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The two-point correlation function for the quantum nonlinear Schrodinger (one-dimensional
5-function gas) model is studied. An infinite-series representation for this function is derived

using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-

coupling (c ~) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expres-
sion for the order-1/c correction to the two-point function in terms of a Painleve transcendent
of the fifth kind.
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The theory of completely integrable quantum sys-
tems encompasses a wide class of exactly soluble
models in statistical mechanics and quantum field
theory. Important advances have been made in the
past few years, both in the application of Bethe-
ansatz methods to new models and in the under-
standing of the algebraic structure which underlies
Bethe's ansatz and its connection with the classical
method of inverse scattering. ' In spite of these
developments, one problem of fundamental impor-
tance remains largely unsolved —the determination of
Green's functions for general integrable systems.
Progress on this problem has been mostly limited to
certain special cases for which the algebraic structure
is that of a free fermion theory (e.g. , the two-

dimensional Ising model, ~ the XY spin chain, ~ and
the impenetrable Bose gas' '). The more general
problem of Green's functions for Bethe's-ansatz
models is not well understood. In this Communica-
tion we describe some new results which constitute a
step toward the resolution of this problem.

The model we consider is the quantum nonlinear
Schrodinger (5-function gas) model described by the

Hamiltonian 0 = J dx (9„@'8„@+cg"P'@qh)where

$(x) is a canonical nonrelativistic boson field. For
the case e = ~, the Green's functions have been ex-
tensively studied. ' ' In the present work, we study
the finite-c two-point function G (x) by considering
its expansion for large e:

G(x) —Gt '(x) +—G ' (x)+0-
C2

Our main result is an exact closed-form expression
for the O(1/e) term G ' (x), which like the c = ~
case is given in terms of Painleve transcendents.

Our procedure for studying Green's functions em-
ploys the quantum inverse formalism " and particu-
larly the operator Gel'fand-Levitan transform. " "
Here we will outline the main elements of the calcu-
lation. Detailed proofs will be presented elsewhere.
The quantized reflection coefficient operators R'(k)
and R (k) are defined via the Zakharov-Shabat eigen-
value problem. (We follow essentially the notation
of Refs. 10 and 12.) The Gel'fand-Levitan transform
expresses the local field as an operator functional of
R' and R, which may be written as an infinite series:

"dp "dk;
$( ) = X „g g '

g (p;, k;, )R"(p, ) . R "(p )R(k ) R(k )
NW i~1 ~ JW

(2)
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where g„(p;,k;,x) is given in Refs. 12 and 13. A normal-ordered expression for the operator product @'(x)Q(y)
is obtained by the following reordering theorem: For x )y, @ (x)@(y) is obtained in normal-ordered form by
writing the series analogous to (2) for @'(x) and then inserting $(y) between the R"'s and R's in each term
[i.e., each term will. contain an expression of the form R'(pp) . R'(p„)g(y)R(kn) R(kt)]. Expanding

p(y) then gives a normal-ordered double series for Q'(x) $(y). Such a result was conjectured by Honerkamp'5
on the basis of low-order calculations. We have constructed a proof to all orders which utilizes the analytic prop-
erties of the commutator [R (k), @(y)] discussed in Ref. 12. Thus we have an operator series of the form

~N dp, "dk,
P"(x)P(y) = X g ' g 'F (p;,k;;xy)R "(po) R'(p )R(k ) R(k )

NW iW ~ JM
(3)

where FN is a sum of products of the gJ's, j ~ N.
With the above reordering theorem the finite-

temperature Green's function

G (x —)= Tr[d (x)y( y) e p(H —rN)]-
p, „ Tre -P(H-p, ) (4)

may be computed using precisely the same technique
as in our previous derivation of the thermodynamic
properties of the system, ' the latter being equivalent
to computing the zero-separation correlation function
Gtt „(0). In this way, it may be shown that to all or-
ders, the P and p, dependence of Ga ~ can be isolated
in terms of single-particle functions p(k), yielding a
formula

dk,
Gtt„(x —y) = $ J gp(k, )

NW iW

"fN(kp ' kN, x,y), (5)

where the functions fn are independent of P and p, .
One can actually derive several such representations
for 6~ „. In the form suggested by Honerkamp, "

p
is just the density function p(k) defined by Yang and
Yang. ' We have found another representation of
the form (5) for which p(k) =(e~' " +1) ', where
e(k) is the function of Yang and Yang which
describes the particle-hole excitation spectrum. This
latter representation has two main advantages. One
is that each function f~ in (5) is obtained directly

I

from the corresponding function F~ in (3), rather
than from the first N +1 functions FO, F]„.. . , FN as
is the case for the p(k) expansion. The other advan-

tage is that the zero-temperature (/3 ~) limit of
(e&'t"~+1) ' is a simple unit step function with sup-
port between —kr and kr (kr is the Fermi momen-
tum). The zero-temperature Green's function thus
obtains the form

+F " dklG(x —y)= X J,
NW F i

x fjy(kp ' ' kn', x,y) . (6)

The prescription for determining the function f~
from the function F~ in Eq. (3) involves first sym-
metrizing the integrand and then setting p; = k;+ n;q,
taking the limit q 0 and retaining only those terms
which are nonsingular when any subset of the n s is
set equal to zero [e.g. , terms which involve factors
like (n;/n&), i 4 j, are discarded] Adeta. iled discus-
sion of Eq. (5) and how it is derived for both p(k)
= p(k) and for p(k) = (e&'I"'+ I ) ' will be given
elsewhere.

Equation (6) is the most explicit form we have
been able to find for the full zero-temperature corre-
lation function. However, for the first few terms in a
large-e expansion, the analysis may be carried much
further. Upon symmetrization of the operator ex-
pression (3), the c ~ limit may be taken straight-
forwardly (cf. Ref. 13). In this limit, Eq. (6) gives

( 2) r dkp

Nt "-t[F 2m

dkn
dz~ dznX)n(x, y, z, k )

where X)n is the determinant of an (N +1) && (N +1) matrix I)& =exp[ —ik, (x; —
y&) ], ij =0, 1, . . . , N, with

xp =x, yp =y, and x; =y; =z;, i = 1, . . . , N. For the leading-1/c correction we obtain the new result

2kr tp&, X (—2)&
Jr

F dkp

Nt ~F 2m

dkN
J dz) dzN i $(kp kt—) 'Bn(xy, z, k)

2 7T 3'
(8)

By performing the k integrations and introducing the scaled variable t = kr(x —y) it is possible to express these
results in terms of an integral kernel E (u, u) =sin(u —tp)/(u —u) acting on the interval [O, t]. Let us define
quantities R (t, h. ) and D~(t, k) as the usual resolvent kernel and first Fredholm minor but with their arguments
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evaluated at the end points, i.e.,

R(t, x) =ZK(o, t)

+ k' dz K(o,z) K(z, t) +

D, (t, a) = XK(o, t)

(9)

where tp and k depend on X. Using the symbolic ma-
nipulation program MAcsYMA we have extended this
asymptotic expansion through order I /t6 I.nserting
this expansion into (14) and integrating we obtain

1

lnD, (t, X) = kt—+T~(k' —I) lnt+B(h. ) +0—

K(o, t) K(o,z)" ~.d' K(z, t) K(z, z) + (10)

With these definitions we easily recover the result of
Schultz' and Lenard for the infinite-c case: G
= (kF/2)D~(t, X =2/n). After some manipulation it

turns out that the I/c correction G"' may also be ex-
pressed in terms of the quantities (9) and (10),

1

G ' 2kF 9 lnR 91nR BlnR
G(P) ~ Qt gg (jt (jg

921nD& 91nDq QlnD~

Bt Bt BA.

The work of Jimbo, Miwa, Mori, and Sato has
shown that the quantities (9) and (10) may be writ-

ten in terms of Painleve transcendents. ' For our
purposes we may summarize their elegant results as
follows. Let us define a function P(t, h, ) by the dif-

ferential equation

P" = [(y')' —I] cotd + (I —t/')/t (12)

2 sing

ilnD3 t( '3 —I) 1+ cotQ ——
Bt 4 sin'$

(13)

(14)

Since Dt(t, x) = x at t =0, these equations complete-
ly specify R (t, k) and Dt(t, k) and hence the func-
tions G' and G" in terms of the differential equa-
tion'and boundary condition (12).

Using these results it is a trivial exercise to write
down the short-distance behaviors of G' ' and G"'.
Here we will concentrate on their long-distance prop-
erties, for which we need the large-t behavior of the
solutions to (12). For X & I/m one finds that this is

of the form

with boundary condition Q
—t —kt' as t 0, where

the prime in Eq. (12) denotes differentiation with

respect to t. [The function Q(t, X) is related to

y (t, X) of Ref. 8, Eq. (7.98) by y = e "&; in terms of
y the equation (12) is a Painleve equation of the fifth
kind. ] Then the resolvent (9) and Fredholm minor
(10) may be expressed as

(16)

where B(h,) is an integration constant. To date we
have only been able to investigate the functions
k(X), tp(X), and B(X) by numerical integration of
the differential equation (12), though we feel that an
analytic solution should be possible using techniques
similar to those of Ref. 18. In any case we have con-
cluded that k(X) is given by k(X) = —(I/m)
&& In(n X I) and —that if tp and 8 are regarded as
functions of k rather than of lE then tp vr/2 is an
odd function of k and 8 is an even function of k,
with dB/dk =k dtp/dk +k. Thus at k=2/m we have
k =0 and tp = m/2. For 8 we find at h. =2/m,
8 =In(2/n) +Inp, where p =0.924182203782.
Using these values we obtain the long-distance
behavior of the infinite-c correlation function,

G(p) kF 1
1

1 +4cos2t 3 sin2t +
n

"
Kt 32t' 16t'

G(t) ~e&/32 tt3+-6 I + F
( +3ln2 3

)
2k

G (0) 7FC

-1/2+2kF/e c kF sin2 tXt + — + ~ ~ ~

mc 2t
(18)

(17)

The long-distance behavior of G' has also been ob-
tained by a different method by Vaidya and Tracy,
who have shown that p is related to Glaisher's con-
stant A by p = me' 2 ' A, which is in precise
agreement with our numerical value. (Note that
there are sign errors in Refs. 7 and 8 which may be
corrected by making the replacement t t —m/2 in
all the trigonometric functions appearing in their for-
mulas. )

In order to compute the long-distance behavior of
the 1/c term G"' we need in addition the values
dtp/dh. , dk/dX, and .dB/dhat X=2/m. From. k(&)
= —(I/m) In(n X —I), we have dk/dX = —I, while for
dtp/dX and dB/d A. we have obtained the numerical
results dtp/d X = —2.656657 2 = —(y+3 ln2) where

y is Euler's constant, and dB/dX= m/2 —1.57079633
=0. Combining these results, we obtain the long-
distance behavior of the two-point function through
order I/c:

d(t, k) = t+tp+k lnt+0 ——1 (15) where, to this order, G(0) =(kF/n)(1+2kF/mc)
Note that we have intepreted a lnt term in G "as the
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first-order expansion of an asymptotic power t ",
where u =

2
'—2k'/mc + 0 (1/c2). '9

The results of this paper suggest that the connec-
tions between the operator formalism of the quantum
inverse method and the treatment of Green's func-
tions by isomonodromic deformation theory go much
deeper than our present level of understanding. We
have found that the first two terms in the large-c ex-
pansion (1) may be expressed in terms of Painleve
transcendents. However, our calculation of the
'O(l/c) term made no direct use of monodromy ar-

guments. Instead, this term was obtained by relating

it to derivatives of the Fredholm minor (10) and
resolvent (9) with respect to A. and t. Reduction to
Painleve transcendents then followed the original
analysis of Jimbo et al. One could imagine a direct
application of mondromy arguments, e.g. , to the
series (6) or to the operator formalism itself. Such
an approach is presently under investigation.
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ler, J. Schonfeld, and C.Tracy for helpful conversa-
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