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Using we11-defined cutoff theories it is shown that many (super-) renormalizable fermion-boson interactions are

equivalent to nonlinear fermion interactions which are local when the cutoffs are removed. The reason is that the

Dirac sea has antiscreening effects which generate long-range interactions from short-range interactions. Thus, for

example, an Abelian current-current interaction is equivalent to quantum electrodynamics for 2 &d & 4, where d is

the space-time dimension. The eigenvalue condition on the four-fermion coupling constant corresponds to choosing

the critical point of the transition to the phase in which Lorentz invariance is spontaneously broken. Thus the.
photon can be regarded as the Goldstone excitation of a spontaneously broken Lorentz symmetry. Also it is possible

to regard fundamental interactions as due to self-interactions of a fermionic "matter" field.

I. INTRODUCTION

In this paper we will show that many (super-)
renormal. izabl. e theories of bosons interacting with
fermions can be regarded as theories involving
only fermions with nonlinear interactions which
are local in the limit of an infinite cutoff. For
previous approaches to prove such equivalences
see Refs. 1-10. The bosons are generated as
collective excitations of the fermionic system.
The "nonrenormalizable" nonlinear fermion inter-
actions are tamed because"'" the coupling constants
are infinitesimally small. for large cutoffs. The
approach of this paper is to establish the equi-
valence between cutoff theories. Divergences in
the bare parameters as the cutoffs are removed
are crucial for these equivalences.

In Sec. II the case of nonlinear scalar bilinear
interactions of fermions is considered. The
Dirac sea of these fermions has an antiscreening
property, whereby a kong-range interaction be-
tween physical fermions is generated out of a
short-range interaction between the bare fer-
mions. More simply, the fermion loop gives a
negative divergent contribution to the (self-mass)'
of the auxiliary field corresponding to the scalar
bilinear. As a result a nonlinear fermion inter-
action with an infinitesimally small range for
large cutoffs acquires a finite range due to quan-
tum fluctuations.

Self-interactions of the bosonic collective ex-
citations have a tendency to undo the antiscreen-
ing effects of the Dirac sea. That is to say, they
give a positive (self-mass) contribution. To have
the equivalence with a local fermionic theory we
require that the net bare (mass)' of the boson be
positive and divergent with the cutoff. Hence the
equivalence survives only if the cutoffs are re-
mo&ed in such a way that the cutoff associated
with fermions is much larger than that associated

with the scalars. An interesting example of this
effect is provided by the supersymmetric theo-
ries." Thus for d = 2, there is no divergence in
the bare mass of the bosons which would mean the
equivalence cannot be valid. However, by consid-
ering cutoff theories in which supersymmetry is
explicitly broken through the cutoffs in the kinetic
energy, it is possible to realize the equivalence in
this case also. Again it becomes necessary to keep
the cutoff associated with the fermion much larger
than that associated with the boson. For d=4, it is
sufficient to have the common wave-function re--
normalization constant vanish with the cutoff.

In Sec. III, equivalence ' of the current-cur-
rent interactions with gauge theories for 2& d
~ 4 is proved. The fact that the photon (self-
mass)' is not zero but instead divergent and
moreover negative, when the cutoff in the ferm-
ionic sector of quantum electrodynamics is not

gauge invariant is crucial for this equivalence.
The equivalence is not valid for d= 2 because the
self-mass is not divergent. Qn the other hand,
the arguments require that the Thirring model
defined via a certain regularization for g= ~ be
identical with the Schwinger model in the scale-
invaripnt limit. '4 Such an equivalence is true with
g= 2v/W5, where g is Johnson's definition" of
the Thirring coupling constant.

For d =4 there is an interesting possibility that
QED defined via continuum regulators may not
be meaningful in the infinite-cutoff limit, whereas
the current-current interaction may make sense
and reproduce the renormalized perturbation
series of QED. This has to do with the Landau
ghost problem" which suggests that the bare
charge has to be pure imaginary. This corre-
sponds to a negative sign of the current-current
interaction (i.e., an attraction between like par-
ticles). This is allowed by the Hermiticity of the
Hamiltonian in the current-current theory and
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moreover because of the Pauli exclusion prin-
ciple the Hamiltonian may still be bounded from
below. Boundedness is especially possible be-
cause the strength of the current-current interac-
tion is infinitesimally small for large cutoffs.

In this proof of the equivalence, strength of the
current-current interaction has been carefully
adjusted to give a massless vector excitation. A
stronger interaction would result in a tachyonic
excitation driving the system to a phase in which
the expectation value of the charge (-current)
density is nonzero. In this phase I.orentz invar-
iance is spontaneously broken. '" To see this
it is necessary to work with- the cutoff theory.
This is done in Sec. 0'1.

Thus the eigenvalue condition on the current in-
teractions corresponds to choosing the critical
point of the transition to the phase with a broken
I orentz symmetry. Therefore, the photon can be
regarded as a Nambu-Goldstone excitation assoc-
iated with a spontaneous breaking of Lorentz sym-
metry. Also, the choice of the critical point im-
plies that the photon is simultaneously an e'e
bound state and a coherent excitation. These
considerations are a,iso valid for the non-Abelian
current interactions.

All proofs of equivalences have involved just
rewriting and reinterpreting the cutoff actions.
It is to be suspected that the equiva, lence is also
valid with different types of cutoff interactions
especially for the case of gauge theories where
the interactions a.re uniquely fixed by gauge in-
variance in the limit of an infinite cutoff. How-
ever, proving the equivalence cannot be easy in
such cases. An illustration of the possibilities
involved is given in the Appendix. It is shown how
one may manufacture a kinetic energy for the
photon from Abelian current-current interactions
without hiding it in the range of nonlocality. For
this, the four-fermion coupling constant is chosen
to be infinitesimally away from the critical point
for a finite cutoff. An infinitesimal breaking of
local gauge invariance in the fermionic part of
the action with the auxiliary photon field together
with an infinitesimal (renormalized) photon mass
can produce a finite adjustable kinetic energy for
the photon. However, it ha, s not been possible to
demonstrate that this is the only effect and other
unwanted interactions a,re not generated in higher
orders.

In Sec. V a comparison of the present approach
for proving the equivalences with previous ap-
proaches is made. The importance of working
with well-defined actions with cutoff is empha-
sized. Because the equivalence demonstrated in
this paper is valid without restrictions on the
parameters for almost any fermion-boson theory,

it would appea, r to be only a mathematical curios-
ity. However, it is possible that there are situa-
tions where a local fermionic theory ha, s differ-
ences of physical significance from a local fer-
mion-boson theory. These are pointed out in Sec.
V.

II. EQUIVALENCE OF THE SCALAR-SPINOR
INTERACTIONS AND NONLINEAR SPINOR

INTERACTIONS

Throughout this paper we will work with the
Euclidean formulation because, apart from the
mell-known advantages, it makes clear the signs
to be a.ssociated with various parameters.

Consider the following regularized Euclidean
action

S = —a(&» q')' —2»», 'q' +P(-»V»» —m, g,%)f—,

(2.1)

where P'„corresponds to a regularization in the
fermionic kinetic energy. For example,

=»»(1 — jM ), Cl=9„&», . (2.2)

Here the Euclidean Dirac matrices yq obey the
algebra

(r», ~»)=2~»g, r';=&» (2.2)

and products such as + stand for an integral over
space-time. All information regarding this theory
can be obta, ined from the functional integral

g= QpQ Q exp S+J p+'g + g (2.4)

p, , =cg, 'in —i+p', c&0 (2.5)

the limit M- can be taken keeping all other
parameters»», g„m, (and the wave-function re-
normalization constants) finite.

We may rewrite E»l. (2.4) as

where j, »), and g are external sources for y, iP,

and g, respectively. Henceforth we will drop the
external sources from our equations.

We will assume that the interaction term is
normal ordered with respect to the fermion fields,
thereby removing the divergent (as M ~) contri-
bution to the vacuum expectation value (VEV) of q
(Fig. 1). However q& ac»luires a nonzero, cutoff
independent VEV from higher-order corrections
(Fig. 2).

The only divergence as M- ~ in a perturbation
expansion is in the O(g, ') (self-mass)' contribu-
tion to the y. This contribution is logarithmi-
eally divergent and negative. Thus by choosing
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FIG. 1. Divergent contributions to the vacuum ex-
pectation value of y.

where

&4&%exp[7(-S'g -m. )4+GQ4) (V4)1,

(2.6)

G = g, '/2p, ,' (2.7)

Q»:

FIG. 2. Finite contributions to the vacuum expectation
value of y.

P4) Ql)=%4(1- (2.8)

Since p, p' diverges with the cutoff, the exponent
becomes local as M-~. Thus the Yukawa inter-
action, Eq. (2.1), can be regarded as equivalent
to a Fermi interaction. The boson is generated as
a collective excitation. A careful tuning of the
range of this four-fermion interaction is necessary
to reach the required continuum limit. The equi-
valence is possible because the Dirae sea has an
antiscreening effect resulting in a long-range in-
teraction between the physical fermions from a
short-range interaction between the bare fer-
mions. Divergence in the self-mass in Yukawa
theory is crucial to make the equivalent Fermi
theory local.

If the Fermi interaction were strictly local even
in the cutoff theory, we would not be able to gen-
erate the kinetic energy for the scalar. Such a
theory can be regarded as a limiting case of the
Yukawa theory in which the wave-function renor-
malization constant of the boson is zero" or the
bare coupling constant is infinite. Such a limit is
expected to make sense"' "and to correspond to a
theory with anomalous scale dimensions. An ex-
ample is provided by the Thirring model, "where
Q is finite, i.e., gp is divergent with the cutoff.

Consider the case mp=0. Then we have a dis-
crete symmetry cp - -y, g- y, g. When p, '& 0,
where p, is the renormalized mass of the boson,
this symmetry is spontaneously broken, y ac-

quires a nonzero vacuum expectation value and g
acquires a nonzero mass. Thus p = 0 corresponds
to being at the critical point of the transition to
the phase in which the discrete symmetry q
is spontaneously broken. p, in Eq. (2.5) is infin-
itesimally small compared with the unrenormal-
ized mass p p Thus, in the Fermi theory, the
bare coupling constant is chosen to be infinites-
imally close to the transition point to the phase in
which the composite operator $g acquires a non-
zero vacuum expectation value.

Let us now add a Xpy' self-interaction. 'There
is an additional divergence in the (self-mass) of

q, which can be isolated by just normal ordering
Xpq' with respect to a reference mass, say p, . If
we introduce a regularization characterized by A

in the bosonic kinetic energy, 8, 8«», the bare
mass must be chosen to be (for large Mand A)

p, ,' = cg,' ln ——c,& ln —+ p, ', c, c, & 0 . (2.9)

As before we will consider an integration over

y to get an effective action involving only fer-
mions. The result is the following. Consider the
connected Green's functions of the normal ordered
~pq' theory with a mas s p. , given by the transc en-
dental equation

For a finite I, all these Green's functions have
a limit as A ~ when expanded in powers of ~p.
Now attach a factor -gong for each external q&

line.
As p y diverges with Iand occurs only in the

denominators in the (finite) expressions for the
Green's functions, it is clear that when I-~
the effective fermionic action becomes local.
However, for a finite Iwe have a complicated
nonpolynomial, nonlocal action in g.

One may expect to reach same local limit start-
ing from a simple cutoff action of self-interacting
fermions. We may replace an infinite number of
vertices by only two. Consider

r
Z = ) &y&/exp[/(- c(„™0)y+G($y) gg)

—G,g()'], (2.10)

where ($g) is normal ordered. We will introduce
an auxiliary scalar field y in the standard fash-
ion'

g = jt uyugey exp[ ——,'(sAy)' ——,'p, ,'cp'

+4(-g'„-m, -g,q)q-G, gy)'].
(2.11)

Now if we choose G, ~A,,[g, ln(M/m)] ' the only
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FIG. 3. Generating a Xy4 vertex from a G~(gg)4 inter-
action. There are contributions from various ways of
contracting the fermion fields.

effect of this new interaction will be to induce a
X,y» term in the limit M-~ (Fig. 3). The induced
X,q' vertex is not normal ordered, so that p, , must
be chosen as in Eg. (2.9). Hence to have an inter-
action that is local as M, A-~ in Eg. (2.6) we re-
quire that the cutoff Massociated with the fermion
be much larger than that associated with the bos-
on.

For d= 2, there is an infinite class of local
boson-fermion theories labeled by the strengths
of q', y', y~, . .. couplings. Obviously we can
hope to generate all these interactions only by
choosing fermion interactions which are increas-
ingly nonlinear. For d& 2, we must consider
Xy» (for d~ 4) and A. 'q' (for d~ 3) couplings. It is
clear that the above arguments go through.

In case of supersymmetric theories" more 'care
is needed. There is no separate mass renormali-
zation" so that p. o y' term is of the same order
as (s~y)' and it appears that it is not possible to
get a local Qg)' interaction. We will consider the
Wess-Zumino model with a supersymmetric reg-
ularization" in terms of the physical fields only:

S = ——,'ZsA(1+ ( ')sA ,'ZsB(1+——$ ')sB

--,'ZP(1+ ( ')lg --,'Z '[mA+g(A'-B')](1+)Cl')

x[mA+g(A'-B')]+ a Z '(mB+g2AB)(1+ $0')

x(mB+g2A, B) —am$it+@(A+y, B)( . (2.12)

Consider d =4. Only Z has coefficients singular
in $ when written as a series in g. Hence we can
have the bosonic mass terms to be much larger
than the bosonic kinetic energy terms only if Z
approaches zero with g. Even this cannot work for d
= 2, wheng has acutoff-independent limit. Inthis
case we will use two different regularizations M and

A as before, thereby breaking the supersymmetry
explicitly in the cutoff action. After normal ordering
and ignoring the one-fermion-loop contribution to
the self-mass of A. and B, the limit M, A can be
explicitly taken recovering the supersymmetry.
Equivalently we may consider the cutoff action
which is not normal ordered but which has in addi-
tion divergent (when M, A ~) voA and

Ei M, '(A'+ B') terms, both of which would be zero
with a supersymmetric regularization. With
M»A, 5M, ' will be positive divergent and we
again get the equivalence with a nonlinear fer-
mion theory. Vertices with the scalar bilinears
involve the combination gg+ v, /g).

/

III. EQUIVALANCE OF THE ABELIAN CURRENT-
CURRENT INTERACTIONS AND QUANTUM

ELECTRODYNAMCS

We first consider the case d& 4. In this case,
if one formally sets the self-mass contributions
to the photon to zero, there are no divergences
left in any order of the perturbation series. The
electron self-energy is superficially divergent for
d & 3, with a naive power counting, but by the
Weisskopf theorem, it is convergent on doing
angular integrations. Thus the theory can be de-
fined via the functions integral:

Z = SA,- exp ——,'E,&'+ Trln" 1+ie, +m,

(3.2)
where

8 82 0

g3+ c28 1+C2eo
(3.3)

e, is the bare charge. Modified Feynman rules
for Eq. (3.2) ignore O(e') wave-function renor-
malization for the photon. With the assumptions
that QED for d&4 makes sense for any value of
e' & 0 and that Z, & 0 for any such e', Eg. (3.3)
makes sense only for 0+

We now' consider current-current interactions
with two cutoffs g and M:

g = GA& $ & exp - + ZSE,&
'+g,

x(- K —m ieA—)g+ Gap]
Q- exp ——g

+ Trln'~1+ie(8+m, -) '2~ ],
(3.1)

where m, = m —Z, '5 m. All parameters entering
in this equation are finite (cutoff independent). The
prime on Tr ln means that it is defined to be
gauge invariant, i.e., a term proportional to g' is
ignored. It is assumed that a gauge is chosen in
the usual manner. We have presumed that Z, =g,
in writing this equation. Thus e is the renormal-
ized charge.

We will now extract the term -&c,e'E, &' fzom
the Trln' term corresponding to (finite) wave-
function renormalization from the lowest-order
vacuum polarization diagram, add this to the
Z,F,&' term and rescale A, to make the coeffic-
ient of —~ E&&' equal to unity. We get
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Z= ~ $) exp —~-m,
a~~j& [g 5&g Z3(&asa5gg

—s, s~)] 'j~). (3.4)

The currents have a nonlocal interaction of range
(Z,/g')'/'. We will introduce an auxiliary var-
iable A, in the standard fashion:

Q Q QP& exp —&f Q —+&3

+$(- Ii„-m, —i')g]
SQ ~ exp —2f g —g g3F]g

+ Tr In( —g(„—m, —i el I) (3 5)

Since the regularization 0 —I(„ in the fermionic
part of the action is not gauge invariant;, the
(self-mass)' contribution to the photon from Tr ln
term is not zero, but instead diverges with Ifor
d&2. It is also negative. Hence we may choose
g to cancel this contribution. Then we may for-
mally take the limit M-~ to recover Eq. (3.1).
Since we have argued that this equation has a cut-
off-independent meaning, taking the limit is justi-
fied, and the equivalence is proved.

If the cutoff action, Eq. (3.4), has a strictly
local current-current interaction, we would get
a formal equivalence with Eq. (3.2), but with e,'
= c, '. This corresponds to the limiting value

e,'-~ and therefore taking the limit I-~ is
justified only if the limit e,-~ is meaningful. It
is expected that when properly taken, this limit
is indeed meaningful" and corresponds to a scale-
invariant theory with anomalous scale dimensions"
for 2~ d&4 and a free field theory of photons and

electrons for a=4.
Equivalence for the case d=4 is more compli-

cated because there are additional divergences
in QED. We will consider Pauli-Villars regular-
ization for the fermion loops and a regularization
via higher derivatives for the photon propagator:

Z=J» &4&It'(&X.&X.)

xexp(--,'Z, (A, M)Z, , (1 -A-' )I,
+Z, (A, M)$ (- 8' -m, —ie 2)g

+P Z, q. [(-S'-M,. )f, ' isa]x..-}.-
(3.6)

Here the X, 's are a set of wrong-statistics fer-
mions. We have

Z= SA,. exp -&Z, F,.&
1-A '0 F,.z

+ Tr I.n (
—O' -M,. isa' (—

—Trin)(-S -m, )b, ' —i'')] .

Z,(A, M) + c,e' In —=z,(A, M ) . (3.9)

Here M represents a typical mass of the Pauli-
Villars fields and c, is a positive number. Re-
normalized perturbation theory suggests that we
can do away with the Pauli-Villars fields in (3.8).
This means z,(A, M) has a limit z,(A) as M-~.
The modified Feynman rules are now to ignore the
wave-function renormalization term from the low-
est-order vacuum polarization diagram. Al, l re-
normalization constants depend only on A.

We have run into basic contradictions. Equation
(3.9) requires Z, to be negative and infinitely
large in magnitude. This is contradictory to uni-
tarity. Equivalently, the bare coupling constant
e,(A, M) = ez, '~' must be chosen to be purely
imaginary. The Hamiltonian is no longer Her-
mitian.

This is the well-known Landau ghost problem. "
Here with the special regularization chosen it ap-
pears that the problem persists to all orders, if
interchangeability of the order of removing cutoffs
is correct as renormalized perturbation theory
suggests.

Thus QED defined with continuum regulators is
possibly a self-contradictory theory. However,
it is still possible that with a lattice regulariza-
tion" there are no such problems. In this caseIand A are intimately related and there are
many-photon vertices which can significantly af-
fect dependence of the renormalization constants
on the lattice spacing. We will now argue there
is a. possibility that the current-current interac-
tion can give the same renormalized perturbation
series as QED and moreover may make sense
nonperturbatively. It is possible to effectively get
g, & 0 from the current-current interaction with-
out any contradictions. For this it is necessary to
use higher derivatives in current-current interac-
tions in addition to a nonlocal interaction,

Power counting shows that the Pauli-Villars reg-
ularization is needed only for the lowest-order
vacuum polarization diagram. A regularization
in the photon propagator suffices for all fermion
loops with more than two vertices. We will there-
fore separate out the photon wave-function renor-
malization contribution coming from the Tr ln
term and absorb it in the Z,(A, M) term:

Z =J"uA, exp[-'-,'z, (A, M)E, ~ (1-Z, /z, A')E„
+ Tr ln"

(
—S -M~ —ieg )

—QTrln" )(-S -M, )b, ' —ieA],

(3.8}

(3.7) 2)2g-7) (1 — /K )(1 —&'/A') 2g ~ (3.10)
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We then have an effective interaction,

(3.11)

Now for canceling the photon self-mass term we
require g'~M'. After removing this term we get

lg2( ) P +f p /A
P 1 ~ p2/g2

(3.12)

If we now formally set A, M-~ we get a kinetic
energy term with a wrong sign, i.e. , g, O. How-
ever, the current-current theory is still meaning-
ful.

There is another technical problem with the
case 4=4. With a gauge-noninvariant regulariza-
tion 0 -8„ the Tr ln term is not gauge invariant
when M- even after the term 5m'g' is subtract-
ed away. Thus, the photon-photon scattering am-
plitude is cutoff independent on doing an angular
integration but not gauge invariant. It does not
vanish for zero-frequency photons. Reason as
usual is that a shift of integration variables in
proving the Ward-Takahashi identity cannot be
justified resulting in an anomaly. " Also the term
quadratic in A and in momenta is neither finite
when M-~ nor is it transverse. A way to avoid
this problem is to use just one Pauli-pillars regu-
lator field of mass M instead of the regularization
in the Dirac kinetic energy. Because there is just
one regulator, the photon (self-mass)' in O(e') is
not zero but has the form —e'c(M'-m') where c
is a.positive constant. Therefore, g can be chosen
to cancel this term. With this regulator, Tr ln'
is gauge invariant.

In case of the current-current iriteractions the
equivalence is not valid for d = 2. The reason is
that the self-mass of the photon in O(e') is not
divergent as M-~, but finite on carrying out
angular integrations. Again there is an anomaly
in the g'-g identity. An explicit calculation
gives

(3.13)

where &'=1+4m'/p'. If we ignore the nontrans-
verse part, m(q') 0 as q' 0 for meO so that the
self-mass is zero. Again ignoring the nontrans-
verse part if we first take the limit m-o, ln term
vanishes and we recover the well-known Schwing-
er value ~(q') = e'/~. On the other hand, the equa-
tion as it is gives w, &

(0) = —e /(27l)5,
&

which cor-
responds to a negative (mass)'.

Let us consider the particular case of strictly
local current-current interaction. For the par-
ticular value e'/g'= v the functional integral is
formally gauge invariant and as argued before,

should be equivalent to the e-~ limit of two-
dimensional QED. When the electron mass is
zero, this means that the Thirring model" for
this value of the coupling constant should be iden-
tical with the scale-invariant limit" of Schwinger's
model. In fact, for g=2w/v5 where gis the
Johnson definition" of the couplj. ng constant, the
scale dimension of the Thirring fermion is —,',
same as that in Schwinger's model, in the scale-
invariant limit. " With the same choice of the y
matrices, the fermionic Green's functions are
also identical. Since the value of the Thirring
coupling constant depends sensitively on the def-
inition of the current, "we should not expect this
g to be equal to x.

For e'/g '0 n, the Thirring model as defined
here with the unconventional cutoff does not have
a conserved current and hence is of no interest.
Only for the value e'/g'= n it coincides with the
usual definitions.

It is now possible to establish the equivalence
for non-Abelian current-current interactions for
2& d & 4. Now it is necessary to make use of
many-current interactions to recover self-inter-
actions of the gauge bosons as in the case of
scalar-spinor theories. For d=4 in addition to
one Pauli-pillars wrong-statistics fermion loops,
it is necessary" to introduce negative-metric/
wrong-statistics fermions to regularize one-loop-
gauge-boson diagrams and a higher-order-eovar-
iant derivative to regularize many-loop gauge-
boson diagrams. Thus the fermionic cutoff action
involves an infinite number of many-current inter-
actions. As with the 4p interaction in Sec. II, one
may expect to have the equivalence with a simpler
class of cutoff actions. This is further considered
in the Appendix.

IV. PHOTON AS A NAMBU-GOLDSTONE BOSON:
BJORKEN MECHANISM

In the previous section the current-current in-
teraction strength G=e'/2g was carefully adjusted
to give a massless vector excitation. This choice
actually corresponds to choosing the critical point
of the transition to the phase in which Lorentz in-
variance is spontaneously broken. To see this one
must first work with a finite cutoff. Consider the
effective potential (Ref. 23) v(8') for the variable
A, in the functional integral Eq. (3.5). This
measures the energy density i.n a state in which
A. , is constrained to have a value 9, It is form-
ally given by the diagrammatic expansion of Fig.
4. Here each external line is associated with a
factor 8, and carries a zero momentum. There
is a factor (-1) for each closed fermion loop. Be-
cause of Euclidean invariance v is a function of
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Q' only and all diagrams with an odd number of
external lines vanish. Because we do not have
gauge invariance for a finite M, even the conver-
gent diagrams do not vanish, in contrast with the
case of quantum electrodynamics. It is easily
seen that v(8') has the form f'[8&+f (GQ')).

Let us assume that as Q is varied the curvature
of v(8') at the origin changes sign and the absolute
minimum q,. smoothly changes away from 8,=0.
Then there is a continuous transition to a phase
in which the expectation values of A., and hence of
the current +,.g is nonzero. In this phase the
Euclidean invariance is spontaneously broken. '~ "

Bjorken' has conjectured the mechanism which
can do this. If 6 &0, i.e., there is an attractive
force between like particles, then it may be fa-
vorable to have a nonzero charge (- current) den-
sity in the lowest energy state of the theory. How-
ever, we will show that in a certain approximation
scheme (same as that considered by Blorken3), the
transition takes place for the normal sign of G.
The vacuum acting as a dielectric medium makes
the static force between like particles attractive
even when the bare coupling constant 6 is positive.
More simply, this has to do with the fact that the
(self-mass)' of the photon in the lowest order in
QED with a gauge-noninvariant regularization is
negative. In fact, this was crucial for the proof
of equivalence with QED. It is possible that with
more complicated cutoff actions the sign of 6 at
the critical point is reversed, when v(62) is com-
puted exactly.

If we assume the transition is continuous, 6„
the critical coupling, is obtained by setting the
sum of all terms quadratic in 8 in Fig. 4 to zero.
This gives an eigenvalue condition for 6, and cor-
responds to treating g as a mass counterterm to
make the renormalized mass of A, equal zero.
Thus in the previous section we have really chosen
the critical point of the transition to the phase
with broken symmetry.

To understand how the collective field A, propa-
gates, it is necessary to compute the generating
functional Z(8,}of one-particle irreducible dia-
grams with only 6, external lines. . This is again
given by the diagrams of Fig. 4 except that the
external lines can now carry nonzero momentum.
In the symmetric phase, the propagation will be
similar to that of a massive vector particle. In
the cutoff model there is a conserved current

o)
MS 2 +Vjyl Ml 0 + ~n sh 4 fyAS4

', a, (-k)(.~(k', rj)[5,k'+P(k2, q)k, k, ]
+ 4q, q~v (q'))a, (k), (4.2)

where v" stands for a double derivative with re-
spect to q2. If. for some reason P (k2, q) =-1, this
corresponds to a gauge-invariant theory with an
axial gauge fixing, q ~ a =0. The propagator then
has exactly the same structure as that given by
Bjorken. ' For low-energy excitations (E «M ')
there is an approximate local gauge invariance
so that P = —I and we have a massless vector
excitation. Bjorken3 has argued that local gauge
invariance and Lorentz (or Euclidean) invariance
can be recovered in the continuum limit even in
this phase. However, the divergent integrals in-
volved have not been handled carefully and many
ambiguities are involved. It is clear that if the
charge (-current} density of the vacuum is non-
zero, Lorentz invarianee is not possible because
such a vacuum responds differently to external
charges in different frames of reference. It is
therefore necessary to be infinitesimally close
to the critical point of the transition.

W'e will now compute the effective potential in
a one-loop approximation, i.e., only terms in the
first line of Fig. 4 are retained. Other diagrams
can be included perturbatively. This is essen-
tially the Hartree-Fock approximation used by
Bjorken' and others. ' However, use of the effec-
tive potential approach has the added advantage
that the true ground state is unambiguously fixed.
The one-loop approximation also corresponds to
considering the quantum fluctuations of only the
fermions and looking for classical instabilities in
the resulting effective action for 8,. Thus from
Eq. (3.5) we get

v, (a2) =-.'Z'n'- „- Tr ln t1+ ~e(y'„+m)-' g (,
(4.8)

where 8, has no coordinate dependence and 0 is
the space-time volume. The extremum 8, = q, is

' ~'"*" ~ ~ ~ ~ P ~ Q +"-

Since 8,- j =0, the excitation has only three po-
larization states (for d =4) and the scalar compo-
nent decouples in the S matrix. In the broken sym-
metry phase, it is necessary to consider terms
quadratic in a,. where 6, = g, + a, Since dv(q )/
dq,. =0, we get for the quadratic term

(4.1)

and the massive excitation will correspond to this
rather than to py, g which is equivalent to A, .

+ ~ + ~ + ~ + ~ + ....
FIG. 4. Diagrammatic expansion of the effective po-

tential for A~.
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given by

cP'k 1
(*q,. =

( ),-tr, »
. »icy,.), (4.4}

where tr is over the spinor variables only. Here
g~ = k(1 + k /M ) . By a rescaling eq,. = Q,. we re-
cover Bjorken's self-consistency condition. ' The
Tr ln term in Eq. (4.3) blows up at best logarithmi-
cally with 8. Thus there is no possibility of mak-
ing v, (8'}unbounded for any sign of the current-
current coupling G =e'/2g'. However, when G(&0)
exceeds a critical value G„ the absolute minimum

of v, shifts away from 8,. =0. In fact, whenM-~,
all convergent diagrams (those with more than
four external legs) vanish because of gauge inva-
riance. The self-energy diagram diverges similar
to M» ' (for d & 2) and has a sign opposite to the
g'A' term for G &0. Thus the critical value G,
vanishes similar to its canonical dimension if we
hold the bare charge fixed. This can make a non-
renormalizable theory renormalizable because
a power-couriting argument suggests only a finite
Dumber of counterterms.

From Eq. (4.4} we get for d = 4,

(i*= swci: m ii ('—*" ((nP+(i *+(»}—[(~'+(i '+ (()' —&(i 'Q}'i'})u '+m'-g'
2k»» Q

where

d4k =(2m)~cdk'k'sin'8 d8

(4.5)

k„2 = k (1+ k /M2)'

For m = 0 this becomes

oo 2 2

q'=2«G J
dk'k' 1- " . ~ (Ik '+q'1-lk '-q'I}

2k»» Q
(4.6)

x(l+ x)' = e'8'/M' (4 9)

and V,(x) is the function v, (a~) written in terms of
the variable x. The critical value G, is

G, M2 =(2vc)-'. (4.10)

V. MSCUSSION AND IMPLICATIONS

We will now compare and contrast the approach
of this paper with previous approaches' ' to prove
such equivalences. All previous papers have em-
ployed a strictly local fermion interaction even
for a finite cutoff. As a result two kinds of re-

A perturbation expansion in Q is highly infared
singular when m =0 and this is reflected in the
modulus sign entering in this equation. By in-
tegrating Eq. (4.4) with respect to e, we recover
v, (+'). We will do this for I=0. We have

3av,
(

2 2)
xcM x+, x +, x + —', x (47)se ' e (1+x)'

with v, (8'; 0) = —,
' v'O'. Therefore,

V, (x) = —,'vcM [(2xcGM) 'x(1+ x) + ~x++x + ~
—3 ln(1 + x) —~so (1 + x) ' + P, (1 + x) 'j.

(4.8)

Here x is a monotonic function of e6/M:

suits have been claimed in the literature. The
first' ' makes use of the divergence in the wave-
function renormalization constant to say that all
kinds of four-fermion interactions are renormal-
izable in d =4. However, the proofs are extremely
formal. In this paper divergence in the bare mass
of the coherent excitation is made use of. This has
been possible even in the case of current interac-
tions leading to gauge theories because of the
choice of a gauge-noninvariant cutoff. Equivalence
is made possible even for d & 4 without restrictions
on the renormalized parameters.

The other claim' has been that the four-fermion
theories are equivalent to fermion-boson theories
with restrictions to the renormalized parameters
and therfore may be preferable to the later as a
theory of fundamental interactions. This claim
has been exhaustively verified' in the context of
expansions about a mean field theory especially
for d =2. However, results of Refs. 11 and 12 sug-
gest that although for d & 4 such equivalences are
true and we get theories with anomalous dimen-
sions, for d =4 the only possible infinite cutoff
limit may be a free theory of fermions and bosons.
In the present approach, there is no restriction
on the parameters of the equivalent fermion-boson
theory. New parameters are hidden in the range
and the strengths of the many-fermion interac-
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tions of the cutoff action. Although all these para-
meters vanish as the cutoff is removed, it is the
way they vanish that sets the requires scales. In
particular, because the range of interactions van-
ishes in the limit of an infinite cutoff the fermionic
theory is local.

Thus in the approach of this paper, the Weinberg-
Salam model or quantum chromodynamics could
be rewritten as a local fermionic theory. Al-
though the equivalence has not been explicitly
demonstrated for a complicated system such as the
Weinberg-Salam model in this paper, it should be
noted that the crucial aspect for the equivalence
is that the cutoff dependence in the bare mass of
the bosons be stronger than the cutoff dependence
in the wave-function renormalization constant.
Renormalized perturbation theory gives quadra-
tically divergent corrections to the self-mass and
logarithmically divergent corrections to the wave-
function renormalization. This taken with the
deminstration for the d =2 in Secs. II and III can be
taken as a strong indication of the equivalence in
more complicated systems.

If almost any fermion-boson theory can be re-
written as a local fermionic theory, it would ap-
pear that there are no practical implications for
this equivalence. One place where there can be
an important difference is the case of quantum
gravity which has not been meaningful in the con-
text of renormalization theory. Once the graviton
is not a fundamental field, it is not necessary to
require just two derivatives in the action. Thus
there is the possibility that there exists a simple
fermionic action involving self-interactions via
the energy-momentum tensor which has gravitons
as coherent excitations' and a meaningful infinite
cutoff limit. The equivalent fermion-graviton sys-
tem may have the Einstein action as the effective
action at energies much lower than the scale pro-
vided by the Planck length.

Another difference of physical significance arises
if there is an intrinsic cutoff in nature, as for
example that provided by the Planck length. In the
approach of this paper, masslessness of the gauge
bosons is due to the choice of the critical coupling.
It is difficult to understand how such a special
value of the coupling could have been chosen by
nature. A different possibility is provided by the
arguments made in the Appendix. Instead of the
specific choice of the critical coupling, if a nearby
coupling is chosen, there is still a possibi. lity of
having an effective local gauge invariance at low
energies. However, at very high energies, the gauge
invariance is not exact. Note that this possibility
requires an infinitesimal, nonzero (renormalized)
mass of the photon or an infinitesimal breaking of
Lorentz invariance. There are stringent experi-

mental bounds of both of these. In the context of
these remarks reader's attention is drawn to
Ref. 24.
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APPENDIX

- In Sec. III the kinetic energy term for the photon
was generated by carefully adjusting the range of
the nonlocal current-current interaction. Is it pos-
sible to obtain the equivalence with QED by con-
sidering a cutoff current-current interaction which
is local even for a finite cutoff? As an example we
may consider the class of actions

(A1)

where P'„= P' exp(- /M'). Introducing an auxiliary
variable A,- it is seen that an explicit kinetic-energy
term for the photon is missing. Previous at-
tempts' at the equivalence have tried to generate,
this kinetic energy by using the divergences in the
wave-function renormalization of the photon. The
basic problem is that choosing the critical point
makes g [Eq. (3.5)] exactly proportional to e' so
that A, always appears in the combination eA,
Thus there is no independent parameter associated
with the scale of A, .

However, for a finite M let us choose G close to
but away from the critical point, on the side on
which the symmetry is unbroken. Then we have
a massive vector excitation with a renormalized
mass p. that goes to zero as M-~. Also for a
.finiteM, the local gauge invariance of the fer-
mionic part of the action, Eq. (8.5), is explicitly
broken. As a result the longitudinal part k~k„/g'
of the photon propagator gives a nonzero contri-
bution to the photon self-energy. Let us presume
that Ward's identity is broken to O(1/M'). By
choosing p,

' = 0(M ') appropriately, we produce a
finite and adjustable contribution to the transverse
part of the self-energy. Thus the quantum fluctua-
tions can generate a kinetic energy term for the
photon.

To see this in perturbation theory is very dif-
ficult. One problem is that because the longitu-
dinal term in the A, propagator is not well behaved
for large momenta the breaking of gauge invariance
is not 0(M ') but instead diverges with M. To
avoid this problem it becomes necessary to use a
nonlocal regularization for the currents. We will
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consider the cutoff action

2-K & -2P.AI(l+ c]l&+4&gy A2&ry
22 i 2&

(a) (b)

+ p (-p~ —m —i')$ (A2) FIG. 5. All O(e4) diagrams with A
&

external lines.
with P's as in Sec. III. Now the bare A, propagator
ls Bg ~ g with

2

Dgy g p (1 + / /A )5&y + 2 (/ 5&~ /g/&)' (AS)

We will consider all processes of O(e4) involving
only photons. These are given by the diagrams of
Fig. 5. In Fig. 5(b} we can set M-~ and we have
the usual gauge-invariant contribution (for d & 4).
In Fig. 5(a} the internal photon propagator is

/ (A + p, A )+/L' "
p, A(1+/4/A)

(A4)

The longitudinal part is singular in p, . If we first
take the limitM-~ keeping p finite, this longi-
tudinal term would not contribute because it cou-
ples to a conserved current. This is the way the
equivalence of the vector-meson theory, in the
massless limit, with QED is proved. This proof
shows the equivalence only at the level of gauge-
invariant Green's functions. We will, however,
take the p. - 0 limit differently.

For a finite M the l,-lz contributions are nonzero.
An explicit calculation gives, for the self-energy,

A/2 $+p2$+p2$+p+l 2$+p l 2

1 1 1
+ y, .~ ~ ~)y,- .

~
-y, ~ ~) y, .

~ (kQ((/, + p ')((/t+/+p)')[((0+ p)')-((0+/')]) .
(A5)

Here f stands for

(2v)' (2m~) /4(A '+ A 'g') + p' A'(1+ /4A ')

and(kg stands for (1+k'M '} '. Retaining only terms of O(M '), we get

(AV)

It is presumed that the terms independent of P are
removed by using g as a mass counterterm. Then
it may be verified that the k integration behaves
like d'k/k4 and hence convergent for d & 4. For
terms quadratic in p we get a contribution propor-
tional to e'A~ 'p. 'M '. Thus by choosing
p. o.e'M 'A" ' and taking the local limitM, A-~ in
such a way thatM 'A~ 2-0, we get a finite and
adjustable contribution to the photon self-energy
of the form 5,o&p'+Pp, pz, where &andP are con-
stants of O(eo}. This is effectively a kinetic energy
term for the photon. In this limit, terms other than
quadratic in p all vanish.

Notice that this choice of p. corresponds to an
0 (s') contribution to & in addition to the O(e') term
coming from the eigenvalue condition. Therefore,
we are indeed having an independent scale as-
sociated with A, Also this new contribution to the
self-energy is not transverse. Hence the equiva-
lence with QED can be only at the level of gauge-
invariant quantities.

If we consider many-photon exchanges, Fig. 6,
for a finite A and M there are anomalous contri. -
butions to many-photon scattering amplitudes.
To any order, for a fixed A, the leading behavior
in M remains similar to M 2. Let us presume
that the contributions to the wave-function re-
normalization sum to an expression of the form
e'A'M ' exp(e~A" p, ~m ~+'). Then by choosing
p &e A' '(ln eA/M) ' and M, A —~ such that
M 'exp(eA'~') 0 we generate the required kinetic
energy. It is to be hoped that in the same limit,
anomalous contributions to all other vertices
vanish in the Abelian case but those for the three

FIG. 6. Higher-order contributions to the photon self-
energy.
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and four gluon vertices survive in the non-Abelian
case.

The singularity in p [Eq. (1.8)] has been crucial
for all our considerations. If we choose a regular-
ization in which the "kinetic energy" term in Eq.
(AS) is not transverse, this singularity is absent.
However, as mentioned in Sec. IV, there is a
conserved current in the cutoff theory and the
residue of the propagator for this current must
have a mass singularity. Hence the choice in
Eq. (AS) is justified.

Equivalently one may work in the broken sym-
metry phase. Now the vacuum expectation value

q, of A, [a measure of the charge (-current) den-
sity of the vacuum] is to be varied carefully. With
e = —p = 1 in Eq. (4.2) we get for the propagator

1 k, e~+ c;k~ k,k, k,k, 1 v" (0)
k' '~ k e (k e)' (k e)' 2 q'

(AS}

where & is a unit vector. The last term is singular
at p= 0 and p here plays the role of p, in Eq. (AS).
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