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An interior solution for a uniformly accelerating particle is constructed and joined continuously with the exterior
vacuum C-metric. At the boundary of the interior solution there exists a discontinuity in the pressure which is
responsible for the object's uniform acceleration.

I. INTRODUCTION

The static vacuum C-metric represents the
geometric properties of space-time about a uni-
formly accelerating particle. The C-metric solu-
tion is the generalization of the Schwarzschild so-
lution which includes uniform linear acceleration.
Even though this solution describes an accelerat-
ing object which is emitting gravitational radia-
tion, it can be expressed in a static coordinate
system which is rigidly attached to the uniformly
accelerating particle. It is the purpose of this
paper to construct an interior solution for this
vacuum C-metric.

The vacuum C-metric was first constructed in
1918 by I.evi-Civita. ' It was rediscovered in 1961
by Newman and Tamburino' and its properties and
physical interpretations have been explored by
several authors. ' "

The question of what provides the acceleration
of the particle is an interesting one. Kinnersley
and Walker' have shown that in the exact solution
the two-surface surrounding the particle possesses
a conical singularity at the north or south pole.
In an asymptotic flat coordinate system this coni-
cal singularity manifests itself as a line singu-
larity. " Kinnersley and Walker suggested that
the nodal singularity is a manifestation of the
neglect of the force necessary to accelerate a
massive particle. Ernst' showed that for the
charged C-metric solution the nodal singularity
could be removed for small acceleration by the
addition of an external electric field.

In this paper, we suggest an alternate view of
what might produce the acceleration of the particle.
We conjecture that the nodal singularity is a mani-
festation of the uniform acceleration and is not a
direct consequence of neglecting the external force
that is necessary to accelerate the object. We
suggest that the acceleration of the object is a
consequence of the reaction of the emission of
gravitational radiation that the particle is aniso-
tropically emitting. We will support this claim by
constructing an interior solution and joining it con-
tinuously onto the exterior vacuum C-metric. In
so doing, we will form a discontinuity in the pres-

sure at the surface of the object. It is this dis-
continuity in the pressure which gives rise to the
force which is necessary for the acceleration of
the object.

G(p) =1 —p' —2Amp',

F (q) =- 1+q' —2Amq'.

(1b)

(1c)

m and A are related, respectively, to the mass
and acceleration of the particle. The (t, q, p, u&)

are related to the more familiar spherical co-
ordinates (t, x, 8, P) by the transformations

1
A(p+q) '

G(P) = sin'8, (2b)

(2c)

In terms of the (f, x, 8, Q) coordinates, the line
element in Eq. (1) becomes

dH 2 sing cosg
e ap(l+3Amp)

x'cos'8
1

A'Hsin28
p'(1+ 3Amp)' H

(3a)

where

a = 1 —2ArP —A'r'(I —P') — (1 —ArP)'
y

=+2@2+ (3b)

and p is related to 8 by Eq. (2b).
If we set A =0, the line element in Eq. (3) re-

duces to the Schwarzschild solution in the standard

II. INTERIOR SOLUTION

The vacuum C-metric assumes its simplest
mathematical form in the (t, q, p, a) coordinate
system'4

1 2 ]2
dg' dp 2« =A,

( ), A &(q)« —
~( )-G( )-G(p)d~

(la)

where
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spherical coordinates. If, instead, we let m go to
zero in E(l. (3) we get a flat-space line element as
expressed in a spherical coordinate system whose
origin is undergoing unifor m ace ele ration.

The line elements in Eqs. (1) and (3) represent
an accelerating Schwarzschild-type object. It is
the purpose of this paper to produce an interior
solution mhich can be joined continuously across
some boundary with this exterior vacuum solution.
Because of the acceleration this interior solution
will not only contain information about the struc-
ture of matter but it will also include the proper-
ties of the source which is producing the accelera-
tion.

%e require that the stress-energy tensor that
describes the matter portion of the interior C-
metric solution be analogous to the Schmarzschild
interior solution of constant density. As we let
the acceleration vanish in the C-metric interior
solution the line element will reduce to the interior
Schwarzschild solution

red-shift in the exterior C-metric is located at
q =constant and the metric terms for the angular
coordinates (p, &u) assume a simple form. As was
the case for the interior Schwarzschild solution
we assume the shape of the object to be analogous
to the shape of the surface of infinite red-shift.
Therefore we assume the boundary of the object
to be described by q =constant -=q, . Also, re-
quiring the axial symmetry of the interior solu-
tion to be the same as the vacuum line element
requires

E =D ' = G(P) .

In addition, we assume that the metric coefficients
S and C are only a function of q. Therefore, the
interior line element is assumed to be of the form

1
ds A» (p+ q)'

2 2

x rPF(q)()(q)di' —— — —G(i)dw'), (7)

Requiring the matter to have constant density will
uniquely determine the properties of the source
which is responsible for the acceleration.

Equation (4) represents the line element for a
spherically symmetric object with constant den-
sity p =3m/4m', ' The metr. ic tensor and its first
partial derivatives as defined by Eq. (4) join con-
tinuously across the boundary at r =r, with the
vacuum Schwarzschild solution. These conditions
imply the I.ichnerowicz junction conditions, which
state that for a perfect fluid-the pressure must
vanish at the boundary and that, if n„ is the unit
normal to the boundary at r =ro, the fluid four-
velocity u" must satisfy u"n„=0 on the boundary. "
These I,ichnerowic, z junction conditions are too
restrictive for accelerating objects because we
must have. a discontinuity in the pressure at the
boundary in order to produce a force which causes
the particle to accelerate.

In constructing the interior C-metric solution it
is more convenient to work with the (t, q, p, v) co-
ordinates where the line element assumes the
form

where &(q) and, @(q) are to be determined by the
field equations.

The stress-energy tensor is assumed to be de-
scribed in terms of an energy density and pres-
sure. Part of the contribution to the stress-ener-
gy tensor will be due to the structure of matter
and the other part mill be from the source which
is responsible for the acceleration. This separa-
tion of the matter and source terms is not covar-
iant, however, it is useful. from a mathematical
point of view in constructing a solution which
is analogous to a constant density of matter. The
components of the stress-energy tensor T„„are
assumed to be of the form

M g g (p») + ps~a t t i

T~~=P~g ~~

T„„=P,g„„.

(8a)

(8b)

(8c)

(8d)

p is the energy density of matter, p, is the ener-
gy density of the source which produces the ac-
celeration, and P,. are the anisotropic components
of the pressure due to both the matter and source
terms.

Using the line element in Eg. ('t) and the stress-
energy tensor in E(l. (8), the field equations

ds»=
» (Bat»+Cdq»+Ddp»+Ed(d»). (5)A»(p+ q)'

In this coordinate system the surface of infinite

8 „—»g„g = 8mT„, —

become

(9)

2

&„=(p +p, )g« = — [(6E+6 —2qE, —2q') + 2p(2q —E,—6&mq»)Q«, (10a)
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A.'T„P,=g„= 6
6 T+ 6—2qT;'2q —2qE ')+—R.p(2q —F'; SAmq' —E ~J~ g„, (10b)

n
6E+6 —4qF —2qF —~+q'I F +y& "+E

16m ' Q i '" ' Q Q Q

I

+2P 2q —2E,—E '-P+6Ampq+('P+q) F „+~T, '+F '"- ,'F ;—-g (10c)

and

A '
2

p = ——p(2q —E —6Amq ).
Bm .a

(12)

To construct a solution which is analogous to
the interior Schwarzschild solution of constant
density we require p to be a constant. From Eq.
(10a) we get the following differential equation for

&(q):

&6m
6F- 2qI" —2q~ + 6 = — pQ2

(13)

where a comma represents an ordinary derivative.
We notice that the field equations in (10) contain

angular terms as represented by the p variable.
This result is to be expected because of the ani-
sotropy produced by the acceleration. We can
now conveniently separate the energy density into
two parts. On the right-hand side of Eq. (10a) we
identify the p-independent term with the energy
density of matter, and the p-dependent term we
define to be the energy density of the source p„
i.e.,

A,2

p = — (6T+ 6 —2qF, —2q2)

singular.
Requiring that the g„component of the metric

join continuously across the q =q, boundary gives
us a relation between the mass and density. Com-

paring Eqs. (1) and Eq. (7), where F is given by

Eq. (14), we have

3pl
p = „A.q„. (15)

3 1 —2Amq, "' 1 '
(16)

We have now determined all the metric compo-
nents for the interior C- metric solution. The in-
terior C-metric solution is given by the Eq. (7),
where G(p) and Q(q) are defined in Eqs. (1b) and

(16), respectively, and E(q) is given by

We still have a great deal of freedom in the de-
scription of the stress-energy tensor through the
choice of Q(q). We choose the simplest function

of q which will allow the interior metric to join
continuously to the exterior metric at q = qo and

will reduce to the Schwarzschild interior solution

as the acceleration vanishes. The simplest choice
ls

The solution of this equation is
E(q) = -1+q' —2Amq, ', (17)

F(g) =- (1+,p )+q*+xq'. (14)

K is a constant of integration and is set equal to
zero since it is analogous to the singular term in

the interior Schwarzschild solution which is
dropped in order that the interior solution be non-

where qo is a constant defining the boundary of

the accelerating object. The matter energy den-

sity is given by (15) and from (12), (10b), (10c),
and (17) the density of the source causing the ac-
celeration and the interior anisotropic pressure
are given by

=3
p, = A'Pq~,

le 0

1 —q'(1 —2Am q, '/q')

4) 44
q i 1 —2Am q, q

)
q

' (p+q)(1+-'Q "')
q4 1 —2Amq '/q'

(18a)

(18b)



HAMID FARHOOSH A5 D ROBERT L. ZIMMERMAlV

At the surface of the object there is a discontinuity in the pressure. Evaluating Eqs. (18b) and (18c) at
q =qo, the discontinuity in the pressure is

Sm A'(q, +p)
4v 1 —2Amq, '

(P2)o = 1+ 2 1+——pqa(l —2Amqa) = (P,)
Sm A'(q, +p), p
4'F ~ —2c4&Eqo qo

(19a)

(19b)

where the index 0 indicates the fact that the quantities are being evaluated on the surface.
P, represents the pressure normal to the surface q =q„and Eq. (19a) represents the discontinuity in

this pressure at the surface. This discontinuity represents a force normal to the surface, Integrating
this force over the surface of the object wil. l give the net force acting on the surface of the object. In the
forward hemisphere P&0 and in the backward hemisphere P&0. Therefore, upon integrating (19a) over
the surface of the object there will be a net force directed along the symmetry axis.

It is probably more familiar if we transform Eqs. (7), (15), and (18) to spherical coordinates (t, x, 6, &fi)

Using transformation ecluations (2) we have1, 2 sing cosg x' cos'6) sin'g
(20a)

where

2
+2@2

0

I 2m/R lxsa 1 2

g2 1 —2m' 2/Ro'(1 —Amp)2) 2

(20b)

3m PRO'T„-,1+, (I-A~p) g„,
4gRO J

g~& Sm
1 ApR, ' 1, 2 1+ 2Q

"' (1 —Arp)'[1 —2m''/R, '(1 —Amp)']-A'z'
g "9 4' ' x' S (1 —Arp)' 2my 2/R &(I A~p)2 ~rr&

ApRO', 2 1+ &Q
"' (1 —Arp)'[I —2m''/R, '(I —Arp)2] -A'x'

4', ' r ' S (1 —Arp)' 1 —2m~'/R, '(1 —A~p)'

7 A'~' 1+ -'Q "' AP(1 —A~P)R, '
E+sin'8 .(1 —Amp)' 1 —2m''/R, '(1 —A~p)'

Sm ApR & 2 1+ ~q-&&& (l A~p)&[1 2m@2/R &(I Ayp)2] A&y&
7' =, 1+,' 1 —A&P)' ——-

+& 4~R, ' ~' 8 (I -A~P)' 1 —2m''/R, '(1 —Arp)'

1+—'Q "' Ap(1 —Arp)R, '
(1 —Amp)' 1 —2mr '/R, '(1 —Amp)'

(2la)

(21d)

In these. equations R, is the value of the radial co-
ordinate x on the surface on the equatorial plane
(where p =0) and is related to q, by

qo= ——— .1
(22)

0

As the acceleration goes to zero the interior met-
ric and the stress-energy tensor given by Eqs.
(20) and (21) reduce to those of the interior
Schwarzschild solution in the standard spherical
coordinates.

III. CONCLUSIONS

The interior C-metric solution given by Eqs.
(7), (lb), (16), and (17) [or equivalently by Eq.

(20)] is an interesting solution because it joins
an interior solution of an accelerating object with
a vacuum solution that contains gravitational radi-
ation." To the authors' knowledge this is the only
example of its kind. There are two rather unusual
properties illustrated by this solution: (1) The
first derivative of the g«and g„components of the
metric are discontinuous across the boundary; (2)
the stress-energy tensor becomes singular at the
origin.

Although the components of the metric tensor
are continuous across the boundary q=qo the
first derivatives of g«and g„have discontinuity
across the boundary which are
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(gtt, q)0 I(Rtg, q)jggidg ~0 t(ggt, q)outside)0

6Am
(p+q, )'(1 —2Amq, )

'

6Amq02
&'(P+ q, )'(-1+q,

' —2Amq, ')' '

These discontinuities manifest themselves in the
stress-energy tensor as a discontinuity in the
pressure across the surface of the object, as given
by Eqs. (19). As the acceleration goes to zero
these discontinuities vanish, as they should.

That the first derivatives of the metric compo-
nents and the pressure are discontinuous across
the boundary are not believed to be peculiar to
this solution but must be true in many cases of
accelerating solutions which are joined to the
vacuum. The discontinuity in the first derivatives
of the metric are necessary in order to produce
the discontinuity in the pressure at the surface of
the object. A discontinuity in the pressure must
exist in order to create the force necessary for the
acceleration. Furthermore, it is conjectured that
there must exist discontinuous first derivatives at
the boundary for solutions which join onto exterior
vacuum solutions which contain gravitational radi-
ation in order to create the force necessary to
accelerate the object which is required for the
emission of radiation.

It has been shown by Lichnerowicz" that, given
an interior solution of the field equations for which

there exists a hypersurface S on which the pres-
sure is zero and u"n =0, then there exists a
physically unique vacuum metric on the other side
of S for which g„and g,„are continuous across
S. It would be interesting if a similar statement
could be made about accelerating solutions. That
is, for accelerating solutions where the first de-
rivatives of the metric tensor are not continuous
across S does there exist a unique vacuum on the

other side of S for which the metric is continuous
across 5 p

The second unusual property of this solution is
that the stress-energy tensor becomes singular at
the center of the object. Furthermore, near the
center (x=0) and at those directions where p is
negative the energy density becomes negative.
These properties are immediately evident in Eqs.
(21). It is felt that this behavior is peculiar only
to solution for uniform acceleration. Uniform
acceleration is physically very artificial and must
have an infinite energy source in order to preserve
the indefinite accelerating motion. In a physically

realistic accelerating system one does not have
continuous acceleration for an indefinite period of
time.

It is well known that the vacuum C-metric rep-
resents an object undergoing uniform acceleration.
We have joined this solution to an interior solution
which has a force acting on the surface of the ob-
ject. We do not know the meaning of this force nor
its origin. Since this force is the only force in the
solution one would certainly expect it to be respon-
sible for the acceleration of the object. It is con-
ceivable that part of this force may also act to
produce a surface tension on the object.

We still have not answered the interesting ques-
tion about what causes the particle to accelerate;
that is: What is the origin for the discontinuity in
the pressure? Does the discontinuity in the pres-
sure represent a nongravitational force which
causes the particle to accelerate which in turn
will cause the emission of radiation, or does the
emission of the gravitational radiation produce a
recoil which causes the particle to accelerate
which in turn will. cause a discontinuity in the
pressure'? This latter explanation is rather bi-
zarre but similar to the runaway solutions that
exist in electromagnetic theories.

In order to study the effects of the radiation re-
action one must go to an asymptotically flat coor-
dinate system. In such a coordinate system the
radiation and its effects can be identified. This
was done in Ref. 13 where the radiation, mass
loss, and momentum for the vacuum C-metric
were investigated. The disadvantage of this ap-
proach is that in going to an asymptotically flat
coordinate system the answers cannot be ex-
pressed in a closed form but must be represented

.by an expansion. This expansion causes the coni-
cal singularity to manifest itself as a line singu-
larity. The information about the effects of the
radiation reaction is contained in the line singu-
larity. In addition, the line singularity leads to
divergent results in the expressions for the mo-
mentum and mass loss. It is also not clear just
how these vacuum results couple back to the prop-
erties of the interior solution to produce a radia-
tion reaction.

If this is indeed an example of a runaway solu-
tion it is a highly idealized case where the gravi-
tational radiation just self-sustains the uniform
.acceleration. In general, this idealized example
will not be plausible; however, it does give rise
to speculation of runaway solutions that exist for
particles in electromagnetic theory. If space-
time does allow for such runaway solutions or
singular structure, such circumstances would lead
to unusual conclusions about the final states of
matter.
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