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Gravitational/electromagnetic conversion scattering on fixed charges in the Born approximation
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In the presence of nonzero background electromagnetic and gravitational fields, perturbations in these fields are
coupled, via the Einstein-Maxwell equations. We investigate the differential cross section for the conversion
scattering of electromagnetic to gravitational radiation (and vice versa) on fixed charged masses. Our procedure uses
a Born approximation at the level of accuracy in which the horizon structure of putative black holes is lost; our fixed
charges therefore represent charged black holes at this order. We find conversion differential cross sections of the
order of Ge' (G is Newton's gravitational constant, e is the value of the charge), with angular polarization factors,
and with a forward-divergent behavior ~sin {8/2). The divergence is shown to arise not only in the Born
approximation, but to be implicit in the known behavior of the large-angular-momentum phase shifts for the partial-
wave spherical modes.

I. INTRODUCTION

It was pointed out by Choquet-Bruhat, ' Gerla, ch, '
and Sibgatullin' that in electrovac solutions (so-
lutions to the coupled Maxwell-Einsten equations),
gravitational and electromagnetic perturbations
are necessarily coupled. This idea was sub-
sequently developed by Moncrief' in the investiga-
tion of perturbations of Reissner-Nordstrom black
holes. Chitre, Price, and Sandberg' developed a
corresponding Newman-Penrose' formalism and
investigated perturbations due to sources in orbit
around charged black holes.

An important aspect to consider in such situa-
tions is the existence of a conversion cross sec-
tion. That is, suppose an electromagnetic plane
wave is incident on a charged mass. How much
of that flux is converted to outgoing gravitational
radiation~ The inverse process can also be cal-
culated. Olson and Unruh' used Moncrief's de-
composition into modes labeled by angular mo-
mentum /, in the JWKB approximation to calculate
conversion rates for high-frequency (&u» l/m ) waves
scattering in the Beissner-Nordstrom geometry
(mass m, charge e). Matzner' numerically ob-
tained the v-o, 3=2 conversion cross section,
and Fabbri' obtained the conversion phase shifts
(b5), for v-0. Recently, Gunter'0 has done a
numerical study of the conversion process for a
range of co, l, and e/m.

In this paper we consider the Reissner-Nord-
strom conversion-scattering problem from a dif-
ferent viewpoint. Bather than investigating the
partial-wave formulation, as has been done in
previous discussions, we consider the full,
summed conversion differential cross section, but

only at the lowest nonvanishing order in the grav-
itational constant. This approach, applied here
to the classical electromagnetic and gravitational
wave fields, is the exact computational and con-
ceptual analog of the Born approximation" in the
quantum-mechanical scattering problem.

In addition to the conversion scattering, there
is also ordinary, nonconversion scattering, in
which, for instance, an incident electromagnetic
wave is scattered (as an electromagnetic wave) by
the black hole. Such scattering has been dis-
cussed for various wave fields on uncharged black
holes in an angular decomposition by Sanchez, "
Matzner, " Chrzanowski et a/. ,

" Matzner and
Ryan, " Handler and Matzner, " and in the Reiss-
ner-Nordstrom ease by Gunter. '0 Furthermore,
Peters, " Westervelt, "and Sanchez" have cal-
culated Born-approximation nonconversion scat-
tering from "Schwarzschild black holes. "

The remarkably wide range of applicability of
the Born approximation in such problems as spin-
less nonrelativistic electron scattering, where it
reproduces the Rutherford and exact quantum
mechanical Coulomb cross sections, has been the
subject -of much discussion. " In general situa-
tions, however, it will not give the exact cross
section, although the resulting calculation will
still reflect some of the structure of the exact re-
sult.

In fact, we shall see that a consistent Born ap-
proximation to scattering from a black hole loses
the horizon structure of the black hole, so it is
more accurate to refer to the scattering center as
a "'fixed mass" m. Similarly, rather than referring
to Born-approximation conversion on a "charged
black hole" we use the -term "fixed charge" g.
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II. CONVERSION SCATTERING:
ELECTROMAGNETIC TO GRAVITATIONAL

I .„.'= -&6~G~V .„ (2.1)

where g„8 = g„&+./g „8 is the perturbed metric ('g„&
is the background metric, all indices are raised
and lowered using this metric) and

In order to display some of the features of the
approximation, consider the equation for a metric
perturbation propagating on a Reissner-Nordstrom
background':

structure completely disappears from the problem.
The calculation then proceeds in a straightfor-

ward manner. The background electric fi.eld is
(using rectangular coordinates in Minkowski
space)

'F,~
= ex'/r', r'=x' +y' +e'. (2.4)

We choose an incident plane electromagnetic
wave of specific polarization moving in the posi-
tive z direction [8,= (x, y, g)]:

@+~eiu(t -z)
(2.5)

1 0 ahg-hq —2g Bing, (2.2)

&h ~=-16@'GOT ~, (2.3)

where o=q'~8 8~ and 5T ~ is the linearized elec-
tromagnetic stress-energy tensor, and the horizon

A slash denotes a covariant derivative in the back-
ground, and 6T ~ is typically nonzero because
there is a concomitant electromagnetic perturba-
tion [Eq. (3.1) below]. In Eq. (2.1) the gauge
h"

~z
= 0, which is consistent because of the con-

servation of the stress tensor, has been assumed.
In the spirit of the Born approximation, we con-

sider the lowest nonvanishing interaction in cal-
culating conversion scattering. If we momentari-
ly ignore the source in Eq. (2.1), we see that the
left-hand side refers only to the metric perturba-
tion h ~, and is therefore a description of metric
waves moving in a fixed Reissner-Nordstrom
background. The Born approximation for non-
conversion scattering of gravitational waves
would be obtained by linearizing this background
to q„„O+(G)(m/ re+'/r') +~ ~ (keeping first-order
terms in G). This is the technique used by peters"
and Westervelt" to calculate the gravitational-
wave-scattering cross -section of an uncharged
mass

We, however, are interested in conversion
scattering, which is due only to the perturbed
source in Eq. (2.1). This source contains terms
such as 'E 8'E~~, where 'F

&
is the electromag-

netic field tensor perturbation while I'„, is the
(Coulomb) background electric field of the Reiss-
ner-Nordstrom solution. Conversion scattering
occurs when an electromagnetic wave is incident
upon the fixed charge. The metric perturbation
which is generated is proportional to Ge. For
this reason, the deviation of the background metric
from flatness can be ignored in the subsequent
propagation of the gravitational wave generated.
(These metric deviations introduce corrections of
next order in G to a term already of first order. )
Hence, in the Born approximation one solves the
flat-space propagation of a tensor field 0 ~ with
source 5T,&,

(there is also a complementary magnetic field).
The energy flux for this wave is

TE M e~ TEM~~
Oj j 00

E2
Zo

Bm
(2 6)

The conversion cross section is given as the en-
ergy flux of the outgoing gravitational waves per
steradian, divided by the energy flux of the in-
cident electromagnetic wave [Eq. (2.5)].

Equation (2.3) gives

0h„= —1.6mGOTzz

4GEe&& ef cu(t-z) (2 7)

Furthermore, it is straightforward to show that

6T~„=5T„,
~T-= —&Tzz

sr„,= —(yix)vr„,
~Z „,= —(e/~) ~r.„
5T =0.

(2.3)

%'e need not evaluate 5TO because only spatial
components h„are needed to evaluate the trans-
verse-traceless outgoing gravitational wave. The
Green's function G for Eq. (2.7) satisfies

(V'+ (o') G(r, r') = -4 v 5(r —r '), (2.9)

from which we get

e

leo�(

t-t') eE
=—G — (x'/r")e '~"'~'d'r' (2.10)

y

where

&&= &(& —rout) yi

with ra~&the direction to the observation point, and
where we impose outgoing boundary conditions on
the scattered field. The =—sign in Eq. (2.10) means
that we have only taken the lowest-order term of
the Green's function. Equation (2.10) is easily
evaluated by aligning the pole with the direction of
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4co; one introduces new coordinates x",y", z" so
aligned and finds that

x' = cosQ sin8z" + ~ ~ ~,
y' = sing sin&z" + ~ ~,
z'= cosgz" + ~ ~ ~

(2.11)

where the ellipses involve quantities independent
of z". By symmetry about ~~, only terms in x'
proportional to z" contribute to the integral (2.10).
In Eq. (2.11), (8, &t») are the angles coordinatizing
6+ in the original frame; they are related by

(2.12)
6=-', (8+v)

to the angles 8, y giving the outgoing direction r.
We obtain

An interesting alternative evaluation of the inte-
grals is given in the Appendix.

For the outgoing flux of gravitational radiation
we use Isaacson's" prescription:

Towe Ti lvr~
oi i 00 ogt

(hr»r, hrr, &summed on i,j, (2.14)

where h~~ is the transverse-traceless part of h, ,,
and the average is over several cycles. In our
case one has

Because gauge transformations

i co(t-r) .

mr

8—cosy cot—
2

x —siny cot—
2

8—slny cot—
2

8
cosy cot-

2
8

cosy cot-

(2.13)

(2.15)

can never introduce nor modify transverse-trace—
less terms, a simple algebraic projection oper-
ator based on the direction r,„, allows extraction
of the transverse-traceless part. Furthermore,
because of the definition h, , in terms of h, , [Eq.
(2.2)], we see h, , = I», , when both are traceless.
The symmetric projector is

1 —sin'8 cos'y

—sin'8 siny cosy 1 —sin'8 sin'y —sin8 cos8 siny

sin'8—sin8 cos8 cosy —sin8 cos8 siny

—sin'8 siny cosy —sin8 cos8 cosy

(2.16)

We calculate the quantity

(2.17)
The expression calculated from Eq. (2.18) ap-

pears much more complicated than (2.20) at first
sight. Only repeated use of trigonometric identi-
ties gives the final expression.

/» r/»rr = tr(f» I» ) = tr(PygPPI»P) [tr(PhP)]

= tr(PI PK) ——,
' [tr(PK)]'

(2.18)

(2.19)

(using the cyclic property of the trace and the
idempotent property of projectors). The cross
section is defined as

d0' r 2TGW

EMd& EM to GW Too

III. CONVERSION SCATTERING:
GRAVITATIONAL TO ELECTROMAGNETIC

The production of outgoing electromagnetic radi-
ation when gravitational radiation is incident on

a fixed charge is governed by the Maxwell equa-
tion'o

Som g A„. .~-R~ A =0, (3 1)

Bom
(2.20)

Multiplying $, , as given by Eq. (2.13) by the pro-
jection matrix (P„)from Eq. (2.16) an. d calcula-
ting -', &o' ~hr»rhr»r

~
by means of (2.18), we obtain

[with TzooM given by Eq. (2.6)]
d0' =Ge' . „,

)
(1 —sin'icos'y)., cos'(—,'8)

4% EM to Gw sin'j, &8

where R, is the Ricci tensor, A is the total
electromagnetic potential, and the semicolon
means covariant differentiation using the full
metric. In Eq. (3.1) we assume the Lorentz guage
A~. „=O. %'e will see below that it is consistent
to make this choice for the perturbed potential.

The approach here is, as in the preceding sec-
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tion, to take only the lowest-order terms that
enter conversion scattering and to ignore all
others. Expand

+q"r/"'(h„, +h„,-h„,}'A„ (3.6)

(3.2)

0=-h 'A„, +g'~['A„,
p

—( Fq, 'A~)

-'r„", 'A. .-'r.",OA„„]
-'ft"A +'g" 'R 'A -h"' oft 'A' (3 3)

The quantity 'p„'A is a nonconversion-scattering
term, and will be dropped. On the other hand, the
last term, he 'g„~ 'A, is a conversion-scattering
term, but is of higher order in t" because 'g„~
=O(Ge'), h„q=O(G), 'A =O(e) so this term is a
factor Ge smaller than other terms in (3.3) and
we will drop it. The remaining Ricci tensor term
'g~ '&~8 'A„will be dropped as well. In flat space
the vacuum equation for a metric perturbation is
'R„E =0. Here there is a source, 'ft- O(Ge'A).
Hence this term also has an explicit additional
power of Geand will be dropped.

Notice also that the combination

(3.4)

A„=A„+A„,
where 'A„ is the background potential and 'A„ the
perturbation. The metric and covariant derivatives
in (3.1) must also be expanded in terms of the
metric perturbation h ~. We will need to examine
each term in the expansion of (3.1) to check the
order at which it affects the conversion scattering.
This is easily carried out, even though the per-
turbed Eq. (3.1) does not fall as neatly into con-
version and nonconversion parts as the equation
for metric perturbations did. The exercise af-
fords an opportunity to apply physical reasoning
to the estimates.

The 0th-order version of (3.1) is of course
satisfied. Furthermore, we drop terms of the
form 'F

8 (background connection coefficients)
multiplied by h„, or by 'A . The' reason is that
'1"

Ez -Gm/r', and h~, and ~A, are already small
. quantities. (Some such terms contribute to non-

conversion scattering. ) On the other hand, prod-
ucts such as 'I „,'A& do survive, since they are of
only first order. Making simplifications of this
type, we arrive at an intermediate reduced form
for the perturbed Maxwell equations:

The background has only a static electric field
so we can take it in a Lorentz gauge. where in
addition only 'A, is nonzero. Then we derive from
(3.5) and (3..6) the equations

—h(OA OA ) t Qt e)-
O,xx 0 yye )

'A =i(dhOA.x O, x

y o,ye

0 A, =O.

(3.7)

It is straightforward to show that the terms on the
right-hand side of (3.7) are the components of a
conser ved current; hence the assumed Lorentz
gauge is consistent for theperturbation 'A„. As
in Sec. II, the background electric field is taken
as'A, = —e/r; then E, =ex'/r3

The solution of Eqs. (3.7)—again only the spatial
components A,. are needed —is obtained by an iden-
tical procedure to the one used to solve Eq. (2.7).

We find, with outgoing boundary conditions,
he 8ei ~(t-r) cos 0 co" 2r 2 7

iso(t r)A =—e'" ")sinycot-,
2y 2'

CO

8 (3.9)

where

'A. =pi

he, „(,g)2r'

8cosy cot-(1 —sin'8 cos2 y)2

—»ny cot-(1+ sin'8 cos2y)8
2

8—sin8 cos8 cot—cos2y
2

A, =O.

The cross section is obtained by evaluating the
outgoing (transverse) energy flux in the transverse
wa'ves:

TEMe. = T Mr = (E2+a—2)rOi i 00

which appears in (3.3), can be eliminated if a
transverse-traceless gauge is chosen for the
metric perturbation. Thus, by choosing as an in-
c ident plane gravitational wave

and, therefore,
(F 10)

h = —h =he'"""
XX (3.5)

(all other components are zero) —which is trans-
verse and traceless —(3.4) vanishes.

The wave equation for 'A„ is then given by

Q)2 h2e2
cos'(-'8)

32mr' sin'(&8}

x (] —sin'8 cos'2y) .
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The flux due to the incident gravitational plane
wa.ve of Eq. (3.5) is

To"e =.r .~z
Oi i 00

2

327t G
(3.12)

Hence, the Born-approximation cross section is

IV. DISCUSSION: COMPARISON WITH OTHER
CALCULATIONS

These cross sections were derived for plane
, incident polarization; q is an angle from the
direction of polarization. Cross sections for
circular incident radiation are obtained by simply
averaging over q.

The appearance of the coefficient Ge' is con-
sistent with oUr notation which has the electrostatic
potential A, =e/r (as in electrostaticcgs units,
for instance). Then, the potential energy is given
by e'/r. Hence e' has dimensions energy xdis-
tance.

Ignoring factors of the speed of light, then,
since G xenergy- length, Ge'- (length)'. For the
charge on an electron, Ge'- 10~' cm'.

Perhaps the most surprising feature of the re-
sults (2.20) and (3.13) is the appearance of the
forward-divergent term [sin'(-,'8)] ' in the cross
section. {This differs from the Coulomb forward
divergence [sin4(-, 8)] ' because the integrand in

Eq. (2.10) is not the same as the integrand in the
Coulomb problem. ) This forward divergence is
one feature we definitely anticipate in any exact
treatment (summed over /) of the conversion cross

r 2TEM/TGw
00

GW to EM
Born

= Ge', , (1 —sin,'8cos'2y) .,cos'(—,'8)
sin' 28)

(3.13)

The similarity between the two cross sections
(3.13) and (2.20} is due to the fact that the electro-
magnetic and gravitational potentials are almost
the same within the approximation considered.
The differences in the cross sections are due to
the different tensorial nature (spin s) of the fields
involved. They show up in the azimuthal depen-
dence of the cross section, which is -cos'(sy),
where s is the spin of the incident wave.

It is not obvious that this similarity would exist
in the full relativistic problem because of the
asymmetry introduced by ingoing-wave boundary
conditions at the horizon. Perhaps a reciprocity
theorem of the type given by Sanchez" could still
be established for the full conversion-scattering
problem.

4wG'/' 1f(8) —= . Q(2/ 1)' '— S2(8) (4 1)

where

,S',(8)e"' = 1",(8, y) (4.2)

is a spin-weighted spherical harmonic. We now

use the relation" (cf. Matzner and Ryan" for a
similar calculation)

~

8 + . —cot8,S2= [(/ —1)(/+2)]~' S',
sin8

(4.3)

to write the large-l relation

e+ . —coty =- . G" g2g

(4.4)

Hence, if we concentrate on large-l terms which
abominate the singular behavior of the cross sec-
tion, we find that the conversion amplitude solves
Eq. (4.4) whose source is proportional to"

section.
The small-angle scattering arises from distant

encounters, and it is for these that one expects
the assumptions of the Born method (planeness of
the incident wave, linearization of the background
metric) will be most accurate. There is cor-
roborating evidence for this result from the behav-
ior of the phase shifts as determined by Fabbri. '
In Moncrief's4 angular decomposition, there are
two independently propagating modes, each of
which is a (different) linear combination of the
gravitational and electromagnetic waves. As
noted by Matzner' and Fabbri, ' it is the differ
ence (45), between the phase shifts for these two
modes which determines the conversion scatter-
ing. This means that the logarithmic phase shift
typical of a long-range (e.g. , Coulomb} scattering
force, and typical of waves in the gravitational
field of a central mass, cancel out in the calcula-
tion of the conversion scattering, a fact which
lends credence to our calculation [cf. Eq. (2.5)]
which ignores the logarithmic terms entirely.

More interesting is the phase-shift behavior
discovered by Fabbri' for / -~, //ur —~. He found

(&5),-2eroG'~'// Altho. ugh this quantity decreases
with l', it does so sufficiently slowly that the cross
section diverges as - sin '( —,'8) as we now show.
[Matzner' noted the falloff with / of (b, 5)„but in-
correctly concluded that large-l terms could be
ignored. ] .

Matzner's' results can be used to show that
Fabbri's (A5}, produces a conversion amplitude
(gravitational radiation - electromagnetic radia-
tion, here with circular incident polarization for
s implic ity):
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5(cos8 —1). The solution of Eq. (4.4) is

k cos'(—,'8)
sin(-,'8) (4.5)

der ~

,cos'(-,'8)682
Gw to EM sin ( & 8)
large l 2

(4.6)

The constant must be determined by demanding
expansion coefficients with the form (4.1). Using
the relation between, Y, and Jacobi polynomials
given by Breuer et al. ,24 and evaluating integrals
via Sec. 7.39 of the book by Gradshteyn and
Ryzhik25 one obtains k = eWG, and

Hence the small-angle cross section is proportion-
al to sin (-,8), although of course Eq. (4.6), which
was calculated using only the dominant large-l
parts of the phase shift, is not exact. Nonethe-
less, there is agreement between this method and
the Born approximation on the forward divergence.
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APPENDIX

The calculation of the integral in Eq. (2.10) may alternately be carried out as follows. If the outgoing

direction r,„, is given by r,„,= (sin8 cosy, sin8 sing, cos8) then

—b co r,',= (or'[cos8'(cos8 —1)+sin8' sin8 cos(y —y')] —= &or'a{8', y'), (Al)

where y'= y —y'. Thus we have to solve

h„=& dr' d8' dy' exp i{dr'e 8', cosy' sin'8' cos y —y',
0 0 |P 2'

(A2a)

h„„=& dr' d8' dy' exp ivor'o. '8', cosy' sin'8' sin y —y'
0 0 2g

(A2b)

(A2c)h„=+ dr d8 dy exp scor Q 8, cosy sln8'cos8',
0 0 (p 2f'

where K=- (eE/wr)e'"" "'

If we expand cos(y —y') and sin(y —y') in (A2) we find that all the integrals involving sing' vanish be-
cause these integrands are odd in the regimes [y —2w, y —w) and [cp —w, cp]. For the remaining terms,
the radial integration gives a 5, function":

slny-
h hx~ cosy zz &

&8
5' .I'k„=Kcosy dy' d8si 'n' 8coqs&' w 5(o.')+i-

{p-2I' 0
(ASb)

h„, = -& dy' d8' sin8' cos8' n5 n +i-
y 2g, 0 1

(A3c)

The 5 function part in (A3) can only contribute
when o. =0 which is the case for 8' e [8/2, w —8/2].
But in this range, the corresponding integrals
vanish. Thus only the principal parts in (AS) con-
tribute. The 8' integration of these also contri-

I

butes nothing in the middle range. " Then, from
integration over the outer intervals [0, 8/2] and

[w —8/2, w] we obtain (Ref. 25, formula 2.554) Eq.
(2.13) in the text.
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