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We analyze topological effects in frozen SU(N) Higgs models in continuous space-time, where topological
excitations are Z„vortices together with associated Z„monopoles. The space dimension is either two or three. We.
show that vortex condensation generates magnetic gauge symmetry and that monopole condensation leads to a
spontaneous breakdown of this symmetry. By summing up all possible excitation modes of ZN vortices and Z„
monopoles, we derive an effective Lagrangian in the strong-coupling regime. We obtain the following conclusions: (i)
if external charges are introduced in the fundamental representation, they are confined by electric vortex strings, and

(ii) if external charges are introduced in the adjoint representation, they are screened completely.

I. INTRODUCTION

It has been suggested' that field configurations
important to charge confinement in gauge theories
are distributions of quantized magnetic vortices.
These vortices are defined with respect to the
center. of the group, that is, Z„ for SU(N). When
we adopt a lattice formulation, it is possible to
extract only the Z~ degrees of freedom and to in-
vestigate a possibility of charge confinement in a
condensed phase of Z„vortices. ' 'This simplifica-
tion is relevant because there is a theorem' which
relates the problem of confinement in pure Yang-
Mills theories to the same problem in Z„gauge
theories. However, situations are much more
complicated in continuous space-time. Firstly,
in pure Yang-Mills theories there are no stable
field configurations to be identified with magnetic
vortices. Secondly, it is impossible to freeze all
the gauge degrees of freedom except for Z~.

We recall that SU(N) Higgs models contain
magnetic ZN vortices as topological excitations. ' '
Furthermore, we may consider that the models
interpolate pure Yang-Mills theories to Z~ gauge
theories, where interpolating parameters are
masses of gauge bosons. It is our ultimate pur-
pose to study the problem of charge confinement
in pure Yang-Mills theories as a limiting case of
SU(N) Higgs models. This paper is the first one
in this program. Here, we analyze a special
class of SU(N) Higgs models, where we freeze all
the gauge degrees of freedom except for the mini-
mal components that are necessary to define Z„
vortices in continuous space-time. In this way we
are able to understand the importance of Z~ vor-
tices in the problem of confinement at its simplest
form.

It is well known' that the SU(N) Higgs model
confines magnetic monopoles by quantized mag-
netic vortices. These vortices are only well de-
fined in the weak-coupling regime. As the coup-

ling constant increases, the vacuum fluctuation
is gradually dominated by virtual creations of
topological excitations carrying the vacuum quan-
tum number. 'They are magnetic Z„vortices.
Eventually in the strong-coupling regime, we ex-
pect that the vacuum is a condensed phase of
these vortices. ' When we place a fundamental
representation Wilson loop in this phase, the well-
known area law is expected to follow due to the
linking of magnetic vortices with the Wilson
loop. ' Alternatively, when we introduce funda-
mental representation charges into the system,
electric vortices are expected to emerge and
confine these charges.

The formation of such electric vortices is most
easily seen by deriving an effective Lagrangian in
the strong-coupling regime. We shall prove this
explicitly in this paper. For this purpose we use
a method proposed in Hefs. 9-11. In so doing, we
integrate over all possible excitations of magnetic
Z„vortices. We need to emphasize that SU(N)
Higgs models contain open vortices as topological
excitations. " Namely, the models contain effec-
tively magnetic monopoles to terminate the Abeli-
an flux at the end points of the vortices, which we
call Z „monopoles. Topologic ally, Z „monopoles
are the same objects as non-Abelian Dirac mono-
poles carrying multiple values of N Dirac units. '
Thus, relevant topological excitations in SU(N)
Higgs models are magnetic Z„vortices together
with associated magnetic Z „monopoles.

In summing up all these topological excitations,
we argue that vortex condensation generates a
magnetic gauge symmetry and that monopole con-
densation leads to a spontaneous breakdown of this
symmetry. The magnetic gauge symmetry is ac-
companied by a new field which couples with the
external charge introduced in the fundamental
representation. We show that this new field is the
agent which leads to electric vortices to confine
electric charges in the strong-coupling regime.

3036 1981 The American Physical Society



Z~ TOPOLOGY AND CHARGE CONFINEMENT IN SU(N) HIGGS. . .

We derive the following conclusions: (i) If exter-
nal charges are introduced in the fundamental
representation, they are confined by way of elec-
tric vortex strings, and (ii) if external charges are
introduced in the adjoint representation, they are
screened completely. Therefore, SU(N) Higgs
models present ideal examples of N-ality confine-
ment of magnetic monopoles in the weak-coupling
regime as well as N-ality confinement of electric
charges in the strong-coupling regime.

In Sec. D, we define frozen SU(N} Higgs models
and discuss how to parametrize all possible exci-
tation modes of Z„vortices together with Z~
monopoles. In Secs. III and IV, we analyze these
models in 3+ 1 dimensions and 2+ 1 dimensions,
respectively, and show charge confinement in the
strong-coupling regime. Finally, in Sec. V we
summarize our conclusions.

E
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We call (2.3) the frozen SU(N) Georgi-Glashow
model, where the monopole mass is given by

II. Z~ VORTICES AND Z~ MONOPOLES

The Lagrangian density of a SU(N) Higgs model
is defined by

f =-4 2 F~. 'FP.+z(D~«) +I &(1 &a)

=e A' —s A'+f''A A' (2.1
PV u V V , V y

where k Higgs fields have been introduced in the
adjoint representation to implement an appro-
priate symmetry breakdown. Topologically
there are two simple but important ways of break-
ing symmetry. They are as follows.

(i) Gauge symmetry SU(N) is completely broken
except for one continuous Abelian symmetry.
This symmetry is chosen to include the center
Z„as a subgroup. The essence of the model is
that it contains magnetic monopoles as topological
solitons. These monopoles have finite masses and
their charges assume multiple values of N Dirac
units. ' (We shall later give the definition of one
Dirac unit in non-Abelian gauge theories. ) An

expedient way of achieving such a symmetry
breakdown is obtained by first breaking SU(N) to
its maximal Abelian subgroup and then breaking
it successively up to the desired Abelian sub-
group. Here, we freeze all the massive fields by
increasing all their masses infinitely large. We
end up with

-mz/g' with mz being a typical mass of frozen
fields. Because g' and m are independent para-
meters, the monopole mass is arbitrary even in
the frozen limit mq -~. The frozen SU(N)
Georgi-Glashow model is simple enough to ana-
lyze,""and yet it has the same topological
structure as the unfrozen model.

(ii) Gauge symmetry SU(N) is completely bro-
ken. The essence of the model is that it contains
magnetic Z„vortices together with associated
Z„monopoles as topological excitations. "An
expedient way of achieving this model is obtained
by introducing one more Higgs field into the
SU(N) Georgi-Glashow model to break the re-
maining Abelian symmetry spontaneously. It is
obvious by construction that the mass of vector
field A" ' can be assigned independently. Thus,
corresponding to frozen Georgi-Glashow model
(2.3), we obtain

(~Ã i~F2-j. 2~ 2AN2 1AN -1)1
4 2 gv Pv V P P,4g

(2.4)

which we call the frozen SU(N) Higgs model.
This Lagrangian ia simple enough to analyze, and
yet it has the same topological structure as the
unfrozen model.

In the succeeding sections, we analyze (2.4) in
detail. Here we recall some properties of Z~,
vortices and associated Z„monopoles. "The es-
sential feature of Z„vortices is that the f1m is
only defined modulo N. From this we may argue
that the model contains open vortices" as topolo-
gical excitations when the associated Abelian flux
assumes multiple values of N Dirac units. They
are unstable topologically but have finite self-en-
ergy and well-defined size. Note that such an
open vortex must have a source or sink for the
Abelian flux at the end points, which we call Z„
monopoles. Topologically the Z~ monopole is the
same object as the non-Abelian Dirac monopole
whose charge is a multiple of N Dirac units. '
There is also a one-to-one correspondence be-
tween Z~ monopoles in the Higgs model and mono-
pole solitons in the Georgi-Glashow model. ' In-
deed, the Georgi-Glashow model contains a mono-
pole soliton carrying a mult'iple of N Dirac units.
Let us take a system of two monopole solitons
with the opposite charges, and attempt to break
the Abelian gauge symmetry spontaneously.
Then, the Abelian flux would be squeezed into an
open vortex. This open vortex is topologically
unstable and it is identified to be an open Z„vor-
tex in the Higgs model. An explicit construction
of such an open vortex has been made in an in-
stance of gauge group SU(2}." In general, we may
consider arbitrary configurations of Z„mono-
poles together with Z„vortices bridging them as
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topological excitations in the SU(N) Higgs model.
%e devote the rest of this section to a summary

of Z„vortices and Z„monopoles in the frozen
Higgs model. "When we assume the unitary
gauge, the boundary condition on vortex solutions
is given at the vortex center. It reads

A» -' na»s„e, (n = integer), (2.5)

where 8 is the azimuthal angle around the vortex
center, and the constant a„will be determined
just below. The topological charge Q of a vortex
is defined by

2 a"„„(x)=2xa„NZ iia fdap„ila"'(x -xa),

(2.11b)

where y' (y~) stands for space-time positions of
Z» vortices (monopoles), and n, (Nn~) for charges
of each of the vortices (monopoles).

III. CHARGE CONFINEMENT IN 3+ 1 DIMENSIONS

The Lagrangian density of the frozen SU(N)
Higgs model is given by (2.4), or

i

exp(((diN)=exp(i-,
' fdx d . l„l",„.' (2.6) I = —,(E „2-2mv2A„2)+ eA j„,4g2 pv (3.1)

1 1/2

diag(1, 1, . . . , 1 -N) . (2.7)

Therefore, we obtain Q = 2mn (modulo N), which

fixes a„ to be

provided that phase factor (2.6) belongs to center
Z„, where ~ is a diagonal Gell-Mann matrix given

by

where an external source ej~ has been introduced
explicitly and the superscript Ã'-1 has been sup-
pressed. 'The charge e is measured in units of g
and takes the following typical values: (i) e = 1/N
if the external charge is in the fundamental repre-
sentation, and (ii) e= 1 if it is in the adjoint repre-
sentation. For the purpose of our analysis, it is
more convenient to write the source term as

2(N —1)~ ~'
N

We now define the Abelian flux 4 by

(2.8)
where

'v~" =&. ~

(3.2)

(3.3)

(2.9)
g

which implies @=a»g 'Q. Thus, the fundamental
Abelian magnetic charge is given by 2ma»/g,
which we call one Dirac unit in SU(N) gauge theo-
ries in the standard normalization. On the other
hand, the Abelian electric charge of the Higgs
field is given by g/a» in the same normalization.
Note that the Dirac quantization condition is valid
between the magnetic unit and the electric unit of
the Abelian charges.

Singular behavior (2.5) of A„produces a Dirac
string to field tensor E„„along the vortex center.
Instead of giving the boundary condition as in

(2.5), we may as well give it in terms of a Dirac
string. ""Thus,

y „„=s„A„-s„A„+p„„, (2.10)

where p~„=na»[8„, 8„]8 in an instance of (2.5).
'The advantage of doing so is that we are able to
incorporate arbitrary configurations of Z„vor-
tices as well as associated Z„monopoles. '"
They are characterized by an ensemble of Dirac
strings

p* (x)=2((a Q n tdodr ' "'y" 5"'(x-y'),
p, v N q s(e, v)

(2.1la)
which satisfies

'The external current is represented in general as

j„(x)= a»-a Q )/deÃ 6(d)(x -zP), (3.4)

where the integrations are to be performed along
world lines of the external charges. We may
solve (3.3) with (3.4) as

d a' Lfdird =xe"'(x —xi),s(z', z')
N 8(g, r) (3.5)

which describes world sheets swept by electric
Dirac strings attached to the external charges.
'These strings are unphysical.

The frozen Higgs model (3.1) describes only a
massive vector boson as a physical particle. It is
easy to see that the external charge e is always
screened. However, this argument neglects vac-
uum fluctuations due to topological excitations.
Indeed, the model contains magnetic Z~ vortices
as well as Z„monopoles as topological excita-
tions. Although these vortices do not appear in

the physical spectrum, their existence in the vac-
uum fluctuation could significantly modify the
structure of the Lagrangian system. This must be
especially so in the strong-coupling limit g- ~
with m~ fixed, where the vortex mass density
-mv'/g' becomes arbitrarily small and hence the
vacuum would be dominated by these excitations.
We now analyze this problem by deriving an ef-
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fective Lagrangian in the strong-coupling regime.
We start with the generating functional

Z = dE„„dA„n E„„-8„A„+8„A„

x exp(- f I.
(

(3.6)

in the Euclidean metric, where field variables are
to be integrated over all possible configurations of
Z„vortices together with Z~ monopoles. As we
have noticed in Sec. II, we may generate .arbitrary
configurations of these excitations by introducing
the corresponding set of Dirac strings and mono-
poles. Thus, we may rewrite (3.6) as

x exp/ — I-
/

(('

)
(3.7}

with (2.11), where J [d(string)] stands for an in-
tegration over all possible configurations of Dirac
strings and monopoles described by p~„.

Here, we make a remark about the chemica, l po-

Z = d string dE„„dA„5E„„-8„A„+8„A.„-p„v

tential of a topological excitation. When we inte-
grate over field variables E„„and A~ in (3.V), we
obtain an interacting system of Z~ vortices and
monopoles. We can extract the self-energy densi-
ty of each excitation from the interacting system,
and summarize them as follows:

(8(
3R,(x}=&&(, , n ' dod7' det~

ke(&&, &)

x6&'&(~-y ),
and

(3.8a)

K (x&=~ 'N'ZB ']—&(j'j"&~'~' )(+-y~&

(3.8b)

where m, denotes a typical mass of frozen fields,
while +„are dimerisionless positive constants
whose precise values are not important, and the
integrations are to be performed over world
sheets (lines) swept by Dirac strings (monopoles).
After separating the self-energy density terms,
we recover field variables E„„and A„. The result
is

Z= d string dF„„dA„5F „-8 A„+8„A„—p „

(3.9)

where E„„and A.„now describe interactions be-
tween different points on ZN vortices and mono-
poles exclusively. Namely, the Lagrangian has
been normal ordered.

We note that the same procedure has been made
to extract self-energies in analyzing compact
QED in the continuum formulation'4 as well as in
the lattice formulation. " The importance of the
self-energy density term is clear since each
component of SR~ acts as the chemical potential
for the corresponding excitation. For instance,
we observe from (3.8) and (3.9) that the vortex
excitation with higher topological charge n, is
more difficult since %,~n, 2. We observe also
that the vortex excitation is practically impossi-
ble in the weak-coupling limit g-0 where 3R,-
while it is quite easy in the strong-coupling limit
g- where %,-0.

Now, inserting the equation

6(E„„-S„A„+8„A„-p„„)

dC „exp i2C„v E„—8 A +8 A„-p„„
(3.10)

into (3.9), and integrating it over E„„and A„, we
obtain

t f 2

Z =
J [dC„„]I(C„„)exp —Jl

—(C„„+eJ„„)'

where

I(C„„)=
~

[d(string)] exp —
~

5R, +SR,+ 2C»p„„ i

(3.12)

We go on to integrate over' all possible configura-
tions of topological excitations. In order to fix the
integration measure, we consider discrete gpace-
time in the form of cubic lattices, where lattice
spacing 5 is taken to be the width of vortices.
From. (2.11) and (3.8), we get
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(3.13)
ft tl~v x

Vv v
I g2 gv N vv vv g2

where C „ is the dual of C „, and n„(n „) is an integer-valued field defined on the lattice link (plaquette).
Then, inserting the equation

S(be nNn ,-)=I„[dB ]ex„p[ibB„(bn„n„„Nn,)]-

into (3.13), and using the Poisson resummation formula, we obtain

(3.14)
I

I(C„„)= „,, J [dBB)exp —,2wa„C*„+&„B„-S„B„+—,pyg„„
m m x l 6 yP/. vyv

bg 2m
(3.15)

where m„(m~„) is an integer-valued field defined on the lattice link (plaquette). Then, making a change
of variable

2w

b~ P

we rewrite (3.15) as

I(C „)= .... J
[dB ]exp —,2((a„C„„+B„B„-S„B„+—2m „-—(B„m„-B„m„)

m m~v x V

bg'
4~,m. ,

We now take the continuum limit of (3.16) and combine it with (3.11). We derive

Z = d string dC» dB

(3.16)

2 2 P 2 2 2

xexp — —C „+eJ„„'+,8 C „'+ 2wa„C~„+8„B -8 B,+0 '+ ' B„', 3.17
tFL V

and

S o„„=2([ m2 doi25(g)(x-z2). (3.18b)

They are interpreted as world sheets and lines
swept by electric strings and charges, respective-
ly. The notation 1 [d(string)] stands for an inte-
gration over all possible configurations of these
strings and charges. Parameters P~ are given by

p, = 1/4o(, b'mv2 and p, = 1/2o(2bgm, 2 in terms of
lattice spacing b.

We note that electric string singularities (3.18)

where the combination of integer fields m „and
m„has been converted into-o„„. Here,

o =— m J dodr '' " 5"'(x -gg)=2m e(z', ,z'„) (, )

a(o, r)
(3.18a)

and magnetic string singularities (2.11) have ex-
actly the same expression. Namely, (3.18) repre-
sents a system of electric monopoles with m units
and electric strings with mlN units, m being an
integer. They give rise to topological excitations
in the strong-coupling regime, which are elec-
tric monopoles with m units and electric vortex
loops with m/N units. Recall that the Abelian
charge of the SU(N) Higgs field in the adjoint
representation has been defined to be one unit.
Now we show that such a monopole excitation can
annihilate an integer part of the external charge.
We may interpret this phenomenon as a Debye
screening. Let us denote the integer nearest to e
by [e]. Then, we make a change of variable as

CN„-C„„—[e]J„„
in (3.17). We obtain

2 2

B=Jf [d(string)][dg„„][dp„leep(- S(B „+sd „)'+S,(S„C„„e[e]]„)'

p 2 P 'm'
(2((a„C~~„+B„B„-B„B„+o*„„)2+ ' ' BB2 (3.19)
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where

c=e -[e],
and we have set

(3.20)

(3.21}

It is obvious that we can shift the variable of inte-
gration from 0„„to cr „and remove the term
2wa„[e]J*„„from (3.19). This change of variable
is possible because both o~„and J~„represent
world sheets swept by electric Dirac strings. In-
deed, a„„is defined by (3.18), while 4 „ is defined
by (3.3), (3.4), and (3.5).

We have derived (3.19) from (3.7) by summing
up all topological excitations. Physical substances
of formulas (3.7) and (3.19) are as follows: In the
weak-coupling regime the system is in the super-
conducting phase, where electric charges (e=1}
are condensed and topological excitations are
magnetic Z~ vortices. These vortices are known

to be relevant to the N-ality confinement of mag-
netic monopoles. ' Qn the other hand, in the
strong-coupling regime the system is in the nor-
mal phase, where these electric charges are lib-
erated as topological excitations into an incoher-
ent plasma state. As a result, there is a Debye
screening for the integer part of external charges.
The system also contains electric Z~ vortices,
which will be shown later to be relevant to the &-
ality confinement of electric charges.

Formula (3.19) is equivalent to (3.7), and it is
valid for all values of g'. It contains topological
excitations described by 0„„in the strong-coup-
ling regime. Obviously, the chemical potential
of such an excitation is proportional to (mg)',
where mg is a charge of the excitation. We shall
derive the effective Lagrangian governing the
vacuum thereof, by setting 0„„=0. In this case,
we may transform (3.19) into the following equiva-
lent form:

Z= [dF' „IfdA ][dB ]i!] F -4 A „+„4 A„+(2 4 4 B
)N

Z pc'g'F d -i[8]A„„1„+4(1 )J„„

with y = 4v'a~'P„where we have used an equation similar to (3.10). In this way, we have derived the
effective Lagrangian

(3.22)

2

4(1+2) ' ""s ' 6 2(1+2)d' ( 1iy)
2

4(1+y') ' ~" ~ ~' 2(1+y) ]' 1+y (3.23)

where m~= mv(l+ y)~' and me = 2vm, a„[P,(1+y}/
y]~', and we have rescaled B„by factor I/2va„.
The electromagnetic field tensor is given by

E„„=B„A„-B„A+yg e~ „[)8 B[] (3.24)

in terms of two potentials A and B .
Note that the appearance of the electromagnetic

field tensor in the form of (3.24} is not surpris-
ing. It has been argued" that such a general form
is necessary in order to describe electric and
magnetic field quantities simultaneously. Namely,
when magnetic vortices are isolated topological
excitations as in the weak-coupling regime, the
standard form of E„„is just enough. However,
this is no longer true when the vacuum is a con-
densed state of magnetic vortices as in the strong-
coupling regime. We emphasize that we have
started our theory with the standard definition of
the electromagnetic field tensor and obtained the

jeff Leff L off
A + B (3.25)

general form" as an effective representation jn
the strong-coupling regime.

Formula (3.23) is the main result of this paper.
Here, we recall that typical values of external
charge e are as follows: (i} e = 1 if it is intro-
duced in the adjoint representation, and (ii) e
= 1/N if it is introduced in the fundamental repre-
sentation. It is remarkable in (3.23) that, when
e =0, field B„decouples entirely from the sys-
tem. In this case the net effects of magnetic
condensation are just renormalizations of coup-
ling constant g and mass m~, and external charge
e is screened completely. We now show that,
when e 0, there are topological excitations in
B„which are electric vortices and confine the
external charges.

For this purpose we rewrite (3.23) as
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(1+y)g'L'„"= ,'-(e-„„()& A())'+ gm„'A„'

+ (e+ [eely)g'A„j„, (3.26)

(3.27)

With respect to Lagrangian (3.26), there is a
standard solution of screening type with penetra-
tion depth -m& '. On the other hand, we note
that Lagrangian (3.2V) is precisely the one which
generates open vortices with penetration depth
-m~ ', as has been discussed in Ref. 13. Here,
vortices are parametrized by electric Dirac
strings J'„„given by (3.5). We now argue that
these vortices lead to the N-ality confinement of
electric charges.

Let us suppose that there exist N external
charges each of which carries 1/N unit. Note
that these charges are accompanied with electric
Dirac strings. We choose these strings to meet
at one point. Then, according to (3.27), we ob-
tain N physical electric vortices with finite length.
At the joint there arises a charge with one unit,
but such a charge is screened. Thus, the SU(N)
Higgs model presents an ideal scheme for the
i)))-ality confinement of electric charges in the
strong-coupling regime.

Finally, we wish to remark that effective La-
grangian (3.23} includes electric gauge symmetry

(3.28)

IV. CHARGE CONFINEMENT IN 2+ 1 DIMENSIONS

The Lagrangian density of the present model is
defined formally by the same formula as in the
(3 + 1)-dimensional model. Moreover, we may
analyze the model essentially in the same way as
in the (3 + 1)-dimensional case. Here, we only
present those equations which differentiate these
two models.

The present model also contains magnetic Z~
vortices and Z„monopoles in three-dimensional
Euclidean space. These topological excitations
are characterized by the boundary condition given
in terms of Dirac strings as in (2.10):

Z„,= e„A. -a„g&+ p„ (4.1)

where

dominate the vacuum fluctuation, this confining
magnetic vortex is under the influence of the
vacuum fluctuation and may take an arbitrarily
long shape. This implies that there is a long-
range Coulomb interaction between magnetic
monopoles, which is quite easily shown to be
mediated by field B . However, the SU(N) Higgs
model actually contains magnetic Z~ monopoles,
which are topological excitations in the weak-
coupling regime but are condensed in the vacuum
in the strong-coupling regime. These condensed
magnetic charges may screen external magnetic
charges. Thus, field B„must be massive and the
magnetic gauge symmetry is broken spontaneously.

which has been broken by the Higgs mechanism,
and magnetic gauge symmetry

p„*(x)= 2ra„g n, fi)iy'„ I!"'(x—)i') (4.2a)

B„-B+BJ', (3.29) parametrizes vortex centers, and

which has been broken dynamically. We could as-
sociate the origin of the magnetic gauge symmetry
with the vortex condensation, while its spontaneous
breakdown with the monopole condensation. We
now explain this statement.

We notice that field B has been introduced as
the Lagrange multiplier to assure magnetic flux
conservation (2.lib). Let us argue that, except
for Z„monopoles, the magnetic gauge symmetry
would be exact, or that B„would remain mass-
less. If there are no magnetic monopole excita-
tions, topological excitations are only composed
of closed magnetic vortex loops. Here, we intro-
duce magnetic monopoles carrying one Dirac unit
of charges into the system as test particles, in
place of external electric charges in (3.1). Since
the Meissner effect is operating in the weak-
coupling regime, a pair of monopoles is confined
by a magnetic vortex. As vortex-loop excitations

&„pf(x) = 2m¹„gn~d'~(x -y~} (4.2b)

parametrizes monopole centers. The chemical
potentials of these excitations are

(4.3b)

Formula (4.2b}, representing magnetic flux
conservation, introduces a scalar field B just as
in (3.14). Then, the integration over all possible
configurations of excitations is performed simil-
arly as in (3.15), and we obtain
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J [d(string)]esp -f(a(, sat +-,ic „p„„)
am

[dB]exp 4, }2))a„Cg+8&B+—m& } —,(NB-2)):m)2 .(4.4)

After making a change of variable

2'g ——m
N

we take the continuum limit of (4.4) and obtain

Z = d string dC~„~ exp — —~~„+e~~„'+

+
d

(ass C„"+Spit +s,*)*+ ' * a' },

which corresponds to (3.1V}, where P, = 1/o, m~'b2, P, = 1/o.,m, sb', and

2g Spa za)
(r = — m dod~ "' " &"'(x-~')

s(a, v)

with

(4.5)

(4.6a)

S„p„=as Qm, fdsds Spt(s-s')„: (4.6b)

These singularities give rise to excitations of electric Z„vortices .and monopoles. Typical examples are
a closed vortex with 1/N unit, and an open vortex with one unit. However, in the (2+ 1)-dimensional case,
there is an interesting phenomenon associated with a closed vortex with 1/N unit, We could interpret that

. such a closed loop creates a domain wall' to separate two different vacuums in Minkowski space-time.
In order to explain this observation, it is more convenient to perform a summation over m in (4.4).

Since we are interested in the strong-coupling limit g -~, we may use a Villain approximation:

0
I

g exp — (NB+ 2mm)a =exp(ag~cosNB). (4.V)
Sl L

Then, (4.5) is replaced by

2 2

Z= d string dc„, dB exp —
4

C„„+eJ„„'+ 2 B„C„„2

~m 2

+ '~(2va„C„*+a„B + v„*)' — ~~' cosNB (4.8)

where

s = ps I m fdsds "' " s™(- ), (s4.9s)
e(&a &a)

s((r, ~)

with the same formula as (4.6b} for s„a&„. Now,

these singularities describe electric vortices and

monopoles carrying only integer units of charges.
Domain-wall excitations are topological excita-
tions of field variable 8, which we shall discuss
by making use of the effective Lagrangian.

%'e may derive the effective Lagrangian in- the
strong-coupling regime, just as we did for the
(3 + 1)-dimensional model. We 'obtain

(1 + y)g Lsdt ~ a (e)(it C(ABC(A8) + 2 m~A)t

+ (e+y[e])g'A„j„, (4.11)

(I+y)y 'g 'I ~" =-', (e„B &g„*}'

—q ('1 —cos2mNa~B}, (4.12}

as in (3.25), (3.26), and (3.2V), where y = 2m~a„2P»

m„= m~(1+ y},q = m, (1+y}13,gad(kyN . The elec-
tromagnetic field tensor is given by

(4.13}

L' = L' + L'
A I3 (4.10)

With respect to Lagrangian (4.11), there is a
standard solution of screening type. On the other
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Aq -Aq + Bpf, (4.14)

which has been broken by the Higgs mechanism,
and magnetic gauge symmetry

B-B+ constant,

which has been broken dynamically.

(4.15}

V. DISCUSSIONS

In this paper, using a method proposed in Refs.
9-11, we have derived effective Lagrangian (3.23)
of the frozen SU(N} Higgs model in the strong-
coupling regime, w'here the vacuum is a conden-

sed phase of magnetic vortices together with as-
sociated magnetic monopoles. The remarkable
feature is that vortex condensation generates
magnetic gauge symmetry (3.29} while monopole

condensation leads to a spontaneous breakdown of

this symmetry. Here, the magnetic gauge sym-
metry is accompanied with a new field denoted by

B„which couples with the external charge intro-
duced in the fundamental representation.

We may interpret thiq phenomenon as follows.
In the w'eak-coupling regime the system is in the
superconducing phase, where electric charges
(e = 1) are condensed. As the coupling constant

gets larger, the vacuum fluctuation is gradually
dominated by excitations of Z„vortices. - Eventu-

ally, in the strong-coupling regime the system is
in the normal phase, where those electric charges
are liberated into an incoherent plasma state. As
a result, there is a Debye screening for integer
charges in the strong-coupling regime as well.
Thus, field A„remains massive. However, such

a plasma of electric charges cannot screen frac-
tional charges (e =1/N). Hence, there are long-
range forces between fractional charges, which

hand, we note that (4.12) is exactly the Lagrangian
which generates domain walls, ' as has been dis-
cussed in Ref. 9. For instance, a domain wall
separates two vacuums characterized by B = 0 and
B = g'/Na~. Such a domain wall carries an elec-
tric flux corresponding to 6, B= 1/Na„, and this
flux is precisely the one which the external
source with e = 1/N carries. Namely, external
charges with e = 1/N are confined with domain
walls, while external charges with e = 1 are
simply screened. Thus, the SU(N) Higgs model
presents an ideal scheme for the N-ality con-
finement of electric charges in the strong-coup-
ling regime.

Finally, we wish to remark that effective La-
grangian (4.10) includes electric gauge symmetry

must be created either by electric vortices or by
Coulomb interactions. The criterion is whether
field B„ is massive or massless.

To proceed with our interpretations, we now

introduce magnetic monopoles into the system
as test particles. These monopoles are supposed
to carry one Dirac unit of magnetic charges. As
is well known, the Meissner effect is operating in
the superconducting phase where a pair of these
magnetic monopoles is confined by a vortex. How-
ever, as vortex-loop excitations get abundant in
the vacuum fluctuation, the above confining vor-
tex is also subject to the fluctuation and may take
an arbitrarily long shape. Therefore, but for Z~
monopoles, there would be a long-range Coulomb
interaction between these magnetic monopoles,
which is easily shown to be mediated by field B„.
However, the SU(N) Higgs model actually contains
magnetic Z~ monopoles, which are topological
excitations in the weak-coupling regime but are
condensed in the vacuum in the strong-coupling
regime. These condensed magnetic charges may
screen external magnetic charges. Thus, field
B„must be massive, or the magnetic gauge sym-
metry must be broken spontaneously. %'e em-
phasize that field B„solely couples either with
magnetic monopoles or with fractional electric
charges.

We have obtained the following conclusions: (i}
if external charges are introduced in the funda-
mental representation, they are confined by way
of electric vortex strings, and (ii} if external
charges are introduced in the adjoint representa-
tion, they are screened completely. Moreover,
we have show'n that electric vortices are nothing
but domain walls' separating two different vac-
uums in 2 + 1 dimensions. Therefore, the pre-
sent model gives an ideal example of N-ality
confinement of magnetic monopoles in the weak-
coupling regime, and N-ality confinement of elec-
tric charges in the strong-coupling regime.

In this paper, we have analyzed a special class
of SU(N) Higgs models, where we have frozen all
the gauge degrees of freedom except for the com-
ponent that is necessary to define ZN vortices in
continuous space-time. It is important for our
program to recover the complete gauge degrees
of freedom. Then, we might conjecture that
vortex condensation would generate magnetic
SU(N) gauge symmetry" in such a complete SU(N)

Higgs model. We are currently investigating this
problem.



Z" TOPOLOGY AND CHARGE CONFINEMENT IN SU(N) HIGGS

G. ' t Hooft, Nucl. Phys. B138, 1 (1978); B153, 141
(1979).

2C. P. Korthals Altes, Nucl. Phys. B142, 315 (1978);
T. Yoneya, ibid. B144, .195 (1978); A. Casher, ibid.
B151, 353 (1979).

G. Mack and V. B. Petkova, Ann. Phys. (N. Y.) 123,
447 (1979); 125, 117 (1980).

S. Mandelstam, Phys. Lett. 53B, 476 (1975).
SZ. F. Ezawa and H. C. Tze, Nucl. Phys. B100, 1

(1975); Phys. Rev. D 14, 1006 (1976)..
SZ. F. Ezawa and H. C. Tze, J. Math. Phys. 17, 2228

(1976); Phys. Rev. D 15, 1647 (1977).
~M. Stone and P. R. Thomas, Phys. Rev. Lett. 41, 351

(1978); D. Foerster, Phys. Lett. 77B, 211 (1978);
78B, 473 (1978).

J. M. Cornwall, Nucl. Phys. B157, 392 (1979).

Z. F. Ezawa, Phys. Lett. 85B, 87 {1979).
Z. F. Ezawa, Phys. Lett. 86B, 313 (1979).
Z. F. Ezawa, Nucl. Phys. B157, 444 (1979); K. Bar-
dacki and E. Rabinovici, Phys. Rev. D 20, 1360 (1979).
R. Brout, F. Englert, and W. Fischler, Phys. Rev.
Lett 36 649 (1976)
Y. Nambu, Phys. Rev. D 10, 4262 (1974).
A. M. Polyakov, Nucl. Phys. B120, 429 (1977).

5A. M. Polyakov, Phys. Lett. 59B, 82 {1975);T. Banks,
R. Myerson, and J. Kogut, Nucl. Phys. B129, 493
(1977).
N. Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147
(1962); R. Tevikyan, Zh. Eksp. Teor. Fiz. 50, 911
(1966) tSov. Phys. -JETP 23, 606 (1966)];D. K. Ross,
Phys. Rev. 181, 2055 (1969).

~S. Mandelstam, Phys. Rev. D 19, 2391 (1979).


