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This is the first of three papers on the strong-coupling expansion of the renormalized effective potential in gP"
quantum field theory in d-dimensional Euclidean space-time. In this paper we show how to express the effective
potential in terms of one-particle-irreducible strong-coupling graphs. We describe two methods for obtaining
analytic expressions for the vertices of these graphs. We also present an algebraic technique for evaluating the
graphs on a Euclidean space-time lattice in arbitrary dimension d.

I. INTRODUCTION

In a recent letter' we reported some numerical
and analytical results on the renormalized effect-
ive potential in g$4 field theory in the strong-coup-
ling limit. Here and in the following two papers
we present the detailed results of this investiga-
tion and give a thorough treatment of the calcu-
lational procedures. Roughly speaking, our cal-
culations consist of (1) obtaining the unrenorma-
lized lattice strong-coupling series for the effect-
ive potential, (2) performing a mass and wave-
function renormalization of this series, and (3)
taking the continuum limit of this series by extra-
polating to zero lattice spacing. The renormalized
strong-coupling expansion that we obtain in the
continuum is a series in powers of the dimension-
less parameter M' ~/g, where M is the renorma-
lized mass and g is the bare coupling constant.
The calculations we describe here are done in a
Euclidean space-time of arbitrary dimension d.
Our objective is to obtain detailed numerical re-
sults for the first four coefficients of the effective
potential and the P function. These numerical re-
sults are given in the second and third papers of
this series.

In this paper we concentrate on the analytical
machinery necessary to derive the lattice strong-
coupling expansions of a field theory with polyno-
mial interaction P(Q ) in d-dimensional space-
time. Although we focus ong$4 theory our methods
extend trivially to theories having more general
polynomial interactions.

Our starting point is the vacuum-persistence
functional (0.~0 )~ in the presence of an external

source J:
&0, ~0 &, = Z[d]

exp — d~g 8 2 2

+ I p'/2+ gp )4 Jp]-
(1.1)

where N is a normalization factor independent of
twhich mak'es Z[0] = 1. The connected Green's
functions W„(x„x„.. . , x„) of the theory are com-
puted from Z[J] in (1.1) by taking functional der-
ivatives with respect to the external source:

li'„(X„.. . , x„)= ~, , . . . &, , 1nZ[J] . (1.2)
j=Q

Later in this section we show how to derive a set
of graphical rules for the lattice strong-coupling
expansion of the Green s functions of the theory.
The graphs in this expansion are organized by the
number of free inverse propagators D '(x, y)
= S26 (x —y); this is in contrast with the conventional
weak-coupling expansion whose graphs are organ-
ized by the number of bare vertices. The Green's
functions are obtained by summing over all graphs,
the contribution of each graph being the product of
its vertices, its symmetry number, and the value
obtained by integrating over the positions of the
internal vertices.

In Sec. II we give a detailed derivation of the
vertices of the lattice diagrams. In fact, we give
Aeo different strong-coupling expansions of the
vertices, valid in different regions of bare par-
ameter space, the first one for fixed m' and the
second one for large negative m'. In a previous
paper' we used the first vertex expansion to solve
for the energy eigenvalues of the anharmonic os-
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cillator as a series in powers of m'/g'~'. A pre-
liminary discussion of the second vertex expansion
was also given recently. ' Here we compute the
effective potential using both vertex expansions
and in the second paper of this series we give
detailed numerical comparisons of the continuum
extrapolations of the two series.

In Sec. III we give a very simple algebraic pro-
cedure for evaluating graphs (summing over the
positions of all internal vertices) on a d-dimen-
sional hypercubic lattice. We find that the vacuum
graphs, which are important because they deter-
mine the effective potential, have a very simple
form: every graph having n lines D ' is a polyno-
mial in the dimension d of degree n. Thus, we
have a very simple analytic continuation of the
lattice theory to arbitrary complex dimension d.
In the Appendix we discuss the connection between
our results and the way results are usually pre-
sented in statistical mechanics calculations.

In Sec. IV we show how to express the effective
potential in terms of one-particle-irreducible
graphs, where in strong-coupling expansions one-
particle irreducibility refers to the lines repre-
senting the free inverse propagator D '. We con-
clude this paper by displaying two unrenormalized
lattice strong-coupling expansions for the effect-
ive potential, one for each vertex expansion. The
first expansion is a double series in powers of the
parameters

f = (ga' ~} ' ' and s = m'a'

where a is the lattice spacing. The second expan-
sion is also a double series in powers of o. =
—m'a~ '/g and 5 = gm 4a ~.

We conclude this section by briefly recalling the
derivation of the graphical rules for evaluating
Green's functions on the lattice. We rewrite (1.1)
formally as

dinary integrals on a lattice:
-- E(~,), ~~ E(~,)Z, [J]=N', „, E(0') =N'exp

I dg»E(0')

x= ai,

4 (x) = 4 (~f) = 0„
e,)i-,

f d'x (t (x) = n'Q t,(,)
ee OO

S x =lim d
a 0, f
a=ad

To compute the vertices we first expand E(y)/
E(0) as a power series iny:

E(0) ~OX,(2n) i
'

where

(2.3)

A, = dx a" '"exp -a" gx' 4+ m'x' 2 . 2.4

The A, /A, are the disconnected vertices of the
theory. To obtain the usual connected 2n-point
vertices L,„we must expand the logarithm of (2.3):

E(o) ~(2 )i' (2.5)

where E(y) is an ordinary one-dimensional inte-
gral

p(y)=f exp[-e (m 4'ly+gx l4 —yx)ldx
(2.2)

and N' is a new normalization constant independent
of J'. To derive (2.1) we use the definition of the
path integral as a limit of a lattice structure in
which we have made Euclidean space-time dis-
crete:

g[d) = exP(~ fd xfd'y D '(x-'y) g, (d), This result was discussed at length in Ref. 2 with
the difference that the bare mass term was not
included in (2.4) but was instead included in the
definition of & '(x —y).

where

First method for expanding vertices

The two expansions of the vertices that we re-
ferred to earlier originate from the two different
ways of evaluating the integral in (2.4) in the
large-g regime. The first method consists of ex-
panding the integrand of (2.4} in powers of m' and

then integrating term by term. This produces the
following series for &,„:

r 4 ' ' (-86)' 8 1 ll
I,ga~, .o r t 2 4

II. EVALUATION OF THE VERTICES

To obtain the vertices of the theory from Z0[J']
in (1.4) we first write Z, [J] as a product of or- (2.6)

gled) = gfPd exp fd'x(m'4'le+ gd'l4 dd-l . —
- (1.4)

From (1.3) we readoff thebarepropagator D '(x-y)
= &'5(x -y) for the graphs of the theory. In order
to calculate graphs on a lattice we interpret
& '(x —y) as its lattice counterpart in terms of
Kronecker 5 functions [see (3.2)]. The vertices
of the theory are obtained from ZJZ] in (1.4) using
two different series expansions in the next section.
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where s and c are dimensionless variables defined by

s —m'a' c= (ga' ~} ' '

From (2.3), (2.5), and (2.6) we obtain the first eight vertices

L = 2Rt+ (4R'- l)se'/2+ 2R's'e'+ (48R' —l)s'c'/24+ (96R' R-)s t'/48 + (80R' —R')s't'/40

(2.7)

+ (480R'- VR')s6~'/240+ (80640R'-1344R'+ 5)s'e8/40320+. . . ,

L~ = (- 12R'+ 1)e'+ (- 24R'+ 4R)se' —(144R4 —16R'+ l)s'e /44 —(96R' —8R' - R)s'c'/2

—(720R' —48R' —9R'+ 1)s'c' /12 —(8640R' —480R' —126R'+ 5R)s'e'/120

—(80 640R' —3840R' —1344R'+ 48R'+ 5}s'e'/960+

L, = (240R'- 24R)a'+ (720R'- 144R'+ 5)sc'+ (1440R' —264R'+ 17R)s'c'

+ (2400R' —384R'+ 2R')s'e'+ (14400R' —2016R' —82R'+ 21R)s &'/4

+ (1209 600R' —149 760R' —l2 480R'+ 1872R' —85)s'e'/240+. . . ,

I.,= (- 10 080R4+ 1344R' —30)e~+ (- 40 320R'+ 9408R' —492R)sc'

+ (- 100800R'+ 24192R —2004R + 40)s e'+ (-201600R'+ 45696R' —26V6R'+ 68R)s'e'

—(2 822 400R' —591 360R'+ 16 V04R'+ 3040R' —65)s a'/8+. . . ,

L,o= (725 760R' —120 960R'+ 4632R)e'+ (3 628 800R' —96V 680R + 69 OV2R —960)st'

+ (10886 400R' —3 144 960R'+ 319992R' —10 440R)s t'

+ (25401600RB—7257600R'+ 681792R4 —28320R'+ 375)s'a'+. . . ,

L„= (- V9 833 600R'+ 15 966 720R~ —877 536R'+ 9120)e'

(2.8)

+ (- 479 001 600R'+ 143 700 480R' —12 922 272R'+ 333 840R )st'

+ (- 1 676 505 600R'+ 558 835 200R' —67 402 368R'+ 3 063 072R' —29 550)s'e'+. . . ,

L,~
= (12 454 041 6. 00R' —2 905 943 040R'+ 208 143 936R' —4 284 OOOR)c'

+ (8V 178 291 200R' —29 059 430 400R'+ 3 141 186 048R~ —119048 832R2+ 887 640}s&8+

L„=(- 2 615 348 736 OOOR'+ 69V 426 329 600R' —61 578 316800R + 1 918 393 344R2 —11503 440)E',

where R = 1'(f)/I'( —,'}=0.337989120.
It is important to notice that the order-E" con-

tribution to the graphs for the 2k-point Green's
function contains exactly n —k internal lines D '
connecting vertices L, with m ~ n. Thus, the
power of E counts the number of D ' lines in the
graph; that is, organizing the graphs in powers of
a is exactly equivalent to organizing the graphs in
powers of D ' or numbers of internal lines. This
can be seen clearly from Figs. 1 and 2 of Ref. 2.
Furthermore the power of the parameter s counts
the number of m' mass corrections to the zero-
bare-mass theory.

Second method for expanding vertices

The previous expansion has a defect from the
point of view of renormalization theory. For ex-
ample, for the anharmonic oscillator (d = 1) one
finds that in the limitg-, a 0, m fixed, the
renormalized mass M (defined, say, as the low-
est pole of the two-point Green's function) ap-
proaches as g'~'. However, in field theory we
wish to allow g to tend to ~ keeping M fixed. In
this limit the anharmonic potential becomes a
double well and m' tends to —~. This violates the
original assumption (that m' can be held fixed)
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which was used to derive the expansion in (2.6).
In the second paper in this series we will see
that the renormalized extrapolants for the renorm-
alized effective potential which are based on the
method-1 vertices in (2.8) converge slowly. We
presume that this slow convergence is due to the
above problem.

One can use a mean-field calculation to estimate
the growth of m' as g ~ with I held fixed in a
d-dimensional quantum field theory. The leading
mean-field approximation to the gap equation is4

gx'/4+ m'x'/2 has a vanishing derivative at x,
= (- m2/g)'i' T. o keep this minimum at a fixed
value of x we let

m'= -g~a' " (2.9)

where 0.'is a dimensionless parameter which, as
we will see, counts the number of D ' lines in
graphs in the same way that e does for the method-
1 vertices in (2.8).

The simplest way to calculate the A,„makes use
of the formula

g d"k
(2v)~ k'+ M' '

Thus, for fixed M', we have for d& 2

m'- -gM' ' (g -~) . where

a'" '
g dai (2.10)

In the regime of large negative mass we evaluate
the integral representation for A „ in (2.4) by 1 ap-
lace's method of moving maxima. We notice that

I(o.) = dx exp[- a~g(x'/4 —a' "nx'/2)] . (2.11)
wQQ

Laplace's method applied to (2.11) gives

( ) ( ii2 ni~ i, 105 2 3465 ~ 675675 4 43648605, 7027425405 6 677644592625
32 128 2048 8192 65 536 262 144

609 202 488 V69 875
~8 78 180 986 058 800 625 9

' 22 563 032 576'569 860 375
8 388 608 33 554 432 268 435 456

= 2(go!v)-'i'e'i' g 1"(2n+ &)5"/ni, I (2.12)

where

e=gm 4a"= ~'n ' (2.13)

Equation (2.12) is obtained easily by recognizing that (2.11) is the integral representation for the parabolic
cylinder function D, (i'm/v2g) The ser. ies in (2.12), which is valid when g/m~ is small for fixed a, is
the asymptotic expansion of D,i~ for large negative argument. Similarly, (2.6) is the Taylor expansion
of D i» for small argument. The weak-coupling series, not discussed here, corresponds to expanding

j / 2 asymptotically for large positive argument.
From (2.10) and (2.12) we compute a series expansion for A,„having the form A,„= o.'(power series in

5). Finally, using (2.3) and (2.5) we obtain the following expansions for the first eight vertices I„„:
L2= a- a6- 3&6 —24a6 —297&5 —48960.5' —100278+5 +. . . ,

I 4= —2& + 6Q 5+ 12m 5 + 102' 6 + 1314&'6 +-222660.'6'+ 464940' 6'+

L, = 16@ —72@ 5- 966'52 —1008m'5 —13824m 5 —242 712m 6' —5 187456m'6 +.. . ,

L8= 272m + 1632@ 6+ 960m 6 + 18432m 63+ 270432m 54+ 4921344~ ps+ 107640576n4g +
(2.14)

Lio 7936@ 59 520& 6 + 9600K 6 552 960K 5 8 54V 840& 5 16080V 680K 6 - 3' 594 792 960(1 6 + ~ ~

12 = —353 792+ + 3 184 128m 6 —2 901 504m & + 25 576 704m ~ + 399 052 8

+ 7733366784m 6'+ 176431 7168640.'6'+ . . . ,

Li4= 22 368256a —234866688+ 6+ 390168576m'5 —1 76V 241 728m'|i' —25 846 087680m 5~

—514502295552m 6'-11962793816064m 6 +. . . ,
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I ie = —1 903 757 3120.'+ 22 845 087 7440, '6 —55 084 843 008m'5 + 177421 787 136m'5

+ 2 214 464 790 5280, '5~+ 45 277 872 390 1440'5'+ 1 OV1 598 216 937 4720'5'+

23

These I,„are the method-2 analogs of the ver-
tices in (2.8). In analogy with the variable e, the
power of a counts the number of D ' lines and the
power of 5 counts the number of corrections to
theg ~ limit of the theory. The case 5= 0 is
referred to as the Ising field theory. '

III. ALGEBRAIC METHOD FOR EVALUA, TING
d-DIMENSIONAL GRAPHS

In this section we describe a systematic alge-
braic technique for evaluating diagrams on a cu-
bic Euclidean space-time lattice of arbitrary di-
mensiond. We ignore here the contributions from
the vertices because they are multiplicative con-
stants which can be included after the graphs have
been evaluated.

The basic line element from which all graphs
are constructed is the inverse propagator D '(x, y).
In the continuum D '(x, y) takes the form

I

down each of the d axes. There are 2d such posi-
tions.

(3) represents the 2d positions three units up
and down each of the axes.

(11) represents the 2d(d- 1) positions, one unit

up or down each of two different axes.
(12) represents the 4d(d —1) positions, one unit

up or down one axis and two units up or down a
different axis.

(111) represents the 4d(d —1)(d —2)/3 positions
one unit up or down each of three distinct axes.

Using this notation we can represent the class of
matrices that arises in the evaluation of propaga-
tor graphs on a lattice, specifically those matri-
ces whose entries in the (1) positions, (11) posi-
tions, (12) positions, (2) positions, and so on, are
all the same. For example, in one dimension, we
represent the matrix (6, 3, —1, 3, 6) by 6(2)+ 3(1)
—(0). In two dimensions we represent the matrix

D '(x, y)= S'6(x-y). (3.1)

Notation

On a lattice D '(x, y) can be represented as a
matrix. For example, on a one-dimensional lat-
tice of lattice spacing a (3.1) becomes

D a (6j j' i 26j j+ 6i y j) (3.2)

which may be formally represented as the one-di-
mensional matrix

D '= a '(1 —2 1). (3.3)

On a two-dimensional lattice D is the two-dimen-
sional matrix

8 9 8

8 7 6 7 8

3 9 6 2 6 9 3

87678
8 9 8

by 3(3)+ 8(12)+ 7(11)+9(2)+ 6(1)+ 2(0). In d di-
mensions, the matrix representation of D ' is

D '= „,[(1)—2d(0)]. (3.6)

(3.4)
Clearly, the advantage of this notation is that it
reduces a d-dimensional matrix to a one-dimen-
sional linear combination of vectors.

On a d-dimensional lattice D ' and all other
propagator graphs are quite cumbersome to rep-
resent using the above kind of matrix notation.

Thus, we introduce a more compact notation':

(0) represents the position at the center of the
d-dimensional matrix.

(1) represents the positions one unit away from
the center of a matrix in all directions. Note that
in a d-dimensional matrix there are 2d such posi-
tions, one unit up and one unit down each of the d
axes.

(2) represents the positions two units away from
the center of a matrix in all directions, up and

Parallel structures in propagator graphs —dot products

In the evaluation of propagator graphs (graphs
having two external legs) the simplest structure
involves repeated connections between two points.
For example, in Fig. 1(a) we have two lines join-
ing the two vertices in parallel. In one dimension,
using a clumsy notation, we could evaluate the
graph in Fig. 1(a) using (3.2):

13(6jjg$26/j+5$j)6(6jjg+46j+ l5jgj)
I I

We obtain this result using the fact that a Kron-
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(a)

(b)

(c)

(c)
FIG. 1. Propagator graphs with repeated connections

between two points. FIG. 2. Propagator graphs with series structures.

ecker 6 is a projection operator: The product of
two different Kronecker 5's vanishes and the
square of a Kronecker 6 equals itself.

To generalize this argument to d dimensions, we
observe that the objects (0), (1), (11), (2), . . . sa-
tisfy simple projective (orthonormal) dot product
algebraic relations

0= (0) ~ (1)= (1) ~ (11)= (2) ~ (21)

= (2) (o)=. . . . (3.6b)

(o) (o)= (o), (1) ~ (1)= (1),
(11)~ (11)= (U), (2) ~ (2)= (2), . . .

(3.6a)
Now we represent the graph in Fig. 1(a) as the dot
product D D '. Evaluating this dot product using
the relations in (3.6) is easy. Using (3.5) we have

Fig. 1(a): D ' D '= a ~ '[(1)—2d(0)] a ~«[(1)—2d(0)]

= a I 4[(1) ~ (1) —4d(0) ~ (1)+ 4d (0) ~ (0)]

= a ~ '[(1)+4d'(0)].

Evaluating the graphs in Fig. 1(b) and 1(c) is just as easy:

(3.'l)

Fig. 1(b): D ~ ~ D ~ ~ D '= a M '[(1)—Sd'(0)],

Fig 1(c). D ' D ' D ' ~ D '= a ~ '[(1)+ 16d'(0)]

(3.6)

(3.9)

Series structures in propagator graphs —convolution products

A slightly more complicated graphical structure is a series structure. For example, in Fig. 2(a) we
have two lines D ' in series. We represent such a structure using the notation D '& D ~. To evaluate such
a propagator graph in one dimension we must perform a sum over the position of the intermediate vertex:

a '(1 —2 1)x a '(1 —2 1)= a ga '(6, &„-25, &+ 6„»)a '(5& ~, —26»+ 5z., «)

'(, —4,~, + 6 -4 „+, )= '(1 —4 6 —4 1).

An evaluation of D ' x D ' by a similar procedure in 2 dimensions gives the matrix

(3.10a)

2-8 2

a'1 —820 —81
2-8 2

(3.10b)
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It is obviously rather messy to perform such a sum on a d-dimensional lattice. However, it is easy to
compute graphs like D ' & D ' using the following convolution rules:

(0) x (any) = (any),

(1)x (1)= 2d(0)+ (2)+ 2(11),
(1)x (2)= (1)+ (3)+ (12),

(2) x (2)= 2d(0)+ 2(22)+ (4),
(1)x (ll) = 2(d- l)(l)+ (12)+ 3(111).

[It is fairly easy to derive (3.11) using elementary combinatoric arguments. ]
Using (3.11) we evaluate D ' x D ' as follows:

a a ~ 2[(1)—2d(0)] x a ~'[(I)—2d(0)] = a [(1)x (1)—4d(0) x (1)+ 4d'(0) x (0)]

(3.11a)

(3.11b)

(3.11c)

(3.lid)

(3.11e)

= a ~ ~[(2d+ 4d2)(0) 4d(1)+ (2)+ 2(11)].
Note that the symbol x implies that an integration (sum) is being performed so it is associated with a fac-
tor of a".

Now let us evaluate some other convolution graphs using the algebraic rules in (3.11).

Fig. 2(b): D 'x (D ' ~ D ')= a ~ '[(2d —8d')(0)+(2)+2(ll) + (4d' —2d)(1)J, (3.13)
I

Fig. 2(c): (D ' D ') x (D ' ~ D ') = a M '[(2d+ 16d')(0)+ 8d'(1)+ (2)+ 2(11)J, (3.14)

Fig. 2(d): D ' x D ' x D '= a ' '[(- 12d' —Sd')(0)+ (12d'+ 6d —3)(1)—6d(2) —12d(11) + (3) + 3(12)+ 6(111)].
(3.16)

(3.12)

Combined series and parallel structures in propagator graphs

Almost all propagator graphs are a combination of series and parallel structures and are therefore easy
to evaluate using the algebraic rules in (3.6) and (3.11). Five typical graphs are indicated in Fig. 3. We
evaluate these graphs below.

Fig. 3(a):

Fig. 3(b):

Fig. 3(c):

Fig. 3(d):

Fig. 3(e):

(D ' x D ' x D ') ~ D ' = a ~ ' [(24d'+ 16d')(0)+ (12d'+ 6d —3)(1)], (3.16)

(D 'xD ') ~ (D 'xD 'xD ')= a ~-"[( 24d' 64d4-32d')(0)+ ( 48d' 24d'y 12d)(1)
—6d(2) —24d(11)], (3.17)

(D ' x D ' x D ') ~ (D ' x D ') D '= a ' "[(64d'+ 128d'+ 48d')(0)+ (- 48d' —24d'+ 12d)(l)], (3.18)

[D ' x (D ' D ' ~ D ')] D ' = a ~ "[(-4d2 —32d')(0) + (- 2d —Sd')(1)], (3.18)

[(D 'D-') x (D 'D ')J D ' = a ~ "[(-4d'- 32d')(O) + Sd'(1)] (s.2o)

Reduction of propagator graphs to vacuum graphs

Vacuum graphs (graphs having no external legs) are numbers (rather than matrices) which depend on the
dimension d of the lattice. As we will see in Sec. IV, the vacuum graphs are the basic building blocks of
the coefficients of the effective potential. There are two simple methods for obtaining vacuum graphs from
propagator graphs.

Method I. %'e can attach the two ends of a propagator graph together. In the continuum this consists of
taking a propagator function in coordinate space, say P(X, y), and attaching the points x and y using a 6

function:

dx5x —y Px, y .

On the lattice we do the equivalent thing. A 5 function on the lattice is just

(s.21)5(x-y)-a "(0).

We must dot the lattice propagator graph with a (0), which just projects out the (0) part of the graph, and

then we integrate over all space (sum over all lattice points) using the formula

a" Q a "(0)= 1
lattice
points

(3.22)
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The final result is this. Attaching the ends of a propagator graph generates a vacuum graph a@hose value
is the coefficient of the (0) term in the propagator graph. Here are several examples.

Fig. 4(a): The coefficient of (0) in D 'x D ' is a ~ '(2d+ 4d'). (2.2s)

Fig. 4(b): The coefficient of (0) in D ' .D'. is a ~ 44d . (s.a4)

Fig. 4(c): The coefficient of (0) in (D ' ~ D ') x (D ' D ') is a I '(2d+ 16d4), (s.as)

Fig. 4(d): The coefficient of (0) in (D ' x D ' x D ') is a ~ '(- 12d'- Sd'). (s.a6)

Fig. 4(e): The coefficient of (0) in [(D 'xD-'xD ') D']x (D '.D') is a& "(64d'+ 96d'+ 24d'+ 12d -6d).
(2.2v)Method 2. A propagator graph in coordinate space is translation invariant,

P(x, y) = P(x -y) .
Therefore, integrating P(x, y) over all x produces a constant, and this constant is the numerical value of
the vacuum graph obtained by removing the legs from the propagator graph. The equivalent operation on
the lattice is obtained by summing over all lattice points using the formulas

Q(1}=2d,

Q(2) = 2d,

Q(S)= ad,

Q(ll) = 2d(d —1),

Q(111)= +d(d —1}(d-2),

Q(12) = 4d(d-1).

(s.as)

(b) (b)

(c) (c)
f

(e)

(e)

FIG. 8. Propagator graphs with combined series and
parallel structure.

FIG. 4-, Creating vacuum graphs from propagator
graphs by attaching the two ends of the propagator to-
gether.
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Whep performing the sum over all lattice points to obtain the vacuum graph it is necessary to multiply
by a" because the sum is really equivalent to an integral. Here are several examples taken from Fig. 5:

Fig. 5(a): a' Q D 'D-' = a ' 'Q [4d'(0) + (1)]= a ' '(4d'+ 2d)

which agrees with the result in (3.23);

Fig. 5(b) a g [D 'xD-']. D-~- ~ & -Sg-[ (4-d'+8d')(0)-4d(l)]=a ' '[-12d' —8d'],

which agrees with the result in (3.26);

Fig. 5(c): a~ gD ' xD ' x D '= 0; (3.28)

Fig. 5(d): a~+(D-'xD-'xD-') (D 'xD-'xD-')= a-"-"(64d'+ 480d5+ nod4 —240d'-180d2+ 80d). (3.30)

Properties of vacuum graphs

The result in (3.29} is a specific case of a gen-
eral property of vacuum graphs; namely, that
there are no nonvanishing one-particle-reducible
(tadpole) vacuum graphs.

To help in the computation of vacuum graphs -it

is useful to know that vacuum graphs which are
one-vertex reducible can be expressed as the pro-
duct of the two simpler vacuum graphs obtained
by cutting the reducible vacuum graph at a vertex.
(This property is illustrated in Fig. 6.) Thus,
any vacuum graph can be expressed as a product
of one-vertex-irreducible subgraphs (OVIS's).
All vacuum OVIS's having from one through six
lines are shown in Fig. 7.

The OVIS's in Fig. 7 illustrate a general prop-
erty of vacuum graphs. Every vacuum graph
having n D ' lines is a polynomia/ in the variable
(-2d) of degree n which vanishes at d= 0. The
coefficient of the (-2d)" term is one. Once the
vacuum graphs have been expressed as polyno-
mials in the dimension d, there is no need for d
to be an integer. Indeed, the polynomials are a

(b)

simple analytic continuation of the graphs of the
theory to arbitrary complex dimension d. Had
these calculations been performed on a hyper-
body-centered cubic lattice the result would have
been a sum of exponentials of d. '

Graphs having more than parallel and series components

All but one of the OVIS's shown in Fig. 7 can be
evaluated in seconds using the parallel and series
algebraic rules for propagators and the two meth-
ods for reducing propagator graphs to vacuum
graphs. However, the tetrahedron or cross-box
graph shown last in Fig. 7 cannot be computed
using the algebraic rules we have given so far.
This is because it is not a simple combination of
parallel and series structures.

To evaluate the vacuum tetrahedron graph we
consider the propagator graph shown in Fig. 8(a).
This graph is a parallel structure formed by com-
bining D with the simpler propagator in Fig. 8(b).
This propagator is in turn formed by combining
the two three-legged graphs shown in Fig. 8(c)
and Fig. 8(d}. Apparently, it is necessary to know
how to represent a three-legged graph before we
can proceed. W'e will see that a three-legged graph
is a matrix whose elements are rnaA'aces rather
than numbers as was the case with two-legged
propagator graphs (Four-. legged graphs are
matrices of matrices of matrices, and so on. )

We examine the problem first on a one-dimen-
sional lattice. To begin, we represent the graph
in Fig. 8(c) as a matrix of matrices,

=(-l2d -8d )a x(2d+4d )a

FIG. 5. Creating vacuum graphs from propagator
graphs by integrating over the position of one external
vertex.

= (-52d -64d -24d )a

FIG. 6. A one-vertex-reducible graph expressed as
the product of its two i.rreducible OVIS's.
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2d a

(2d+4d )a

(2d-8d )a

(-12d -Sd )a

(2d+l6d4)a-sd-8

(-Sd +Sd +l6d )a

(l6d +48d +l2d -6d)a

(-32d -l60d -l20d +60d )a

(2d-g2d )a-4d-IO

(-Sd -l6d -Wd )a ~

(l6d -4d -32d )a-3d-IO

(-52d -48d +24d +l2d -6d)a
'~ F III

iE,III

(2d+64d )a

(64d +l92d —l6d —l20d +48d )a

(64d +l28d -48d -48d+24d )a

(24d'+64d6)a

(64(4 -16d +Sd -4d )a

(64d +82d -Sd2)a-4d-12
E

1F

(64d +82d -64d +8&P+12d -6d)a

(64d +82d 64d +Sd +12d 6d)a [. .I

(64d +96d +24d +12d —.6d)a

(64d +32d -48d +Sd )a

(64d +64d6+16d4+82d )a

-2d.2 ~(64d6+96d -80d4+Sd +l6d2 l4d)a
8 E
'I F

(24d -32d -52d )a

(64d +480d +720d -240d -180d +Sod)a

(64d6 64d +24d~)a 5d-l2

FIG, 7. All one-vertex-irreducible vacuum graphs having from one through six internal lines. Along side each OVIS
is its numerical value. The OVIS's are the basic building blocks of all vacuum graphs; any vacuum graph can be ex-
pressed as a product of its OVIS's as in Fig. 6.

'-2'

0es
0

0, -2',
1 0. 0

4, -2, 0

1 -2 1

(3.31)

making a series connection to D ' at the center of
the graph in Fig. 8(c). The result is

0 q e 0

This expression is obtained by a new algebraic
operation. The structure in (3.31} is an outer pro-
duct of the D ' matrix a~(1, -2, 1) with itself:
Working from left to right, the first nonzero ele-
ment is 1x 1, the next two are 1x (-2) and (-2)
x 1, the next three are 1x 1, (-2) x (-2), and
1 x 1, the next two are (-2) x 1 and 1x (-2), and
the last is 1 x 1. This makes a total of nine non-
zero elements —all the combinations of (1,-2, 1)
with itself. Observe that the matrix in (3.31) has
five horizontal elements [this represents a two-
lattice-unit propagation from the left-hand side
to the right-hand side of Fig. 8(c), just as in

(3.10a) j and three vertical elements [this repre-
sents a one-lattice-unit propagation from the
left- (or right-) hand side of the graph to the cen-
ter of the graph].

Next, we construct the graph in Fig. 8(d) by

2, 1

, 0, 0

(3.32)

This expression is obtained by taking five separate
cross products

(1 0 0) x. (1 -2 1) =(1 -2 1 0 0),
(-2 -2 0) x (1 -2 1) = (-2 2 2 -2 0),
(1 4 1) x (1 -2 1) =(1 2 -6 2 1),
(0 -2 -2) x (1 -2 1) = (0 -2 2 2 -2},
(0 0 1) x (1 -2 1) =(0 0 1 -2 1) .

Next, we construct the propagator graph in Fig.
8(b) by dotting together and integrating (method 2)
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the expression in (3.31) and (3.32):

g ~3[—2, —8, —20, -8, 2] =a ' [—2(2) —8(1) -20(0) ] .

(3.33)

Here we have used the product relations

g(1 0 0) ~ (1 -2 1 0 0) = g(-2 0 0) = -2,

Q(-2 —2 0) ~ (-2 2 2 -2 0) =Q (-4 -4 0) =-8,

Q(l 4 1) ~ (1 2 —6 2 1) =Q(2 —24 2) = —20.

Finally, we dot the result in (3.33) with D ',
g '(1 -2 1), to obtain the cross-box propagator
graph in Fig. 8(a):

a "[-840 —8]=a "[40(0)—8(1)] (3.34)

and we use method 2 to evaluate the tetrahedron
vacuum graph in one dimension:

a pa "[40(0)—8(1)]=g "(40—16) =24g ".
(3.35)

It is slightly more difficult to repeat the above
calculation on a two-dimensional lattice. The ana-
log of (3.31) is

II
I

I

I

FIG. 8. Evaluation of the cross-box propagator. The
calculation begins with finding the three-legged graphs
in (c) and (d) and dotting them together to produce the
propagator in (b). This graph is dotted with G ~ to pro-
duce the cross-box propagator in (a).

1

. 1 00
0

0 0 0

0

-4 1

0 -4 0 0 0 1

0

0

1 0 0

0

-4 -4 0 1 16 10, 1

0

0 4

0

0 0 1

0

(3.36)

0

1 0 0

1

0

0 -4 0 0 0 1

-4 ~ 1

0

000

and the analog of (3.32) is
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1 -4 1

0 0 1 0 0

0 0 0

0

0

2 -4 1

1 -4 2 0 0

0 0

0

0

-4 12 -4
0 -4 12 -4 0

0 -4 0

0

1-4 2

0 0 2 -4 1

0 0 1

0

0 0

-10

1 0 0 -4 -4 0

1 0 0 -4 -4 0

1 -4 1 0 0 -4 12 12 -4 0

2 12 2

1 12 -60 12 1

2 12 2 0 -4 -4 0 0 1

0 0 1

0 -4 12 12 -4 0 0 1 -4 1

0 0

0 0 0

0 0

1 0 0

1 -4 2 00
2 -4 1

0 -4 0

0 -4 12 -4 0

-4 12 -4

0 0 1

0 0 2 -4 1

1 -4 2

0

0 0 0

0 0 1 0 0

1 -4 1

Dotting and summing (3.36) and (3.37) gives the
analog of (3.33},

I

and the value of the two-dimensional tetrahedron
vacuum graph is

3264g " (3.38}

-8 -96 -8
g-as 4 96 912 96 4

-8 -96 -8

= a '6[-4(2}—8(11}—96(1}—912(0)] .
Hence the two-dimensional cross-box propagator
in Fig. 8(a) is

-96

The generalization of these calculations to d di-
mensions is described below. The answers are
as follows: The propagator graph in Fig. 8(b) is

a ""[(-32d'+ 16d —4d')(0}

+ (Sd~- 16ds)(1) —2d(2) —4d(11)), (3.39)

the cross-box propagator graph in Fig. 8(a} is

a~ '~(64d' - 32d + Sd )(0) +(Sd~- 16d')(I), (3.40)

and the value of the tetrahedron vacuum graph is

g -96 3648 -96 =g ~0[3648(0}—96(1)] g & [64d~ 64d +24d ]. (3.41)

(3.37)
To derive the result in (3.39} refer to Fig. 8(b).

Since the shortest path from A to C has length 2,
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it follows that the propagator in Fig. 8(b} has the
form

o(0+ Pl + yl1+ 52,

where u, P, y, 5 are d-dependent constants.
The coefficient 5 is trivially obtained. Locate

A at the origin and C at (2, 0, 0. . . ). Then the
only nonzero contribution to the graph comes when
both B and D are at (1,0, 0. . .). Then each of
the lines AB, AD, BC, CD contribute a factor 1,
while BD contributes -2d. Hence,

(a)

(c}
I

(d)

(g)

To find y, set C at (1,1,0, 0. . . }. Then B can be
at (1,0, 0. . .) or at (0, 1, . . . , 0). Similarly for D.
But since B and D are connected, at most one of
their coordinate components can differ. In this
case, they must be at the same point. So

y = 2(-2d},

where the first factor of 2 comes from the two pos-
sible locations of B.

To find P, set C at (1,0, 0. . . ). Then B can
either be at the origin or at C, and similarly for
D. So

P =(—2d)'+( —2d) +(-2d)'+(-2d)'
= -16d3+ Bd~

Finally, to find a set C at the origin. Then B
can be either at the origin or at one of the 2d near-
est neighbors of the origin. Similarly for D. But
since B and D are connected, if neither is at the
origin, they must both be at the same point. When
both B and D are at the origin, the contribution to

is

(-2d) '.
When B is at the origin and D at one of the 2d
nearest neighbors, the contribution to n is

(2d)(-2d)' = 8d',

and similarly when D is at the origin and 8 is not.
Finally, when B and D are both not at the origin,
the contribution to n is

(2d)(-2d) =-4d .

FIG. 9. Two difficult-to-evaluate seven-line propaga-
tor graphs are shown in (a) and (e). To construct (a)
the two three-point graphs in (c) and (d) are dotted to-
gether to produce (b), which is in turn dotted with G

To construct (e) the two three-point graphs in (f) and

(h) are dotted together.

0 0

(3.42)

Next, (3.31) and (3.42) are dotted and summed to
give the propagator graph in Fig. 9(b):

a [4 40 88 40 4]=a [4(2)+40(1)+88(0)].

(3.43)

Finally, we dot (3.43) with D ' =a '(1 -2 1) to pro-
duce the propagator graph in Fig. 9(a):

g (40 —176 40) =a [40(l) —176(0)]. (3.44)

Repeating this procedure in d dimensions gives

First, we compute the graph in Fig. 9(a) on a
one-dimensional lattice. We begin with the three-
legged graph in Fig. 9(c) which is given in (3.31)
and cross this graph in the vertical direction with
D ' D ' =g (1 4 1) to produce the three-legged
graph in Fig. 9(d):

1 -2 0 0

-10

1, -10, 18, -10, 1

-10

Thus,

n = -32d5+ 16d'- 4d'.
g (( [(24d +64d )(0)+(8d +32d )(j)

+4d~(2) +8d (11)]
for the propagator in Fig. 9(b} and

(3.45)

Evaluation of two difficult seven-line propagator graphs

Two difficult-to-evaluate seven-line propagator
graphs are shown in Figs. 9(a) and 9(e). We re-
view the ideas presented in the last subsection
by computing these graphs.

a ~ ' [(-48d —128d')(0) + (8d'+ 32d4)(1) ] (3.46)

for the propagator in Fig. 9(a).
Now consider the graph in Fig. 9(e). Again we

examine the one-dimensional case first. In one
dimension, the graph in Fig. 9(f) is



23 STRONG-COUPLING EXPANSION FOR THE EFFECTIVE. . . 2989

0

0 , -2 , -8 , -2 , 0

, 0
(3.47)

and the graph in Fig. 9(g) is

0 0

a' p 4

0 0

-8 (3.48)

Crossing {3,48) with D in the vertical direction gives Fig. 9(h),

p 0

-101, -10, 18 -10
0

(3.49)

0 -10
i0 g 0

We obtain the desired propagator graph in Fig.
9(e) by dotting and summing (3.48) and (3.49):

a ' (—2, 52, —164, 52, -2) =a "[-2(2)+ 52(1)

—164(0)]. (3.50)

The same procedure in d dimensions gives
M '~[(-4d' —32d' —128d')(0)

(0) =a&(x —y),
(1) = a'D '(x —y) +2a6(x —y),

{2)= a'D ' x D '+ 4a'D ' + 2a6{x—y),
(3) =a'D-'x D'x D '+Ga'D'x D'

+Qa'D '+2a6(x -y)
and so on. Now if we take the Fourier transform,
we find that

+ (48d'+ 4d')(1) —2d(2) —4d(11)], (3.51)

for the propagator graph in Fig. 9(e).

Fourier-transforminl propagator graphs to momentum
space

f(0) =a,
6:(1}= a'p„'+2a,

6:(2) =a'p„'+ 4a'p„'+ 2a,

+(3}=a'p~'+ 6a'p„'+ 9a'p„'+ 2a

(3.52)

It is necessary to transform propagator graphs
for the two-point function to momentum space to
determine the wave-function renormalization con-
stant and the locations of the poles. We first de-
scribe this procedure in, one-dimensional space
where we need not consider the problem of lack
of rotational invariance.

I et p' be the Euclidean momentum squared and
p&' be the Minkowski momentum squared. Then .

the Fourier transform of D ' = 8'6(x —y) is simply
-p =p~2. ' The Fourier transform of series iter-
ated factors of D ' is also simple: The Fourier
transform of the convolution D x D x ~ ~ ~ x D '
(n factors)'is (-p')"=p„'". The strategy is clearly
to reexpress a propagator graph which was ori-
ginal. ly computed as a linear combination of the
basis vectors (0), (1), (2), (3), . . . in terms of the
basis vectors 6(x —y), D ',D 'x D ', D 'x D 'x D ',
~ ~ ~ ~

and so on.
Here are three examples. From (3.9) the Four-

ier transform of the graph in Fig. 1(c) is a 9p„'
+18a ". From (3.14) the Fourier transform of
the graph in Fig. 2(c) is a 'p„+ 12a p„'+36a 'o.
From (3.43} the Fourier transform of the graph in
Fig. 9(b) is 4a 'p~ +56a '3p~ +126a.

The one remaining question is how to perform
Fourier transforms when d&1 and the lattice is
not rotationally invariant. We handle this problem
as follows. Since the continuum is rotationally
invariant we expect the continuum answer to depend
only on the variable p~'. However, the method we
have been using to take Fourier transforms will
give nonrotationally invariant expressions like+,(p„),.', where (p„),. is the ith component of the
momentum vector p„. We therefore perform a
I.orentz transformation so that the momentum
vector p~ points along the 1 axis and its compon-
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ents in the other directions all vanish. Now we
cannot distinguish Q", ,(p„),.» from the rotationally
invariant expression [Q', ,(p„),.']'=p„». Any errors
incurred by rotationally symmetrizing momentum
dependent expressions in the manner just described
vanish with the lattice spacing. From this argu-
ment we conclude that we can replace the Fourier
transform of 6d(0) —4(1)+(2), which is
a'"Z', ,(P„),.', by a"p„'.

We thus obtain the d-dimensional generalization
of the Fourier transform relations in (3.52):

V(0) =a':,

V ~ Q
W F% W

6:(I)=2da'+p~'a",

6'(2) = 2da»+ 4p~'g" +P~'a",
g(11) =(2d —2d)a»+Pz (2d —2)a '" .

(3.53)

Using (3.52) we generalize to d-dimensional lat-
tices the three previous examples of one-dimen-
sional Fourier transforms. From (3.9) the Four-
ier transform of the graph in Fig. 1(c) is
(2d+ 16d'}g '» '+P ~a '" ' From (3.14) the Fourier
transform of the graph in Fig. 2(c) is (16d»+16d'
+4d') a '» '+(Sd'+4d)p 'g '»~+p 'g ' From
(3.45) the Fourier transform of the graph in Fig.
9(b} is g ' '»(64d +64d'+16d +32d ) +g '
x P (32d S+d' 1+6d') + aMP '(4d') .

Note that the d-dimensional Fourier transform of
a propagator graph in d dimensions is always a
polynomial in p~' where the degree of the polyno-

, mial is the smallest number of lattice units linking
one external vertex to the other.

IV. CALCULATION OF THE EFFECTIVE POTENTIAL

In Secs. II and III we determined the strong-
coupling expansions for the vertices and gave a
general prescription for evaluating diagrams hav-
ing zero and two external legs. As we will show,
these techniques are sufficient to compute the ef-
fective potential. Specifically, we will see that
the fundamental constituents of all of the coeffi-
cients of the effective potential are the vacuum
OVIS's discussed in Sec. III.'

One-particle irreducibility

To prepare for our discussion of the effective
potential we must introduce the notation of a one-
particle irreducible graph. This is a graph which
does not separate into two graphs when one inter-
nal line is cut. In Fig. 10(a) we give two examples
of one-particle-reducible graphs and in Fig. 10(b}
we give two examples of one-particle-irreducible
graphs. It is important to remark that one-parti-
cle irreducibility is a topological property of a

FIG. 10. (a) Reducible and (b) irreducible graphs.
The graphs in (a) are reducible because they separate
when the lines denoted by x are cut.

Generating functional for one-particle irreducible vertices

Let us recall that I'[Q], the generating function-
al of one-particle-irreducible vertices, is defined
via the Legendre transform

I' [»]—:—1nZ [~I +f» h )~4 )&X,

where the classical field p (x) is define[i by

(4.1)

(4.2)

and the vacuum persistence function Z[ J] is given
in (1.1). Using (4.1) and (4.2) we can formally in-
vert (4.2) to express 4 as a functional of the clas-
sical field P:

(4.3)

It is known' that I'„, defined by

graph. The lines in the graph can represent dif-
ferent objects depending on the expansion being
used: In strong-coupling expansions the lines re-
present D '(x, y), in weak-coupling expansions the
lines represent [D '(x, y) +m'6(x —y)] ', and when

expressing the full n-point Green's functions of
the theory in terms of the ful. l one-particle irredu-
cible vertices I'„, the lines represent the full
propagators W, (see Fig. 12). One of the goals
of this section is to show that if we define A,„as
the sum of all one-particle-irreducible strong-
coupling diagrams having 2n external legs, then
all of the coefficients V,„of the effective potential
can be expressed simply in terms of A,„.
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(4 4)

are the negatives of the exact one-particle-irre-
ducible vertices of the full field theory, where
here one-particle irreducibility refers to lines
which represent the full two-particle Green's
function +',.

To understand the connection 1~tween the full
Green's functions W„and the one-particle-irre-
ducible Green's functions I'„we consider the func-
tional cha.in rule

+ 2 permutations

6y(x) ar(y)
y arQ) 6y(z)

(4.6)
FIG. 11. The full n-point Green's functions W„ex-

pressed diagrammatically in terms of the vertices —F„'

and the lines W2. See (4.7) and (4.8).

W, (x, y) = I,(x, y}-'. (4.6)

Now we differentiate (4.6} with respect to Z(z):

W, (x,y, z }= —I', (a, b, c)W2 (x, a)W (y, b) W, (z, c),
(4. 1)

I

This equation tells us that W', and I', are inversely
related:

where repeated arguments are integrated. This
shows that 1", is the one-particle-irreducible part
of W, (see Fig. 11). (I', and W, vanish if we set
4= 0.) Next, we differentiate (4.7) with respect to
4 and use (4.6) and (4.V) to simplify the result

W4(x, y, z, w }= —Wz (x, a)W, (y, b) W, (z, c)W2(w, d)I ~(a, b, c, d)

+ [W,(x, a)W, (y, b)I', (a, b, e)W, (e f)1',(f c, d)W~(c, z)W, (d, w)+ 2permutations]. (4.6)

Repeated differentiation with respect to 4 generates
expressions for W„ in terms of I'„(m ~n) and W,
and'gives the interpretation of I „as the one-par-
ticle-irreducible vertices. On the mass shell and
when J= 0, the Fourier transforms of I",„are the
2n-particle scattering amplitudes. It is easy to
invert the equations for W„' in terms of I'„ to ex-
press I"„ in terms of 5'„.

In weak-coupling perturbation theory it is easy
to express I',„~~., in terms of one-particle-irre-
ducible Feynman graphs, where the lines repre-
sent [D(x,y) '+ m25(x —y)] '. However, in strong-
coupling perturbation theory, where the lines of
the graphs represent D '(x, y), the natural quan-
tities to calculate are the A,„defined at the be-
ginning of this section. Thus, the problem is to
calculate I',„ in terms of ~,„.

We begin by expressing W, in terms of ~,.
Since ~, is the sum of all one-particle-irreduc-
ible graphs, we have

W, = W, + W,o-~a, + a,D-'X,D-~W, + . . .
A

(4.9)

Thus, from (4.6)

I2= -D x+ A

or in momentum space

(4.10a)

I', (p) = -p „'+A,-'(p) . (4.10b)

W~= A~(1+ D 'W, )~= A~(W, A2 ')4 (4.11)

which, when written out explicitly, with integra-
tions of the repeated arguments implied, is

So, A, '(p) is the vacuum polarization.
Next, we express W~ in terms of the strong-

coupling perturbation theory graphs. First, we
have all one-particle-irreducible diagrams having
four external legs. Next, we have all such dia-
grams with just one leg dressed with all possible
one-particle-reducible graphs: A4(D 'W2). There
are altogether four ways of doing this. Then we
can dress two legs in six ways, three legs in four
ways, and all four legs. Summing over all these
possibilities gives

W, (x,y, z, w) = A, (a, b, c, d)[5(a-x)+ D '(a, e)W, (e, x)][6(b-y)+ D '(b, f)W, (f y)]

x[6(c —z)+D '(c,g)W, (g, z)7[6(d-w)+ D '(d, b)W, (b, w)].
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Since W, , = 0 when J'= 0, (4.8) and (4.10) give

I'4= —W~(W2 ')~= —A (A, ')'.
The next two expressions for I', and I', at J = 0 in terms of S;„are
I, = W, (W, ')'+io(W, -')'W, W, 'W, (W, ')'

(4.12)

(4.18)

1",= —W, (W, ')'+ 56(W, ')'W, W2 'W4(W, ')' —280(W, ')'W, W, 'W4(W, ')'W, 'W~(W, ')'.
In analogy with (4.11), we can express W, and W, in terms of A,„:

W, = A, (W, A2 ')'+ 10(W2A, ')'A~(D '+ D 'W, D ')A4(W, A, ')'

and

W, = A, (W, A, ')'+ 56(W, A, ')'A, (D '+ D 'W, D ')A4(W, A, ')'

(4.14)

(4.15)

+ 280(W A ')'A, (D '+ D 'W D ')(W A ')'A (D '+ D 'W D ')A (W A ')' (4.i6)

Substituting (4.11), (4.15) and (4.16) into (4.18)
and (4.14) gives expressions for I',„ in terms of
A2„:

1[p) g )I dx, ~ dx, „i',„(x„,x,„)„,(2n) I

x 4(x,)... y(x,„), (4.i9)
r, = —A, (A,

- )'+ io(A )'A,A A, (4.i7)

r, = —A, (A, ')'+ 56(A, ')'A, A,-'A,

—280(A~ ')'A4A, ~A4A, 'A4. (4.18)

Effective potential

From (4.4) we can see that the functional I'(P)
has a Taylor expansion in powers of P at it =0:

Note that the structure of (4.17) and (4.18) is'the
same as that in (4.13) and (4.14) with A,„replacing

There is a graphical interpretation for l",„
in terms of A,„(or W2„) whose symmetry numbers
yield the correct coefficients (see Fig. 12}.

where we have used I',„„(x»~,x,„„,}=0 at J = 0.
Now consider a source J which is constant and
uniform in Euclidean space-time. This implies
that P is a constant independent of space-time.
We define the Fourier transform of I;„(x„..~, x,„)
by

I2n(xl& ' ~ ' s x2n)
( t4 4 e p f x'~i

I

2n

x (2~)&() P)t, I',„(u„... , a,„) .
(4 ' 20)

Thus, for constant P(x,.) = P we have

I (y) =g, , r,„(0,0, 0, . . . , 0)ya"(27') 5(0)2ni!
-I 4— (h2) h„ -=(2~)~()(0)V(y), (4.21)

T6

rs

+ +y "y — (h +IO(h. h4

h6 k4

-h8(hp) + 56(h2) h6h4 —28Nh, p) (h4)

which is the defining equation for the effective po-
tential V(Q). Thus, the Taylor coefficients of the
effective potential are the one-particle- irreducible
vertices I',„(0,0, 0, .. . , 0} evaluated at zero ex-
ternal momentum.

Alternative derivation of Taylor expansion
for effective potential

FIG. 12. Graphical representation of l'2„ in terms of
. A2„. Lines represent A2 and vertices represent -A4,
-Ae, -As, ~ ~ ~ . The factors 10, 56, 280, ~ ~ ~ are the
symmetry numbers of the graphs. For example, 10 =
=6!/(3!3!2!), 56 =8!/(5!3!), 280 =8!/(3!3!2! 2!).

V(P}fi= -InZ(J}+ iI)JQ,

where

(4.22)

For constant J and thus for constant P (4.1) be-
comes
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Q=(»)'&(u) ~,

is the volume of space-time. Using

8
P = ——lnZ,QBJ

it follows from (4.22) that

BP'J——
8

(4.23)

(4.24)

2ti

w, „(p„)„... ,(,.)(a~)'o g),)i~

~
~

2tl

dh~. .. dh2„exp i x,.p,. Wg„... , g2„
i~

Substituting (4.31}into (4.30) and replacing pow-
ers of k higher than quadratic by derivative oper-
ators gives

For constant J, the path-integral representation
of Z in (1.1) becomes

&(&)= fuxem —f&'x&(x)+& fx(~)«,
(4.25}

where we integrate over the dummy function X. To
evaluate this integral we insert a representation
for the number one in the integrand'

-~(y)
1 1 I'll

=lim —ln exp g;—,W,„(0,0, . . . ,0)Q
QA~~.

xeiy[-( W'(0)A/2]}. (4.3R)

Expanding the right side of (4.32) and keeping
terms which do not vanish as 0-~ gives

1=Q 5~PQ- y(x)dx~dp.
v(y) =g (2n)! (4.33)

Thus,

Z(~}= Jl dye-A[A')~ J)

where

(4.26}

where the coefficients V,„are expressed in terms
of the W, „exactly as the 1',„are in (4.6), (4.12),
(4.13), (4.14), and so on. This completes our
alternative derivation of the relationship between
the connected Green's functions W,„and the co-
efficients of (II)'" in the effective potential.

e '~'o=Q ~y5 &Q- y(x)dree ~~'"'"". (4.2V)

Since the volume of space-time is infinite we
can evaluate (4.26) exactly by Laplace's method,
keeping only the geometrical optics contribution
to the leading term:

1 Z(P=-Q[S(y, ) y, Z]+O(h Q),

where $0 satisfies the stationarity condition

»(s) ~
e-e,

(4.28)

Comparing (4.28) and (4.29) with (4.22) and (4.24)
shows that as Q-~, E(P) in (4.26) and (4.2V) can
be identified with the effective potential V.

Next we evaluate (4.2V) by using an integral rep-
resentation for the 5 function

—e '"'J ux ex@ — u'x[~(x)+i&xl}
d& - ~a
27r

(4.30}

Computation of A&„(p,p, . . . ,p) ~& 0 in tees of AVIS's

We have shown how to express the coefficients
of p'" in the effective potential in terms of sums
of the one-particle-irreducible strong-coupling
diagrams A,„(p,p, ... , p) },, However, to evalu-
ate a graph having 2n external legs at zero ex-
ternal momentum requires that we integrate each
leg of the strong-coupling diagram over all space-
time. This is equivalent to treating the original
graph as a vacuum graph, which we have shown
in Sec. gX is a product of OVIS's.

Here is an example of how to evaluate a graph
contributing to A, (0, 0, 0, . . . , 0}. Consider the
seven-inte mal-line one-particle-irreducible graph
in Fig. 13(a). The external-symmetry number for

and we recognize that the functional integral in (4.30)
is just Z[k] [see (1~ 1)]. But lnZ(k) has an expansion
in terms of the connected Green's functions at zero
externalmomentum W,„(p,p, p, ... ,p) ~~,:

y2n
lnZ(k) = Q Q, , W,„(0,0, 0, . . . ,0), (4.31)

where

(b)

PIG. 13. (a) A one-particle-irreducible graph contr i-
. buting to A&(0, 0, ~ ~ ~, 0) and (b) its decompositi. on into
a product of vacuum OVIS'8,
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TABLE I. Number of one-particle-irreducible graphs in At, A4, A3, and A3 vs the number
of internal l.ines. We have evaluated all of these graphs.

Number of
internal

lines

Number of
graphs in

A2

Number of
graphs in

A4

Number of
graphs in

hs

Number of
graphs in

As

1
1
2
5

12
34
97

100

1
1
3
7

23
67

240

1
1
3

10
32

116

1
1
4

12

Graphs having p dependence only.

this graph (involving permutations of the external
legs) is 60. The internal-symmetry number (in-
volving permutations of the internal lines) is;,.
The vertices are I4'I,'. In Fig. 13(b) the graph
is decomposed into its OVIS's, which are evaluated
in Fig. 7 as '(-2d)a 3 2, (-12d 2 —Bd 3)a 3

and (2d —Bd3)a 2" 3. To obtain the contribution of
this graph to A, we multiply together the external
and internal symmetry numbers, the vertices,
and the value's of the OVIS's.

In Table I we list the number of graphs contri-
buting to A„A4, A, and As versus the number of
internal lines. %'e have evaluated all of these
graphs.

This completes our discussion of the evaluation
of the unrenormalized effective potential.

W'ave-function renormalization of the effective potential

coefficients of the effective potential V and the
classical field P by defining

(4.38)

I',„"(0,0, .. . , 0) = Z"I'2„(0,0, ... , 0) . (4.38)

/

Note that reexpressing V in terms of these re-
normalized quantities leaves V unchanged.

(4.37)

In this intermediate renormalization scheme,
the renormalized mass M and the renormalized
coupling con'stant G are given in terms of the co-
efficients of t/'

In this paper we follow an intermediate renormal-
ization scheme in which we define the wave-func-
tion-renormalization constant Z at p = 0:

M2= I s(0, 0)

G=—241'4(0, 0, 0, 0).

(4.38)

(4.39)

This means that we must know the momentum de-
pendence of A, . We have already given in Sec. GI
a detailed discussion of how to find the p' de-
pendence of the propagator graphs.

Given Z, we simultaneously renormalize the

We also define dimensionless renormalized zero-
momentum scattering amplitudes y,„by

y,„—= I',"„(0,0, ... , 0)M "2 2" 2, G = 24y4. (4.40)

Corresponding to each of the two methods dis-
cussed in Sec. II for expanding the vertices, there
is an expansion for M', y4, y„y„and Z. We
conclude this paper by listing the first few orders
in these expansions.

Method I (m2 fixed).

Af 2n2s (2ft)-1 (12dft2 d) /(4R2) + [(2d 1)144R4+ ( 2d2 d+ 1)24ft2 ~ Bd2 1]e2/(48ft3)

-(4R' —1)se/(882) —(BR' —1)dse2/(BR3) —(BA2 —1)saq2/(3283) + ~ ~ ~, (4.41a)
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gm(2Rg)~in ~y =(12R 1)/(384R ) —[(144d 384d)R —24d R +d +4d]&/(1536R )

+ [(5184d —38016d +80640d —63360d)R +(-1296d +3744d —6912d2+ VVV6d)R

+(108d +312d'+432d -168d)R~-Sd -30d - 72d~+2dg2 j(36864R')

—[48dR4 —(d - 2)16R2+ d+ 4]sc j(3072R~)

+ [(5V6d 3 —2688d2+ 3072d)RS y (-240d 3+ 96d2 —384d)R~

+ (28d '+ 120d 2+ 192d)R' —d' —lpd' —24d}]sqm/(12 288R8}

+ [(d - 2)192dR + (-112d2 —416d —384)R4+ (20dm+ 136d+ 256)R2

—d2 —lpd —24] s2g2/(49 152R') + ~ ~, (4.41b)

(4.41c)

e'(2Re)~~ye = (480R~ —96R'+ 5)/(46 080R')

—[(5760d 2 —11520d)R + (-1632d~+ 816d)R4+ (156d2+ 228d)R~ —Sd2 —20d)] g j(92 160R8)

+ [(20 V360d4- 1036800d + 1 520640d -552 960d)R

+ (-V6 032d4+ 180 864d ~ —196992d 2+ 165 888d)R ~+ (10 512d 4+ 8496d 3+ 10080d 2 —15 312d)R

+ (-648d 4 —2976d 3 —3456d ~+ 456d)R2+ 15d4+ 135d3+ SPPd s —5dgs/(1 105 920R'}

—[1920dRB —(864d+ 1488)R4+ (d+ 3)116R2 —5d —20]sg /(184 320R8)

+ [(23040d ' —69 120d 2+ 46 080d)R~+ (-12 288d3+ 1536d2+ 6144d)R8

+(2256d'+6000d +3840d)R -(176ds+992d +14V2d)R'+5ds+45d +lppd]sg'/(368640R')

+ [(d —1)7680dR8 —(53V6d 2+ 14 208d+ 8&32}RS+(1328d s+ 6928d+ 9408)R4

—.(136d~+ 992d+ 1832)R'+ 5d +45d+ 100]sod /(1 474 560R )+ ~,

g'(2Rg)" i'-' y, = (25 200R' —8400R'+ 939R' —35)/(5 160960R")
—[(302 400d 2 —537 600d}R8+ (-126pppd ~ + 94 080d)R + (19668d 2+ 10 384d}R~

—(1359d + 284Gd)R'+35d2+ 140d]g/(6 881 280R")

+ [(32 659 200d4- 13V 894400ds+ 169344000d2-49835 520d)Ri0

+ (-16329 600d 4+ 38 465 280d 3 —34 433 28Gd I+ 21 692 160d)RB

+ (3 258 144d4 —513 V92d 3+ 1 V29 V28ds —3 440 448d)R8

+ (-323 784d 4 —7V5 440d 3 —516432d 2+ 239 376d)R4

+ (16Olid 4+ 85 314d.s+ 110400d2 —6918d)R2

—315d 4 - 2730ds —5880d2+ Vpd] a2/(165 150 VSQR'2)

—[302 400dR —(176400d+ 255 360)R + (36468d+ 91248)R~

—(323Vd+ 10 V60)Ra+ 105d+ 420]sq/(41 28V 680R")

+ [(10886400ds 26 611200ds+ 12902400d)R +(-725V 600d + 1451 520d + 5 806080d)R

+ (1 842 048d3+ 3 458 880d~+ 261 888d)R'- (225 936d + 89V 120ds+ 822 528d)R

+ (13491da+ 83 634d2+ 131120d)R2 -315d 3 —2VSOdm - 5880d]sgm j(16515P V20R'2}

+ [(3 628 800d~ - 2 419 200d)R|o —(3 024 pppds+ 6 531 840d+ 3 010 560}R8

+ (966 816d 2+ 4 186 368d+ 4 545 V92)R - (148248d ~ + 89V 840d+ 1 3VS 056)R

+(109V1d + 81 954d + 153 520)R2 —315d2 —2730d - 5880Js~ f2/(660 602 880R' ) + ' ' ',
(4.41d)
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Z = 1 —(144R —24R + 1)z /(24R ) —[1152dR' —96dR4 —24dR2+ 2d'f e'/(48R')

—[(414720d + 552 960d-760320)B +(-23040d —115200d+138240}R

+(5760d + 11520d —10 368)R + (-2400d - 480d+ 480)R'+ 180d 2 - 10]q /(5760R )

—[576R —48R —12R +1]s&3/(48R~) —[414720dR -23040dR + 5760dR -2400dR'+180d]se4/(5760R )

—[103680R -5760R +1440R -600R +45]s c /(5760R ) + ' ' '
~ (4.41e)

Method II (ni large and negative).

M a = n —2d+ (6d —2}n/3 +(180d —390d +194)n /45+ (30 240d —124 740d + 162 792d —68 164)n /945

+ [n '+ 2d+ (-4d+2) n —(12d —4d)n /3 —(540d —1560d +914)u /45-(1080d -2340d +1564d —360)n /45

—(151200d —703 920d +998 004d - 445 028)u~/945]5

+ [4n '+ 6d+(4d -10d+4}u+(-8d +4d)n + (-24d +48d-22)u +(360d3 —1040d + 1036d-360)n /15

+ (45 360d —257 040d + 542 388d —450 660d+112 874)n /945]5

+ [31n ' + 40d +(V2d —228d +94)n/3 + (8d —60d +24d) u' —(720d +9360d —22 740d +11792)u /45

-(432d —864d +284d+72)u /9-'(100800d &413 880d +537896d —224218)u /45]5 + ', (4. 42a)

n G=2 —(2d —8d)u+(Sd -30d +78d -62d)n /3 —(d —18d +110d —290d +300d —112d)n /3

+(15d -420d +4440d -22860d + 59340d —73440d +25 820d +6736d)u /180
—(Sd -120d + 1920d —15980d~+74292d -192400d +250460d -110304d -71216d +63 168d)n /180

+ [d —2 —(d3 —10d +16d)u+(Sd5 —60d +330d -638d +452d)n /6

+(d' —32d +338d —1578d +3520d —3440d + 1216d)n /6

+(15d -690de+11520d -93780d +409380d -960360d +1120460d -450104d -39456d)n /360
—(Sd" -186d' +4440d —54740d + 386 492dY —1609384d +3 872460d —4892 504d

+ 2 256 V84d'+ 934 592d' —898 368d) u'/360]5

+ [(d +10d —24)/4 —(d —2d —72d + 192d)n/4+(3d —48d +42d +1558d'-4476d +3152d)n /24

—(d —32d'+314d —846d —1688d +10104d3 —12480d +4224d)n /24

+(15d' -750d +13 800d —118380d +509940d —1084200d +970940d
—205624d +455 552d —554304d)n /1440

+(Sd -210d' +5808d' -82940d +680892d -3377000d +10278332d —18979784ds

+20310608d —10552864d +1415424d +186624d)n /1440]5

+ [(d + 36d + 500d —960)/24 —(d +20d + 140d —3632d + 8448d) n/24

+(Sd'+6d —78d' —10922d +100320d —242632d +166848d)u /144

—(d -18da+106d -3254d'+58324d —371408d +962976d -987392d +342 528d)n /144

+(15d"—600d' +9780d —120900d +1 585 260d —14862960d +76041500d -198277 904d

+ 243 615 184d3 —86 053 888d —21 468 288d) n /8640

—(3d' —192d' + 5220d" —84 260d' + 989 412d —9 141 248d + 61051580d —261 706 064d'

+ 656565 536d —842 837664d +362260 544d +241400448d -208392 192d)n /8640]6 + ' ' '

(4.42h)

u4y8=(gp) —(d —3d)n/1. 5+(3d —2ld +39d —10d)n /45-(4d —12d +50d —82d +40d +12d)u /90

+(15d —270d + 1875d —6240d +9945d —5535d —430d +992d)u /675
—(6d'0 —150d + 1530d —8150d + 24054d —3V 360d + 25 150d —1126d + 6864d —10458d)ns/675+ ' ' ',

(4.42c)
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(4.42d)

(4.42e)

The mass renormalization of these expressions is discussed in the next paper of this series.

n'""y, = ($)- (Sd' - Bd)n/56+ (9d4- 54d'+ 86d'- 18d)n'/112

-(2Vd -2VOd +942d -1302d +540d -32d)n /336+ ' ' '

Z=1- 2n /3- (180d-194)n /45+ [Bn /3+ Bdn /3+(960d- 1108)n /45+(1440d - 1952d+ 360)n /45]6

+ [4n - (120d -660d+ 658)n /45- (3840d -6112d+ 1440)n'/45]6

+ [112n2/3+16dn'+ (ll. 520d —12 V16)n /45+(32d —24)ns/3]63+ ' ''
~
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g[g]=exp Qv- +
2 5J] Rl], q V] ~ j

d
Q exp — a' p,. +J«+—

2

(A5)

APPENDIX

In this appendix, we relate our expansion method
to the more traditional high-temperature expan-
sion used in statistical mechanics. The conversion
enables us to check our results against existing
series, "and to extend our results to ten internal
lines for two, three, and four' dimensions.

Both approaches begin with the generating func-
tional on a d-dimensional lattice

g[g] f [g)( ]axe[ + 1 @ (( ( @ )
2a

(A) )

where V(p, ) is the potential, and involves only (i),

and not p at neighboring sites. We proceed by ex-
tracting the full kinetic energy term to obtain

The moments I„of the high-temperature expansion
are defined by

f d@ exp[-a [V(p)+dp'/a +ZQ] j J 2T

f dp exp(-a'[V((I))+d(I)'/a']] (2n)!
(AB)

Note that in both cases, v counts propagator in-
sertions, or the number of lines in the diagram.
The high-temperature series propagator has no

diagonal piece, so that there are no graphs with
loops (lines beginning and ending at the same ver-
tex). This reduces the number of graphs signifi-
cantly. Our propagator has a diagonal piece, but
the sum of its numerical coefficients vanishes,
which means that there are no tadpoles (see Fig.
14).

The relationship between the l,„and L,,„ is more
easily obtained by defining

2 6Z; aJ;„6Z;, 6Z;j

with

x g) exp — a~ V
&

+J;
f

(A2) a'V(x) = V,(x),

so that

(AV)

~ —a-(~+ &) (AS) (AB)

The remaining functional integral is a product of
ordinary integrals at each space-time point. The
vertices I.,„ofour theory are obtained from

fdxe "~"]

(A4)

[We have assumed that V(P) is an even function. ]
In the usual high-temperature series expansion,

only the "off-diagonal" piece of the kinetic energy
term is extracted, so that

FIG. 14. A tadpole graph where the shaded area rep-
resents any graph, and the free vertex is to be summed
over.
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Let

-Jx Vi(x) -d v x2

g I,„Z'"/(2n)! = f
n

g axe -Fg(x) -dvxa

'Zhe easiest way to compute the relation between
I2~ and L,„ is to differentiate both sides of (All)
with respect to J, obtaining

I Jan -~ II Ja~ Ir Jaa- j
an aq~ (2n —1)t , (2p)t ~ (2q —1)t

Jx'"e """'dx
Ia'„=

f e "&"'dx

then

(A10)
ol

q II-an

(2q —1}! „,(2n —1)! (2q —2n)!
' (A14)

and

exp P L2„J"/(2n)!
~

=g I,'& J'~/(2P)!
n . )

(A11)
If we write

I,„=P J,„,(-dv)',
q= 0

(A15)

, [(-dv)'/p! ]I,'„„,
Q, [(-dv)'/p! ]I,,

(A12)

We solve for p in terms of L from (All}, and
for I in terms of I' from (A12). Since v counts
propagator lines and we only work to a given num-
ber of lines, it is sufficient to expand (A12) to a
given order in g.

then cross multiplying (A12) yields
p-II' I'2n+ ar J . ay -2qr!,= 0

'"' (r —q)!
(A16)

Because Ian is explicitly a power series in z, re-
construction of the high-temperature results for
N lines requires our results for 1 up to & lines,
and vice- versa.

*Permanent address: Physics Department, Brown Uni-
versity, Providence, Rhode Island 02912.

C. M. Bender, F. Cooper, G. S. Guralnik, H. Moreno,
R. Roskies, and D. H. Sharp, Phys. Rev. Lett. 45, 501
(1980).-

2C. M. Bender, F. Cooper, G. S. Guralnik, and D. H.
Sharp, Phys. Bev. D 19, 1865 (1979). See also,
P. Castoldi and C. Schomblond, Nucl. Phys. B139, 26
(1978); H. Kaiser, Zeuthen Report No. PHE7411, 1974
(unpublished).

3C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies,
and D. H. Sharp, in Proceedings of the Orbis Scientiae
Conference —1980, edited by Arnold Perlmutter (to be
published). Invited talk given by F. Cooper. This
reference contains earlier historical references on the
strong-coupling expansion.

4C. M. Bender, F. Cooper, and G. S. Guralnik, Ann.
Phys. (N.Y.) 109, 165 (1977).

5G. A. Baker and J. M. Kincaid, Phys. Rev. Lett. 42,
1431 (1979) and unpublished.

A less-refined version of this notation was introduced
in Ref. 2.

B.Nickel, private communication.
Gn the lattice the Fourier transform of the second dif-
ference operator is 2[cos(pa) —11 /a2. In what follows
we understand that —p2 stands for this expression. In
this paper the distinction between the two is irrelevant
since we only compute to order P2.

For a review of functional methods in quantum field
theory and the effective potential, see J. Iliopoulos,
C. Itzykson, and A. Martin, Bev. Mod. Phys. 47, 165
(1975).

OSee R. Brout, in Lecture Notes in Physics 54, Critical
Phenomena, Sitges International School on Statistical
Mechanics, edited by J.Brey and R. B. Jones (Spring-
er, Berlin, 1976), p. 354.

~~See, e.g. , J. P. Van Dyke and %.J. C. ~p, Phys. Rev.
Lett. 35, 323 (1975), or J. M. Kincaid, G. A. Baker,
and L. W. Fullerton, Los Alamos Report No. LA-VB-
79-1575 1979 (unpublished).


