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We will prove that SU(5) and SO(10) grand unified theories are almost uniquely chosen under a few reasonable

assumptions. The main ansatz is that there exist only left-handed particles in an SU(2) doublet and their antiparticles

in an SU(2) singlet. For the case of a single-multiplet unification, SO(10) is unique, using the facts that the charge of
the d quark is not neutral and the theory should be anomaly free. For the case of two-multiplet unification, SU(5) is

unique among SU(N) (N (500). The color group is effectively determined as the standard SU(3) with triplets of
colored quarks. Quark charges must be the standard 2/3 and —1/3. No unifying simple group exists for

G(horizontal) XG(GUT) under the assumptions above. For the case of SU(5), the cancellation of the triangle

anomaly emerges as a consequence rather than a hypothesis.

I. INTRODUCTION AND SUMMARY OF MAIN RESULTS

Among many models of grand unified theories
(GUT's) of strong, weak, and electromagnetic in-
teractions, ' the original SU(5) (Ref. 2) and its ex-
tension SO(10) (Ref. 3) are the most popular ones.
However, some of the consequences of grand uni-
fication have common features. For example, the
baryon decay has almost always the property &(B
—L) =0, where 8 (L) denotes the baryon (lepton)
number. This is because any local operator with
its dimension 6 has this property. This implies
that it is a very difficult task to experimentally
discriminate among various models of grand uni-
fication. On the theoretical side, the choice of a
particular model appears to be a matter of person-
al taste.

Recently, Georgi' has provided an interesting
way of looking at unification. He has posed a
question of how unique the SU(5) group could be.
Of course, we know that SU(5) is uniquely chosen
among simple groups of rank 4.' It turns out that
the color group plays an important role: If the
color group is not SU(3) but SU(n) (n ~3), then we
cannot unify the electron family. Note that in his
argument the electric charges of quarks cannot
assume values 3 and 3, except for the case of
n=s

The purpose of this paper is to generalize this
result by Georgi. Under some general conditions,
we will show first that SO(10) [SU(5)] must be the
essentially unique choice for the grand unification
group for a single- [two] irreducible-multiplet
unification. Secondly, the color group must be
SU(3), and the quarks must have the standard frac-
tional charges, 3 and -3. Third, no simple group
can unify the family structures, i.e., no simple
group can accommodate G(horizontaoS G(GUT).
For SU(5), the absence of triangle anomaly
emerges as a consequence.

In order to facilitate our discussions in the fol-

Here, a Cartan subalgebra implies a set consist-
ing of maximal number of mutually commuting
elements in I-.

(3) Leptons and quarks denoted as R, E, U, and
D have the following standard assignment of &, and
1' as in Table l. Leptons (N~, E~} and antileptons
(¹~,EI) belong to color singlet representations,
while quarks (U~, D~) and antiquarks (U~, &~) be-
long to an m-dimensional representation and its
conjugate representation of the color group, re-
spectively. %e do not assume that the quark rep-

TABLE 2. Quantum number assignments for leptons
and quarks.

Ng EI, EL, NI, UL, DJ. Uc Dc

0 y

1
2

Ill Pl l l Pl 0 tE mSq

lowing sections, we will now state the following
assumptions:

(1) The grand unified group G is a simple com-
pact Lie group, and contains G(color) S SU(2)
SU(1) as its subgroup. Here, the color group is
not assumed to be SU(3), while SU(2}8U(1) refers
to the standard Glashow-%einberg-Salam group
for unified electroweak interaction.

(2) The third component of the weak i-spin oper-
ator f, of the weak group SU(2) and the weak hyper-
charge operator 1' of the weak U(1) group are ele-
ments of a Cartan subalgebra H of the Lie algebra
I- of G. Moreover, the electric charge operator Q
is specified by'
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resentation of the color group belongs to the basic
(i.e., lowest dimensional) representation. In Ta-
ble I, y is an unknown number to be determined. '
Also, n in the last column indicates the number of
leptons and quarks of a given type contained in a
given representation of G'. It is assumed that only
these particles listed in Table I form a basis of a
representation of G, which we call {p). It is not
yet assumed that the representation is irreducible.
Then, the dimension d(p) of the representation is
given by

d(p) = 3n, +no+ 4mn, ~ (1.2)

(On&=n =n, =l, m=3, 9 =3, QD=-3,

(ii) n, =n, = 1, n, =3, m =1, QU=3, Q~=-3,

It is also assumed thatn, 0, ~&0, andn, &0, al-
though no could be zero, Bi.nce we want to discuss
the case for family unification, we never specify
the relations among quarks and leptons, i.e., we
never assume that n, =n, .

(4) The theory has no triangle anomaly' so as to
make it renormalizable. This assumption will not
be made, however, in Sec. IV for the uniqueness
of the SU(5) group.

(5) No quark has zero electric charge. Leptons
N and E have electric charges of 0 and -1, re-
spectively.

Alternatively, we discuss the case of the follow-
ing stronger ansatz:

(5') Quarks cannot have integral electric charges.
Leptons N and E have electric charges of 0 and -1,
respectively.

Before going into detail, we note the following:
The ansatz (5) and (5') may create an asymmetry
between leptons and quarks, since a neutrino +
can be a Majorana particle but a quark cannot.
Especially, there is no reason why we have to as-
sume n, =n, . (Indeed, n, could be zero. ) If we
hav'e n, =no, then we have a certain symmetry be-
tween leptons and quarks as has been postulated
earlier' for the Sakata model.

As a result of the five assumptions (1)-(5}listed
above, we can prove the following facts:

(a) If all particles listed in Table I form a single
irreducible representation {p), then the only pos-
sible candidate for grand unification is SO(10) [or
more accurately spin(10}j. Moreover, the dimen-
sion d(p) of the representation is uniquely deter-
mined to be 16, corresponding to the fundamental
spinor (or its complex conjugate) representation.
We have either

The stronger ansatz (5') yields that the case
(iii) is not allowed. The additional requirement
that the representation of the color group cannot
contain trivial representations will yield that the
ease (ii} and (iii) are forbidden. Note that the
color group must be either SU(3) or SU(2) for (i).
The examination of the decomposition of SO(10)
into SU(2) 8 SU(2)8 U(1) shows the incompatibility
of the SU(2) color group. Of course, the SU(2)
color group is also experimentally forbidden in
view of the quark-line rule as we noted else-
where. '0 Then, only the case (i} with the SU(3)
color group is allowed. In this sense, the fact that
quarks are color SU(3) triplets with the standard
electric charges can be said to be consequences of
grand unific ation.

(b) If we assume that all particles in Table I now
form a reducible representation of ~, which is a
direct sum of two irreducible multiplets, then we
can conclude the following: First, quarks have
the standard fractional electric charges 3 and -3.
Second, G must be one of the SU(N) (N~ 3) group.
If we restrict ourselves to cases of N ~ 500, then
G is uniquely determined to be SU(5) with the rep-
resentation {p)={+58{10}(or its complex conju-
gate representation). Alternatively, if we assume
n, = 0 from the beginning, then we can prove the
same without restriction on the value of N. Third,
the color group must be SU(3) with quarks in
color-triplet states. In reaching these conclu-
sions, we need not assume the ansatz (4). The
cancellation of the triangle anomaly is a conse-
quence of other hypotheses.

(c) Consequently, no simple group can accom-
modate the family structure in its multiplet. If a
simple group is used, the family structure is a
simple repetition. Similarly, if {p)consists of
more than two irreducible representations, then &
is either SO(10) or SU(5) and that the representa-
tions are simple repetitions of those stated in (a)
and (b).

We prove these facts in the following sections.
Section II is devoted to general consequences of the
assumptions (l)-(5). We will prove the result (a)
in Sec. III, while Sec. IV is devoted to the discus-
sion of (b).

In the following, we use the same lexicographical
ordering of a simple root system for the Lie alge-
bra L of G as in Ref. 11. Similarly, {A„A„.. . ,
A„) designate the corresponding fundamental weight
system, where n is now the rank of the Lie algebra
L. Then, any irreducible representation with its
highest weight ~ will be characterized by n non-
negative integers, (m„m„... , m„) with

(iii) n, =no=3, n, =l, m =1, pc=2, Q~ =, 1. A =m,A, +m+2+ ~ ~ ~ +m„A„. (1.3)
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II. GENERAL CONSIDERATION Using Eq. (2.3) and the arbitrariness of t, we have

Let x be a generic element of the Lie algebra L

of the simple group G. Let X be its representa-
tion matrix in a representation {p}, which may be
reducible. Then, since G is simple, we must have

Tr Y' = Tr (Y I~) = 0

since other conditions

Tr(IS)'= Tr(IS)~Y= Tr(ia)BY = TrI31'4=0

(2.8)

TrX=O. (2.1)
We identify the representation {p) with the lepton-
quark multiplet specified in the previous section.
Then, the condition (2.1) is automatically satisfied
for X=13 or F. Next, let us consider

TrX =0. (2.2)

This relation holds automatically for any simple
group except SU(N) (N» 3) (Ref. 12). (See Appen-
dix A.) For SU(N) (N» 3), the validity of Eq. (2.2)
is equivalent to the absence of triangle anoma-
ly.""Therefore, Eq. (2.2) must hold for any
grand uni'fication group t". S.nce X is an arbitrary
element of the Lie algebra L, we may choose

(2.3)

are automatically satisfied. From Table I or Eqs.
(2.7), we calculate

Tr Y =5n, (m —& )/8m

Tr Y'Is=n, (&' —m')/16m'.
(2.10)

Therefore, if we have Eq. (2.8), it is required to
give m = &. Then the charge eigenvalues of U~ and

D~ are 1 and 0, respectively. However, this con-
tradic ts the fifth assumption of the p revious sec-
tion. In this way we conclude that we cannot have
the validity of Eq. (2.8).

The first consequence of the impossibility of Eq.
(2.8) is that the representation {p)under consid-
eration cannot be self-contragredient. Let X be
the transpose matrix of X, and suppose. that there
exists a nonsingular matrix S such that

for arbitrary real or complex number t. Then,
Eq. (2.2) gives us X =-S XS. (2.11)

Tr Y' = T r (Is)' = Tr (YI32) = Tr (Y'I,) = 0 . (2.4) Then, we have

We can compute TrF', for example, from Table I
to find that y must satisfy

y = o./2m .
Here, we have defined n by

a

(2.5)

(2.6)

Then the rest of Eq. (2.4) are easily shown to be
identically satisfied. ' This, of course, repro-
duces the result by Georgi for n, =n, .' We note
that n, is undertermined.

In view of Eqs. (2.5) and (2.6), we rewrite the
content of Table I in the following standard nota-
tion:

(nN&, ): (1, 2, =.'),
n, E': (1, 1, 1),
n N': (1, 1,0),

(n„III):I(m, 2, ~/2m),

n, U': (m, 1, —(m+Q)/2m),

n, &': (m, 1, (m —o.')/2m),

(2.7)

TrX =0. (2.8)

where a, b, c in the parentheses (a, b, c) denote the
representations for G(color), SU(2), and U(1), re-
spectively.

Next, following the method utilized elsewhere ". "
on a similar problem, let us suppose we have the
validity of the quintuple trace identity

TrX2' "= 0 (I = non-negative integer) (2.12)

for any odd-power trace, and especially the valid-
ity of Eq. (2.8). If the representation is irreduc-
ible, then S must obey furthermore a condition

S =S 01 S =-S
in view of Schur's lemma. Any irreducible repre-
sentation satisfying these conditions is called real
(or orthogonal) or pseduoreal (or symplectic), de-
pending on the two signs in S =+S. Whether a
given irreducible representation is real, pseudo-
real, or neither (the case which is often called
complex) is known and listed by various authors. "
Especially, all irreducible representations of any
simple Lie groups except SU(N) (N» 3), E„and
SO(4N+2) (N» 1) are known to be self-coritragre-
dient. Since any representation of a simple Lie
algebra is fully reducible by the Weyl theorem,
this implies that any representation of these alge-
bras is also self-contragredient, leading to the
validity of Eq. (2.12) and hence of Eq. (2.8).
Therefore, we conclude that the possible group ~
is one of SU(N) (N» 3), E6, and SO(4N+2) (N» 1)
and that we must use a non-self-contragredient
representation(s) for our multiplet(s). Since the
SO(6) group is locally isomorphic to SU(4), we
consider hereafter only cases of SO(4N+2) (N» 2)
for orthogonal groups.

Actually, in this discussion, we only need the
validity of Eq. (2.8), but not the stronger Eq. (2.12).
Then we can eliminate all orthogonal groups



UNIQUENESS OF SU(5} AND SO(10) GRAND UNIFIED. . . 806&

SO(4N+ 2) with N & 3, leading only to SO(10) as
follows. We recall the fact that the validity of
TrX'=0 is intimately connected with the absence
of the third-order Casimir invariant I,(p). ~'
Since the SO(4N+ 2) group has only one fundament-
al odd-order Casimir invariant of order 2N+1,""
we conclude that only SO(10) among SO(4N+2)
(N~ 2) can have a fifth-order Casimir invariant.
This implies the validity of Trx'=0 for all SO(4N
+2) except SO(10) (Ref. 21) as has already been
noted in Ref. 15. For more details, see Appendix
B. Physically, the use of SO(4N+2) (¹3) would
include particles with opposite chirality which are
not present in Table I. This is the only way to
satisfy TrX'=0. These particles, if we include
them, have to be assigned large masses.

Summarizing, we have found that only &„SO(10),
and SU(N) (¹3)are acceptable as candidates for
grand unification. Furthermore, the representa-
tion to be used must be non-self-contragredient.

We may remark that in deriving the conclusion
above, we did not really utilize the part of the as-
sumption (2) in the previous section that I, and Y

are elements of a Cartan subalgebra of the Lie
algebra of t". When we assume this, we can say
more on the representation to be used. We note
from Table I that the third component I, of the
weak i spin can assume only three eigenvalues
2, ——,, 0 in (p). Fully reducing (p) into its irre-
ducible components, we see that each irreducible
representation must have this property. Then,
generalizing the result stated in Ref. 11, we will
prove in Appendix C that the highest meight of each
irreducible component must be of the form, either
A=A& or A=A&+A» (I-j,k-n) in terms of n fun-
damental weights ~& for the Lie algebra L of rank
n ~

We remark that the condition TrX'&0 together
with TrX'=0 is equivalent to the nonvanishing of
pentagonal fermion loop diagrams, although its
physical meaning is unknown to us.

III. UNIQUENESS OF THE SO(10) GROUP

As has been demonstrated in S.c. II, one need
consider only SO(10), E„daSnU(N) (¹3). De-
manding further that the xnultiplet must belong to
a single irreduci Me rePresentation, it can be
proven that only SO(10) is tenable under assump-
tions stated in Sec. I. This section is aimed at
proving this statement, as mell as the dimension
of the representation.

First, we dispose of the case of SU(N) (N & 3).
As we noted in Sec. II, the irreducible representa-
tion fpf must have the highest weight, either Az
or &&+A~ for soxne 1-j, k -N —1. However, for
SU(N), only the case of A = A& is possible because
of the following reason: From Table I or Eq. (2.7),

Then, I, may be identified as

I,=(B '-B, )/2 (3.2)

after a suitable reordering of indices. Applying
the action of B„" to tensor representations as in
Ref. 15, it can readily be seen that eigenvalues of
~3 would involve values larger than 2, if the rep re-
sentation is not completely antisymmetric. This
proves the desired result again.

Now, the eigenvalue of the third-order Casimir
invariant I,(A) for the SU(N) group is well known. "
For convenience, me reproduce it in Appendix A.
Especially, for the fundamentaI (i.e., antisymme-
tric) representation A =A~, we find

/

I,(A ) = (N+ ])(N+ 2)j (N-j ) (N —2j )/4N

(1 ~j -N —1). (3.3)

Since the anomaly coefficient is proportional to
I,(A), the absence of the triangle anomaly requires
I3(A) = 0 so that it is necessary to have j =N/2 for
N being an even integer. However, A = A~ for such
j corresponds to the fact that the representation is
self-contragredient, since the j-th simple root &&

is invariant under the left-right syxnmetric inter-
change of the Dynkin diagram for SU(N). Thus,
SU(N) is excluded from the candidates.

our representation contains only doublets and sin-
glets with respect to the weak i-spin group SU(2).
Then, by the same reasoning given by Gell-Mann,
Bamond, and Slansky" on a similar problem, the
representation must be completely antisymmetric.

Indeed, consider the basic (i.e. , the lowest
dimensional) representation of SU(N). Decom-
posing the representation content as to its SU(2)
subgroup, it must be a direct sum of various
i-spin states. Knee any irreducible representa-
tion of SU(N) can be obtained from products of
basic representations by means of a Young tableau,
the basic representation cannot contain any i-spin
state higher than 2. Otherwise, any irreducible
representation and hence our (p) would contain
such higher i-spin states, which is in contradic-
tion to our ansatz. Similarly, the basic represen-
tation cannot contain either zero i-spin, only or i-
spin-& states only. It must contain both i-spin-0
and i-spin-& states. " Then, by the same reason-
ing, we can be assured of the fact that only com-
pletely antisymmetric states contain i-spin states
0 and i-spin-states ~, but, nothing else. This fact
can also be proved as follows: I et B„" (p. , v

=1, 2, .. . ,N) be generators of the SU(N) group, so
that they satisfy

fB„',B~]=~gB„-&„B~ (p, , v, &, P=1, 2, . . . , N),
n (3.1)

B",=0.
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Next, let us investigate the case of E,. It has
been noted elsewhere'4 that all exceptional Lie
algebras ~„E4, E„E„and E, as well as A, and

A, satisfy the quartic trace identity

TrX'=K(p) (TrX')' (s.4)

for any irreducible representation f p} and for any
generic element X of these Lie algebras. Here,
K(p) is defined by

d(A, ) =16, d(2A, ) =126, d(A, +A, ) = 144.

Now, we prove the impossibility of the last two
cases. Both SO(10) and E, do not possess funda-
mental third- and seventh-order Casimir invari-
ants. Because of this, any seventh-order Casimir
invariant must be a product of the second- and
fifth-order Casimir invariants. In this way, we
can prove the identity'&2' (see also Appendix B)

&(p.) I,( p.)
d(p )~d(p) I (p

where {p,}designates the adjoint representation,
and I2(p) and d(p) are the eigenvalues of the sec-
ond-order Casimir invariant and the dimension of
the representation f p}, respectively. As we noted
in Ref. 24, the validity of Eq. (3.4) is intimately
related to the fact that none of these Lie algebras
has a genuine fundamental fourth-order Casimir
invariant. Since X is arbitrary, we set X=Y+tI,
for an arbitrary constant t as in Eq. (2.3). Then,
Eq. (3.4) implies the validity of when we note

2 TrI3 TrYI3 1
7 Tr Y'I,' D(p)

TrX' =D(p) TrX2TrX',

where

354(p ) 12 I,(p,)'
4[10+d(p,)jd(p) 5 I (p)

Setting X=I,+tY, this leads to

Tr Y TrY 10TrY TrY I3 +TrI3
Tr Y' 21TrY'I

(3.8)

(s.8')

(3.9)

TrI34 3TrI3 Y TrY
(TrI ')' (TrI ')(Tr Y ) (TrY')' (3.6)

Tr YI,"= Tr Y'I,'~" = 0 (I, k: non-negative integers).

We evaluate
when we note

Tr (I~Y ) = Tr(I~ Y) = Tr (I~Y) = 0

for the representation (p}. From Table I or Eqs.
(2.7), we calculate traces in Eq. (3.6) to find

3n
m+ o. (m+ o.) (m+2o. )

m + 9&m'+ 6o"m '+ 2
m(m+ o.)'(m+2')'

The first two equations demand

m=~,
which requires the zero electric charge for the D

quark. This is contrary to our assumption.
Hence, E, is also ruled out. We have finally found
that SO(10) is the only surviving candidate.

The remaining task is to determine which repre-
sentation of SO(10) should be realizable as the
multiplet (p}. As we shall see in Appendix C, the
highest weight A of any realizable irreducible rep-
resentation must be one of the following types,

TrI, ' = ~ n, (m + o.'),

Tr Y = n (m+ o.')(m+ 2o.'),1
2m

8 m'

Tr Y'=— ~'(m' —&')(8m'+ so.'),

TrYI =— (c' —m )
1 &+q

16 m'

Tr Y'I '=— ' (o.' —m')(o. '+m')1 Apl

64 m4

64 m'

Then, the first two equations in (3.9) give the same
equation:

(m' —o.') (3n —m) (o. —3m) = 0 .
Since m'+ &', we must have either

A4 A5 2Ag 2A5 Ay + A4 Ay + A5 ~

However, pairs of irreducible representations
(A~, A,), (2A~, 2A, ), and (A, +A„A, +A, ) are com-
plex conjugates of each other, because of the cor-
responding Dynkin-diagrammatic symmetry for
exchange of two simple roots &~ and &5. There-
fore, we discuss, for a while, only A„2A„and
A, + A, . The dimensions of these representations
are given by

(I) m =so.

or

(11) ~=3m.

, . = —,'n (m+c.) =
—,", mn, for (I),

~6mn, for (II) .

Inserting this into Eq. (3.9), we find

(3.10)

(s.ll)

(3.12)
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Now the dimension of the representation is given
by

13mn, +no for (II) .
Since the value of D(p) is determined by Eq. (3.8)'
from properties of the representation $ p} alone,
we can test whether Eqs. (3.12) and (3.13) are con-
sistent with integer character of m, no, and n, .
The answer is negative for A= 2A, and A= A, + A, .
However, for A = A, (and hence also for A= A,),
we find the following three sets of solutions:

I(a): m= 3, o!= 1, n, =no=n, = 1,
1(b}: m=1, o. =-'. , n, =n, =1, n, =3,
II: m= 1, &= 3, n, =no= 3, n.=1.

As we noted in Sec. I, the solutions I(a) and I(b)
give the standard electric charge assignment of
Q= as and —3 for U, and D~, respectively. Also,
only the case I(a) corresponds to nontrivial color
realization for the color group. Therefore, only
the solution I(a) is physically viable. Moreover,
if we insist that the color representation for each
quark is irreducible, then only SU(2) and SU(3) are
admissible as the color group, since only these
groups can have an irreducible representation
with its dimension m = 3. However, we see that
there exist no decomposition of SO(10) into SU(2)
SU(2) IS U(I) which has only SU(2) color triplets
and singlets. " Another way to see the incompat-
ibility of SU(2) as the color group is to use Eq.
(3.8) for X= Xo+ ty, where Xo E G (color) = SU(2).
Therefore, the color group must be SU(3) and
quarks must belong to its three-dimensional basic
representation. Of course, this assignment is the
standard one. [The use of a reducible representa-
tion, 2 @1, for the SU(2} color group leads to no
inconsistency, however. ]

Alternatively, if we use the information on the
quark-line rule, ' "then it is easy to show that the
viable color group is only SU(3}by examining sub-
groups of SO(10). Then, using the decomposition

Tr&"X= Tr& 'X= 0 (4.2)

w~ere Tr'" designates the trace over the repre-
sentation space (p,}.

Next, let X„(p= 1, 2, . . . ,p) be a basis of the
simple Lie algebra L in an irreducible represen-
tation (X}. Then, it is well known (e.g., see Ref.
12) that we have

TrX„X„= 1,(~)g„„,
d(x)
d po

where g„„is the Killing form. Since any element
X can be expressed as

X= ~X„
p, =j.

(4.3)

for some real or complex numbers $", we find

TrX'= f, (A.) g g „PP.d(x)
po g @=1

(4.4)

of SO(10) into SU(3) 8 SU(2) ISU(l), the impossi-
bility of representations, A, + A, or 2A„are man-
ifested again by the appearance of SU(2) triplets,
which are not in our multiplet structure.

IV. UNIQUENESS OF SU(5)

%e will now consider the case where our multi-
plet forms a direct sum of two irreducible rep-
resentations f pJ and (p,j, i.e.,

(4.1)

Following Georgi, ' we discuss only cases where
given leptons or quarks with the same ~ and the
same i spin mill not split. into two or more dif-
ferent representations, except possibly Nic. Then
we have the six possibilities shown in Table II.
However, as we shall see shortly, all cases ex-
cept for case 1 in Table II will be ruled out.

As we emphasized in Sec. I, we do not assume
the absence of the triangle anomaly in this section.
Actually, it will emerge as a consequence of other
postulates.

Since (p,}and (pg are irreducible representa-
tions of I, we must have

TABLE II. Possible two-multiplet structures.

3.
4

6.

ni (NL. Ei» n'p"NL. n Di

nl (NL, EI) ~np NL ~nazi,

n& i, np Ni, na(UL~DL)(1) C

L„np LYL na~i~naDL

n, Ei, np:v~~, n, DL

C (1)xrC CngEL, np AL, naUL

n)EL. np Ni, na(UL. DL), n, UL
C (2) C C

nlEL, np NL&na UL~DL)~naDL

n&(NL, EL) np NL naUL naDL

(NL, EL),np Ni, na(UL, DL)

n) (NL, Ei), np Ni, na(UL, DL), naUL

n~(NL, EL),np Ni, na(UL, DL) aD
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If X is chosen to be Hermitian, then TrX2 can
never vanish. Since Eq. (4.4) holds for any ir-
reducible representation, we especially have

respectively. Here, we discarded an alternative
solution, m = n andy = —2, since then Q(U) = 0.

Next, we calculate

Tr"'X' d( p, )I,( p~)
Tr X d( p, )I,( p, )

(4.6)
Tr"'1"= 2n (--,)'+ mn (-, -y)'l q

= —5n, /36 ~ 0, (4.io)
Letting X= I, + tY for an arbitrary parameter t,
this leads to

Tr&'&y' Tr"'I ' d( p,)I,( p, )
Tr"'y' Tr"'I ' d(p, )I,(p, }

' (4.6)

After this preparation, let us first prove the
impossibility of cases 2-6 in Table II. For cases

4, 5, and 6 we evidently have Tr"'(I,} = 0, but
Tr'"(I,)2w 0. Therefore, Eq. (4.6) requires
Tr'"Y'= 0 which is easily seen to be impossible.
For case 2, Eq. (4.2) with X= Y' gives

y = —(m+ 2n)/2m

if we use the assignment of Y as in Table I. Then,
Eq. (4.6) is rewritten as

where we have used Eqs. (4.8). The fact Tr"'1'
40 demands that the grand-unification group G
must be now one of SU(N) (N ~ 3), since other-
wise we would have. Tr"'Y'= 0.

As we shall see in Appendix A, we must have

Tr"'X' d( p, )I,( p, )
Tr"'X' d( p, )I,( p, )

(4.11)

for SU(N) (N~ 3), where I,( p) is the third-order
Casimir invariant. Setting X= I, + tY again, we
have

Tr't ~1' Tr& 1'I d(p )I (p )
Tr"'F' Tr"'1'I, ' d(p, }I,( p, )

'

By calculating traces, this is rewritten as
3m2+ 10mn+ Gn' m d(p2)I, (p,)

n(m+ 2n) n d( p, )I,( p, ) ' d( p, )I,( p, ) + d( p, )I,( p, ) = 0, (4.i2)

y = (m —2n)/2m

so that Eq. (4.6) becomes

3(m' —2mn+ 2n') m d(p~)I2(p, }
n(m+ 2n) n d(p, )I,(p, )

'

This is possible only if we have

m= 3G, y= —,

as well as

d( p, )I,( p, ) = 3d( p, )I,( pg) .

(4 7)

(4.8}

(4.9)

We note that the validity of Eqs. (4.8) implies
1fractional charges —,

' and —3 fo» and D quarks,

which leads to a contradictory equation

(m ~3n)(m+ n)= 0.
For case 3, Tr"'Y= 0 gives

y = —n/2m.

Then, from an analogous consideration of Eq.
(4.6), we find

(m' —n')(m+ n)= 0,
so that we conclude m = n and y = —2. But the
electric charge of the U quark would then be

q(v, )=I.+ 1'=-. + (--.)= o,
which contradicts our ansatz 5 in Sec. I. In this
way, we have ruled out all cases 2-6, except
case 1.'

Therefore, we consider case 1 in Table II. The
condition Tr"'Y= 0 now requires

which is equivalent to Tr X'= 0 for any X in L in
our reducible representations, f p}=(p,}( pQ.
This relation is precisely the condition for can-
cellation of the triangle anomaly between two ir-
reducible representations ( p,}and ( pQ. Note
that the absence of the triangle anomaly is a con-
sequence but not a requirement. In this connec-
tion, it may be instructive to inquire what would
have happened if we allowed integral quark
charges, corresponding to case 3 as well as the
discarded solution m = n of case 1. In that case,
a similar calculation would have given an equa-
tion

d(A, )I,(A, ) = 3d(A, )I,(A,),

d(A„)I (A )+ d(A, )I,(A, ) = 0.

(4.i3)

(4.14)

The dimensions of representations are given by

d(p )I,(p, ) —d(p, )I.(p, )= o,
which leads to the presence of anomaly. Hence,
we see that the absence of the triangle anomaly is
intimately related to the question of quark charges.

Now, by the same reasoning as was given in the
previous section, both irreducible representations
(p,}and f p,}must be completely antisymmetric
representations so as to ensure the fact that they
contain only isosinglets and isodoublets. %e la-
bel their highest weights by A& and A~ (1 & j, k & N
- 1). Here A„A„.. . , A„, are the fundamental
weight system of the Lie algebras„, in the Car-
tan notation. Then, we rewrite Eqs. (4.9) and
(4.12) as
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d(A = San +&&"= 5n +n"'j q 0 g 0

d(A ) = 10nn + n,'2' = 10n, + n,' '
q o l (4.is)

I,(A, ) =
2N i (N i), -

( )
(N+ 1)(N+ 2) .~ .

)( 2.)4N

(4.16)

These relations are invariant under the inter-
change j -N- 3 and k-N- k, which corresponds
to its complex conjugate representation. Hence,
we assume hereafter j ~ k without loss of general-
ity. Now, Eqs. (4.13) and (4.14) imply

where we have used Eqs. (4.8) and n, = an, [see Eq.
(2.6)]. These are essentially all the constraints.

For the fundamental representation 4 = A& we
know

(4.13)]. They are

(I) N=5, 9=1, k=3, d(A, )=5, d(A, )=10,
(II) N= 16, I = 5, k= 9, d(A, ) = 4368, (4 18)

d(AQ) = 11440.
Of course, their complex conjugate representations
also furnish other solutions. The first solution
corresponds to the standard SU(5) model' with the
unique possibility of

n, = n, = 1, n',"= n',"= 0. (4.19)

The possibility of SU(2) as the color group is ex-
cluded, because the decomposition of (5] into
SU(2) 8 SU(2) U(1) (Ref. 26) yields no SU(2) color
triplet. Thus, the color group must be identified
with SU(3).

For solution II, we cannot have n'0" = 0. To de-
termine n',", we proceed as follows. %e express
the third component of the weak i spin as in Eq.
(3.2),

2N= j+ 3k. (4.i7) I,= (a, ' a,')/2,
First, let us investigate consequences of the .

absence of the triangle anomaly without imposing
the constraint Eq. (4.17). We have found a class
of solutions for Eq. (4.14) (see Appendix A), as-
suming j+kN, since the case j+k=N implies
that two irreducible representations, (A&} and

(A~}, are contragredient to each other We h.ave
checked up to N= 500 that the solutions we have
found are the only solutions for Eq. (4.14) (see
Appendix A and Table III). Out of these, only two
satisfy the relation Eq. (4.17) [or equivalently Eq.

and note that a basis of the irreducible represen-
tation (p,]= fA&]. is spanned by the completely an-
tisymmetric tensor p„~ . . .„(1& p, ~&N), onIIzP2
which B'„operates as

I V

(4.20)

Here, the symbol v in Eq. (4.20) indicates to de-
lete p~ and replace it by v. By Eq. (4.20), we can
compute the number of i spin doublets as

TABLE IlI. Anomaly-free combinations for a reducible
representation, {p}=(A&}${Ag (j+k & N). by counting the number of states with the eigen-

value I,= &.
j.

Since this must be equal to n„we find

5
9

10
16
17
25
26
36
37
49.
50
64
65
81
82

100

1
2
3
5
6
9

10
14
15
20
21
27
28
35
36
44

3
5
6
9

10
14
15
20
21
27
28
35
36
44
45
54

5
36

120
4368

1.2 x10
2.0 x 106

-5.3 x 10
-3.8 x 10
9.4 x 109

-2.8 x 10'3
-6.7 x10"
-8.5 x 10'7

0 x 1018
-1.0 x10 3

2.3 x 10
4.9 x 1P2

10
126
210

11440
-1.9 x 10
4.5 x 106

-7.7 x 10
-7.3 x 10
-1.3 x 10'~
-5.0 x 10
-8.9 x 10
-1.4 x 1P"
-2.5 x 10"
-1.6 x10 3

2.9 x 1023
p28

1 [=n, = an, .(N —2l

(j —1j (4.21)

Similarly, counting the number of i spin doublets
in the representation (pg, we must have

i= mn, = Snab.
tN-2i
~k-1) (4.22)

For solution I, these, of course, give m = 3, n
= 1, and n, = n, = 1. For solution II with N = 16,
we must have

~, = 1001.

But then, d(p, ) ~ sn, = 5005, which contradicts the
dimension 4368. Therefore, we conclude that the
case II is forbidden.
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In summary, we have proved the uniqueness of
SU(5}, provided that we restrict ourselves to SU
(N) with N & 500. We conjecture that this result
will hold for arbitrary ¹

Actually, if we assume no"' = 0 from the begin-
ning, then we can prove the uniqueness of solution
I with N = 5 without any restriction on the range
of N as follows. We define a new operator F and

S~ by

l'= 2m Y'/(2m —n) = 6Y'/5, (4.23)
Z, = I~+ml'/(2m —n) = I3+ 3Y/5.

Then, the eigenvalues of these operators in the ir-
reducible representation{ p,}are given in Table
IV. We see from Table IV that all the operators
1', Z„and Z can assume only two eigenvalues if
there is no Ng in the representation {pg, i.e., if
n,"'= 0. Moreover, denoting two eigenvalues as
x and y, we normalized them as x —y = 1. As
shown in Ref. 11, any irreducible representation
satisfying this condition must be one of the fund-
amental representations. In our case, this re-
quires" further

(4.24)

for some integer l. Let X represent any one of
Y, Z„, Z and express it as a linear combination
of the Cartan subalgebra elements &y &2, p Hg
as

$"H (4.25)

Then, the explicit form of 4 regarded as a vec-
tor in the (N 1) dimension—al root s'pace must
possess the following form:

$=+ Aq for A=A, (j =1},2

(n, n

2 , A, for A=A&(2 ~ j ~N —2),n n)

TABLE IV. Eigenvalues of Y, &„and Z-.

N+C Dc

Y

4
5

1
5|
5

where A is the highest weight of the representation
{p,}and p is an integer, satisfying 1 ~p ~ N —1.
Especially, if A=A,. (2 ~ j ~N-2), then $ is ef-
fectively determined apart from a constant. This
implies that eigenvalues of X are uniquely deter-

V. FINAL COMMENT

In the previous sections, we have considered
cases where {p} consists of at most two irreduci-
ble representations. However, this is not a seri-
ous restriction for the following reason: Suppose
that {p} consists of more than two irreducible
representations. If any one of the irreducible
components, say {p,},has the multiplet structure
specified as in Table I, then we can apply our dis-
cussion to the irreducible representation {p, } to
find that the group G must be SO(10}. Moreover,
{p} must be a direct sum of 16-dimensional ir-
reducible representations, i.e., repetitive. Sup-
pose that any irreducible component of {p} does
not have the structure in Table I. Then, we may
have at least two irreducible components {p,}and

{pt which have the structure specified by Sec. VI.
We restrict our discussion for these two multi-
plets. Thus, under the restriction of SU(N)(¹500), we conclude again that G may be now

SU(5) and that the representation {p} must be
repetitive, consisting of pairs, {5}+{10}.For
each case, the color group Gc must be SU(3) with
quarks in color triplet. Moreover, U and D quarks
must possess the standard electric charges, -', and
—-', , respectively. Summarizing, we have found
that G must be either SO(10}or SU(5} and families
must be repetitive.

Note that SO(10) can admit the lepton-baryon
synimetry. ' Rewriting I, and SU(2) as (I,}~ and
SU(2)~, we may introduce another SU(2) group,
which we write SU(2)~ with (Is)~. Assigning (D~,
U~) and (E~,N~) as isodoublets with respect to
SU(2)z, we see that the electric charge Q can be
written as

Q=(I,)I.+(I,) +(& -L)/2, (5.1)

where B and L are baryon and lepton numbers,

mined, apart from an overall sign, irrespective
of whether X is either Y, Z„or S . However,
this contradicts the content of Table DI. There-
fore, we conclude that A must be either A, or
A~, . Since {A„,}is complex conjugate to {A,}
we may assume that A = 4„' i.e., j= 1 without
loss of generality. For j=1, Eqs. (4.13) and(4. 1V)
are rewritten as

3(a —1)!(N —u —1)!=(N-2)!,
2N. = 1+3k,

which admit only one solution,

N=5, @=3,

reproducing solution I in Eqs. (4.18). It is amusing
to note that we have TrY'c 0 for the present solu-
tion of SU(5), just as in the case of SO(10).



UNIQUKNKSS OF SU(5} AND SO(10) GRAND UNIFIED. . .

respectively. Combining this with Eq. (1.1) we
find

consequence of grand unification. These facts will
be discussed in a future publication.

r=(I,),+(a-I.)12.

Possible consequences of the relation (5.1}have
been discussed by Marshak and Mohapatra. " Note
that SO(10) contains a subgroup SU(3),8 SU(2) z,

SU(2)~ .
The assignment of quantum numbers in the SU(2}

8U(1) is crucial for our conclusion. Although the
Glashow-Weinberg-Salam SU(2) 8 U(1) group is
now experimentally well established as the elec-
troweak group, it may be of some interest to see
what will happen if we replace this group. In Ref.
11, it has been proven that the possible electro-
weak groups of rank 2 are only SU(2) 8U(1) and

SU(3), provided that quarks have the fractional
electric charges of —,

' and —-', . Theoretically, any
model based on SU(3) instead of SU(2}8U(1)pre-
dicts~ the pure axial-vector current for hadronic
neutral current, which is in contradiction with the
experimental facts available now. However, in
order to see how this difference of the electro-
weak group can influence the grand-unified group,
we assume that G contains SU,(3)8 SU(3) as its
subgroup. The simplest model of the SU(3) elec-
troweak group is one with two triplets of quarks
andanoctetofleptons: (3, 3)~ „$(3,3)z „6(1,8)z s,
where the bracket shows the SU(3) (color) 8 SU(3)
(electroweak) quantum numbers. Then assuming
(p) to be irreducible, we find that only E~, SO(26),
and Sp(26) are possible candidates. An interesting
fact is that the 26-dimensional representation of
F4 is capable of unifying all particles with

26 = (3, 3) 63 (3, +3 6 (1,8)

for the decomposition F,-SU(3) 8 SU(3). There-
fore, if nature had chosen SU(3) as the electro-
weak group, we could have had F4 as the smallest
grand-unified group.

Concluding this paper, we note that Zee' has
recently found the uniqueness of SU(5) or SO(10) by
posing a question: What is the largest simple
subgroup of SU(Nz) 8U(1}which is free from an-
omaly and free from bare masses. The choice of
N~=45 gives SU(5) and SO(10) only. Note that our
conclusion is stronger than those obtained by
Georgi' and Zee." However, our program still
may receive criticism, as Zee has acknowledged,
that it is an argument that the world is as it is be-
cause it is the way it is.

Note added in proof. We can now prove the
uniqueness of SU(5) without restriction of

¹
500.

The absence of the triangle anomaly is found un-
necessary also for the uniqueness of SO(10).
Hence, the absence of the triangle anomaly is a
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(ii) if G is SU(N) (¹3), then

T ((X.,X,)X„)=d.,„K( ), (A2)

2N
K(p) = d(p)I, (p)(~ 1)(~ 4) i . (A3)

where d 8„ is the d symbol of Gell-Mann and I,(p)
is the third-order Casimir invariant of SU(N) for
a irreducible representation (p). Note that K(p)
designates the triangle-anomaly coefficient. Since
any generic element X can be expressed as

x= g ]"x„ (A4)

for some real or complex number g", Eq. (A1)
implies the validity of

TrX'=0
for any group other than SU(N) (¹3), while for
SU(N) (¹3) we have

2TrXS=K(p)d. ,„~ ~t ~".

Thus, for any two irreducible representations,
(p, j and (p,), we must have

Trt '~X' d(p, )I,(p,)
Tr'"X' d(p, )I,(p,)

The eigenvalue I,(p) has been calculated in Refs.
12 and 13 as follows: Let &g &2 &N y be the
fundamental weight system of the Lie algebra A~, .
Then, any highest weight A may be expressed as

N-i
A= mIA~

in terms of non-negative integers m, (1 ~j +N —1}.
They are related to the Young tableau notation f ~

(1 (j ~N) by

m&= f& —f&,l(1 (j (N 1). — (Av)

For our purpose, we use the expression of K(p)
given by Banks and Georgi, " which is rewritten
as

APPENDIX A

Let X„(p= 1,2, ... ,p} be a basis of a simple
Lie algebra. Then, we hive proved the following
facts in Ref. 12:

(i) Tr((X„X/X„)=0unless G is SU(N) (N) 3);
(A1)
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1I.(p) = 2~ b„,(m, +1)(m, +1)(m,+1)
f, gqkcl

8-1
3N

b,» m,m&m~+
2 b» m&m~

jy =1

N 1-
+ —Q j(N j)(&-2j)m-,}. (gg)2

Here b,.» is completely symmetric in three in-
dices i, j, and k with its value as

Especially, if we have

A=m(A)+m~A~ (j ~k)

then, I,(p} can be written as

2N I,(P}= 'j(N-j)-(N 2j-)(2m&+N)(m&+N)m

+ 2k(N —k)(N —2k)(2m))+N)(m„+N)m~

+ 3[j(N —2j)(N —k)m &+j (N —2k)(N- k)m~

+ Nj (N —2k)(N —j —k) jm im, . (A12}

f,.„=z(N-2j)(N-k) if f ~q-«k

while b» satisfies b»= b» and

b,„=j(N—k)(N-j —k) ifj ~k.

(A9)

(A10)

For a special case of m, = 0 and m~=1, we find

Is(A&) = —
2 (N+ 1)(N+ 2}j(N- 2j)(N -j ) ~ (A13)

1

For m&=1 and m~=1, we find

I,(A, +A,)=, (j+k -N)((N+1)[2(j'+k' jk) —(j-+k)N1 —6j (N k)j . - (A14)

Note that I( A& +A)=0 forj +k=N, which corre-
sponds to a self-contragredient representation.

It is known" that there exists a non-self-contra-
gredient irreducible representation A with I,(A) = 0.
We have found one more example. Suppose that A
= A,.+ A» then j= 3 and k = 21 with N = 32 (or its
complex conjugate j = 11 and. k = 29) leads to I,(A)
= 0. As a matter of fact, this is the only one up
to SU(300) for irreducible representations of the
type A=A, +A,(j+koN). The dimension of this
representation is extremely large (-6 x 10").

lf the representation (pj is a direct sum of two
irreducible representations (p,j and (p,j with
highest weights (A,j and (A,j, we find that either

I5=
Pgy ~ ~ ~ y fL 5 =1

(al)

I,(p)&= gPlv2 ~ ~ ~ I 5XX i ~ og
V P2 V5

Q] y
~ ~ ~ f g5 1

(a2)

where E is the unit matrix in the representation
space (pj. Consider a quantity

where gI"i»"'» are constants which are com-
pletely symmetric in any exchange of any two in-
dices. Then, the eigenvalue I,(p) is calculated as

or

j = (N+ 1 —v'N —1)/2, k = (N + 1+v'N —1)/2
(a3)

j=(N+2 —vN)/2, k=(N+2+vN)/2

always satisfies the anomaly-free condition Eq.
(4.14), provided that v'N —1 or WN is an integer.
Among these solutions, Eq. (4.17) can be satisfied
only for N=5 and N=16. We have checked that
no other anomaly-free solutions exist up to N = 500
and the results up to N= 100 are presented in
Table III, where we listed only the upper sign
cases of Eq. (A15), since the lower cases corre-
spond to complex conjugate representations.

APPENDIX B

Let x„(p= 1,2, . . . ,p) be a basis of the simple
Lie algebra and let X be its representation ma-
trix in an irreducible representation (pj. Suppose
that the Lie algebra possesses a fifth-order Cas-
imir invariant:

where the summation in the left side is overall 5 J

permutations I' of indices ILL, , p, , . . . , p, Raisirig
the indices by the raising operator g""as usual,
then we can verify, using the method of Ref. 19,
that

1
v=6,

PgP2 ~ ~ ~ ~ t P5

gP j.P 2 I Sg g o ~ ~

Py P2 V5

(a4)

Since any X is expressed as in Eq. (A4), this im-
plies the validity of

TrX'= 0, (a6)

is a Casimir invariant, i.e., it commutes with any
element x,; [J',x,]=0. Therefore, if the Lie al-
gebra possesses no fifth-order Casimir invariant,
then we must have
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Kurus"'u (88)

The constant c(p) can be computed as follows:
Multiply gui»"'» to both sides of Eq. (83) and

use Eg. (82). We find

which must hold for any simple Lie algebra ex-
cept E„SO(10), and SU(N) (¹3).

Since both SO(10) and E, possess precisely one
fifth-order Casimir invariant, K„,„,...„,must
be proportional to g„defined in Etl. (81)
and hence

Therefore, we must have

m44 pl5

in order to have I,(p) x 0.
The identity Eg. (3.8) involving TrX7 for SO(10),

can be obtained as follows: From the SO(10) ro-
tational invariance, we see that the quantity

Tr X~ix~2".X,7
P

(gu~u2 us"gu
u u ) c(p) =d(p)I5(p).

Then the analog of Eg. (85) is given by

TrX'= c(p) )ui(u2 ~ ~ ~ )usg P1P 2''' P5

(87)

(88)

p,
&

= (a» b f) (j= 1,2, ~. ..7),

must be proportional to a symmetric sum of

(IIlbl) ~ (O5b5)~ IIBfI7 bBb7 aBN II7bB(5 5 -5 5 ) ~

This proves that TrX' is proportional to I,(p).
Now, we restrict ourselves to the study of the

SO(10) group, whose Lie algebra may be defined
by J„(a,b=1, 2, ... , 10) satisfying

JIIb Jby j

Then, just as we have obtained the formula (88),
this leads to the formula (3.8) after some calcula-
tions.

APPENDIX C

Now, we identify

V, =(a„b,)
to find

g~ lg 2 V 5 lbl 2b2I13b3II4b4II5b5 &

(810)

(811)

Suppose that an element of a Cartan subalgebra
of a simple Lie algebra has the property of having

only three distinct eigenvalues in an irreducible
representation I p). Then, following the method

given in Ref. 11, we can verify the following facts.
(i) The highest weight A of (pj must have one of

the following;

where c, ..., is the completely antisymmetricII1'''b5
Levi-Civita symbol in the ten-dimensional space.
The eigenvalue of the fifth-order Casimir invariant
can be calculated as"' '

I,(p) = l, lulsl~ls (812)

apart from some normalization constant which
does not concern us here. The value l, (j=1,2,
3, 4, 5) is related to the usual symbol f& (j=1,2, 3,
4, 5) by

(a13)

In order not to have TrX'= 0, we must have l5

=f, w0, since l, &l, &l, &l, & ll5l. In terms of m„
we can express f,as.

A=A& or A&+A~.

(ii) For any weight M in the representation f pJ
and for any nonzero root e, the value of

2(M, n)
(n, 5)

is limited to values 2, 1,0, -1,-2.
Now let us restrict ourselves to the Lie algebra

D„(n & 4) which corresponds to SO(2n). Then,
since ~2 is the highest root of D„, we must have

2(A2, A)
(A„A,)

f, =m, +m, +m, + -,'(m, +m, ),
f,=m, +m, + F'(m4+m, ),
f, =m, + —,'(m4+m, ),
f4

= -', (m4+ m, ),
f,= F'(m, —m, ) .

This requires that A must be one of

For SO(10) and TrXSW 0, only the following are
allowed: &4, ~„2A4, 2+5 +1++4, and &1+&5,
as was stated in Sec. III.
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