lim ' — ' =0.
] 0+ Qf 8$

(2.21)

Let us temporarily relax the (toroidal) coordi-
nate identification in?1/ and introduce new co-

ordinatess

t'=t, P'=2/ —21nt,

8'=8,

in terms of which the line element becomes

ds ' = ——,(exp(2a) —exp(2b) ](dt')'4t'
]I

+ —,
' exp(2b) dg'dt'+ —exp(2b)(d?t ')

(2.22)

+ exp(2a)(d8')'+ exp(-2b)(dg')' . (2.23)

Here, with a slight ambiguity of notation, we let
z and 5 signify the original functions & and b re-
expressed in the new coordinates so that

b(t', 8') = Q a„&0(nt" /') sin(n8'+ y„) (2.24)

and
, sb s', 8'

a(t', 8') = b(t', 8') + -,' ds 4s'
0 Bs

(2.25)
~

~

Ba'

From the power-series expansion of Jo,

&1/?) 'p (( an )t ]
0 (b()? (2.25)

we see that b(t', 8') may be analytically extended
to negative values of t' and is in fact defined by
Eq. (2.24) for all (t ', 8') c(-~, +~) &&S'. The func-
tion a(t', 8') may also be analytically extended to
(-~, +~) xS by defining it everywhere on this
domain by Eg. (2.25).

Having extended the definitions of g and 5 we
need only show that Eg. (2.23) defines a Loren-
tzian metric everywhere on the extended mani-
fold. In view of Egs. (2.20) and (2.21) and the
analytic character of g and 5, it is clear that

a(t&)=,b((, &)+f us s(
'

) +s( '
)

(2.19)
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the function h =[exp(2a) —exp(2b) j admits an
expansion of the form

a(t', e') =g o,(&')t",
4=2

(2.27)

where the p~(8') are smooth functions of period 2p.
It follows that

g, ,.=-—,h(t', &') = ——,'Q p ((~')t" (2.28)

is smooth on the extended manifold. The other
metric components are obviously smooth since
p and b are. Finally, one can easily show that
(2.23) has Lorentzian signature everywhere on

the extended manifold.
We now identify points with fixed t', 8', and P'

with g'=+g. The resulting models have the top-
ology & x& and each contains a region (defined by
f' &0) isometric to its unextended counterpart in
the original Gowdy family. In each of the ex-
tended models the curves of the original normal
congruence wrap infinitely many times around
the torus as t'-0' and do not extend through the
Cauchy horizon at t' =0. The extended models
all have closed timelike lines in the region t' &0.
Since we have extended the metrics analytically,

it is clear that the vacuum Einstein equations are
satisfied throughout the extensions. A second,
inequivalent family of extensions could be de-
fined by taking g' =2/+ 2 lnt and proceeding as
above.

One of the aims underlying Ref. 1 was the hope
to prove the inextendibility of the generic (in
general, nondiagonal) Gowdy metric beyond its
maximal Cauchy development. The present ex- .

amples show, however, that one cannot simply
apply estimates to show that the curvature must
blow up at the crushing boundary. A. more subtle
argument seems to be needed to cover the gen-
eral case. Perhaps one can argue that the linear
perturbations of any particular solution with a
crushing singularity always admit some irregular
solutions (indicating a curvature blowup) and then
appeal to linearization stability arguments for
the conclusion in the nonlinear case.
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