
PH YSICAL REVIK% D VOLUME 23, NUMBER 12 15 JUNK 1981

Hamiltonian calculations for the Z, lattice gauge theory with matter 6elds

Jay L Banks
Department ofI'hysEcs, Ohio State University, Columbus, Ohio 43210

D. K. Sinclair
Department ofEhysics, University ofI/linoisat Urbana-Champaign, Urbana, Illinois N80I

(Received 2 February 1981}

We study the Z, lattice gauge theory coupled to scalar matter fields (Ising spins} in 2+ 1 dimensions. Strong-
coupling expansions are obtained for the masses ofboth "meson" and "glueball" excitations. We use the zeros of the
mass gap, obtained using Pade approximants and duality transformations, to locate second-order phase transitions
as a function of the gauge and matter coupling constants. The resulting phase diagram is in reasonable agreement
with that obtained by other methods. These other methods (Monte Carlo and 1/A expansions} are, however, most
sensitive to first-order phase transitions while our method is most sensitive to continuous phase transitions. We
observe that the additional parameter of the Hamiltonian approach is essentially irrelevant.

Lattice gauge theories including dynamical mat-
ter fields have attracted a great deal of interest
in recent years. ' ' Such theories are clearly rele-
vant to the problem of quark confinement, since
studies of the confinement question in the context
of "pure" gauge theories can only deal with the
potential between static sources. If we hope to
gain a realistic understanding of confinement, and
other features of the spectrum, in a universe which
contains quarks as well as gluons, then we must
study models whose Lagrangians contain matter
as well as gauge fields.

Unfortunately, the model which seems most
realistic for the strong interactions —SU(3) gauge
theory coupled to fermions —has to date not proven

I

amenable to a thorough treatment of the confine-
ment problem. Although substantial progress has
been made towards understanding confinement in
the pure gauge theory, ' the results with fermions
have been rather indecisive up to the present. ' We
are thus led to consider simplified models. The
particular simplifications made in the present
work are to consider a discrete, Abelian gauge
group (in this case Z,) and, more importantly for
the tractability of the model, to couple the gauge
theory to scalar, rather than fermion, matter
fieMs.

Previous treatments of the Z, "gauge-Higgs"
theory"' have considered the partition function

z= Q ex@ «Q «(««)«(««ji, , «)t«lr««+«, «)«(«««-«) -(Q««()«)«, («, )))p(F««))
es p=kl Ps alp &s9

Here o(r, j) is a gauge field defined on links (r, p)
and p(r) is a scalar matter field (Ising spin) de-
fined at sites r of a cubic lattice ln 4+1 dimen-
sions, where we restrict ourselves to the. case
0+1 =3. Each o and each p take the values +l.
The two terms in the exponent of Etl. (1) are lat-
tice analogs of E'„„and the gauge-covariant deriva-
tive terms, respectively, in gauge-invariant con-
tinuum theories. The partition function (1)is invar-
iant under changing of the sign of p at any given
site and simu1taneously changing that of the o 's
on the 2(d+1) links emanating from that site. A
general gauge transformation is the composition
of any number of such site transformations.

Fradkin and Shenker' have elucidated the general
structure of the phase diagram of the model of
E(I. (1). Firstly, the model simplifies for p-0
and also for w-~. In the former case, the mat-

I

ter field decouples, and we are left with the pure
gauge theory first discussed by Vfegner' which is
dual to the Ising model. In the latter limit, the
gauge field is "frozen«' at o =1 (up to gauge trans-
formations) and the interaction of the matter field
is that of the ordinary Ising model. In addition, it
can be shown' that the phase transitions of these
limit models persist along lines extending into
the P-)(; plane; these lines tend to smaller y as P
increases from zero, and to larger P as e de-
creases from infinity, respectively. (N. B., the
model also simplifies for g -0 to the trivially
soluble annealed spin-glass model. )

The most interesting result of Fradkin and Shen-
ker holds if the matter fields are in the fundamen-
tal representation of the gauge group (for Z, the
only nontrivial representation). In this case, there
is a region of nonzero width along the I(. =0 and
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P =~ edges of the phase diagram where the free
energy is analytic. ' This region connects the
"confining" phase of the pure gauge theory (the
disordered phase of the Ising theory to which it
is dual) to the magnetized phase of the pure spin
model. This means that the analogs of quark con-
finement and of the Higgs mechanism occur in the
same phase of the system. '

We have studied this model in the Hamiltonian
formulation. By standard methods involving the
transfer matrix and time continuum limit, g we
obtain the Hamiltonian

H = —o Q (g, —1) or/ Q—(p, —1)

x Q V30 383(X3 )x Q pollop3 (2)

for a quantum system on a two-dimensional spatial
lattice. Here i labels sites, l links, and p pla-
quettes. The p's and p''s are sets of independent
Pauli spin matrices on the sites and links, re-
spectively.

This Hamiltonian is invariant under an arbitrary
product of single-site gauge transformations, each
of which involves flipping p, at a given site and

o, on each of the four links connected to it. Such
a transformation is produced by the operator

a(r) =p, (r) Qo, (r, z),

where the product is over the +x and +y directions.
G(r) clearly commutes with H.

We note that H of Eq. (2) depends on three pa-
rameters compared with the two of the partition
function Eq. (1). This occurs because the Hamil-
tonian derives from the partition function for an
anisotropic lattice, which has four coupling con-
stants instead of two. One is absorbed into the
Hamiltonian normalization, but three survive.

Our detailed study of this model starts in the
"strong-coupling" regime, where g is small and

f is finite. We now perturb around x =0. The
zeroth-order Hamiltonian is

+(f,.+1..5'+f.,V)x'+O(x'),

&b..-&... boo+(b2o+bo2&')x'

+ (b„+b„)'+b„]')x'+0(x'),

(Ga)

(Gb)

where the coefficients are given in Table II as
functions of g.

Although we have calculated both the boxiton and
the link series for aQ g, what we really want is
the lowest-lying excitation. This is the meson for
q& & and the boxiton for qy 2.

(0) (b) {c)

"flipping" spins on various sites and/or links, at
a cost of zeroth-order en'ergy E,=1 per flipped
Q y and +p p per flipped p, . To maintain gauge
invariance requires either closed loops of flipped
g, 's or "strings" of flipped g, 's with flipped p, 's
at each end. The lowest-lying zeroth-order gauge-
invariant excitations are thus (1) a "boxiton" of
four flipped v, 's forming a plaquette, and (2) a
"meson" or link excitation of flipped p, 's on two
adjacent sites, joined by a flipped o, . These states
have the zeroth-order energies:

E(0) 0 E(0) 4 E(.) 1+2n (G)vs & box & 1 ink

respectively.
We have used Rayleigh-Schrodinger perturbation

theory to expand the energies of these excited
states to order x~. The graphs contributing at
order g' to E«,k and E„„aregiven in Figs. 1 and
2, respectively. Their values are listed in Table
I. The calculations are similar in principle, but
considerably more complicated and tedious in
detail, for third and fourth orders. The results
are

H, = - a Q (o~ -1) kn Q (px --1)

The perturbation is

V x Q 0 30 3(73(73 gx Q p303p3 (4b)

(e) (g)
The zeroth-order ground state is thus an eigen-
state of all g, 's and p, 's with eigenvalue +1 for
each. This state is clearly gauge invariant [see
Eq. (3)]. Excitations above this state involve

FIG. 1. Graphs giving the second-order contribution
to the meson or link energy. Solid lines represent
flipped spins, wavy lines represent links on which the
gauge field is excited.
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ables z —X —p given by

z=
)
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The duality transformation is"
FIG. 2. Graphs giving the second-order contribution

to the boxiton energy.

TABLE I. Values of graphs of Figs. 1 and 2.

Fig. 1 Fig. 2

(a)

(b)

(c)

(d)

(e)

(g)

(N- 7)$
—(1+2')
(N- 7)k
—(1+2g)

N$2
X2

(1+20)

' x2—1

6)2
—1

(N/2) —2

2 -X2—2

(N/2) —5

(N/2) —5
-4

N/2
4

4 X2—2

4
X2—2

(N-4) ('
—(1+2m)

4(
—(2g —1)

The signal for second-order phase transitions
in this model is the vanishing of the "mass gap
as given by EIl. (6a) if q &-s' and EIl. (6b) if Ii& —,', on
a surface in x —$ -Ii space. We use [2, 2] Pads
approximants (in the variable z) to analytically
continue the series of EIl. (6) outside the small-x
domain. The real positive zeros of the approxi-
mants give us our estimate of the zeros of the
mass gap, and hence the position of the second-
order phase transitions in the theory.

Further information concerning the positions of
the second-order phase transitions of the theory
can be obtained-using the self-duality of the the-
ory. This is far from transparent in the x -Ii —g

variables" so we transform to a new set of vari-

W

O'sO'sO'sO's

w w at

P y O'sO'sO'sO's
q

PsOsPs "~.
where the tilde quantities are again Pauli spin
matr ice s. Thus

W(z, x, p, )-W(z~, x*,p, *),
where

(Sa)

(Sb)

(Sc)

(Sd)

A+ =z,
u* =l/W ~

(9a)

(9b)

(9c)

Thus a zero at z =zp A. )t,p, p =pp maps into an-
other at z =z*, A. =A.~, p =p*.

Figures 3-5 give our predictions for the lines
of zeros of the mass gap and hence of second-
order transitions. These three phase diagrams
are for p of 1, 0.2, and 0.1, respectively. Note
that the zeros of Fig. 3 come entirely from the
boxiton mass. Duality makes the p, =1 diagram
symmetric under interchange of z and A,. The
phase diagrams for p =5 and 10 are obtained from
those for p =0.2 and p =0.1 by interchange of z
and X. In each case the nearly vertical line of
zeros is from W(z, A. , p ), the nearly horizontal
line from W(z*, A*, p, s') with z*,x*, and p* given
by EIl. (9).

The question immediately arises as to why the
lines of zeros obtained from W(z, A. , p) and W
(zs', X*,ps') do not coincide and which, if any, of
these zeros we believe. For this we turn to pre-
vious analyses for the case p =1.' 4 These find
that, in addition to the lines of second-order tran-
sitions which we have found, there exists also a
line of first-order transitions extending from the
point where these lines of second-order transi-
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TABLE II. Coefficients of the strong-coupling expansions for (a) E„.„„-E„„and(b) Eb -E„„.In each case the sub-
script "ij" labels the coefficient of $~x~.

Slink- EM 8 8

l« =1+2'

l22 = —12+14/(1+ 2'0)

l32 —16 —4/( 1+ 2g) —4/(1 + 2g)

3«S2
l42 = —(AS+ 4~2 18' —1)/(2q+ 3)(2q+ 1)S

l4, = (576& + 6327) + 172'+ 128& —12)/(g+ 1)(2q+ 1)

boo=4

&2O=-
2

S» =-8/(4g2-1)

54p =—43

54t = (18&+11)/(2q+ l)I+ 5(2'g+ 5)I/4(2q+ 3)(2q+ 1)t

+ 5(2'&+ 3)/4(2q —1) -3(2t)+ 3) /(2'6+ 1) -3/(2q -1)
—(28+ I) (6'5 —I)/(20+ 3) (20 —I) + (348+ 83)/2(4n —I)
—32/(2n+1)'(2n —I)'(2n —3)

(864@ —896gS+ 424~2+ 3' + 8)/(g2 1)(4~2 1)3

tions cross, along the self-dual line (z =)t) out to
s =1.1 where it terminates. We have sketched
this as a line of crosses in Fig. 3. (N. B., the
point where this line terminates is outside our
range. ) Now we see what our problem is. To the
low order to which we have calculated, our series
are incapable of delineating this line of first-order
transitions. Hence any zeros which lie beyond
this line are likely to be displaced, which is ex-
actly what we see. This means that we can only
trust that part of our lines of zeros prior to the
point at which they cross (unbroken lines). Those
zeros beyond this point (broken lines) should be
ignored and considered as the displaced version
of the zeros coming from the dual Hamiltonian.
The same analysis should be true for p =0.2 and

p =0.1.
The fact that the vertical lines of zeros for

p. =0.2 and p =0.1 are discontinuous is because
the lower part of the curve comes from the box-
iton, while the upper part comes from the link.
The discontinuity occurs at I) =-,' (i.e. , s)( =2+'3).
If our results were exact, these two curves would
match at this point. The fact that they do not is a
measure of the reliability of our approximation.

In each case, our lines of zeros isolate the bot-
tom left-hand corner of the phase diagram. This
region is to be interpreted as a "free-charge»
phase, separated by second-order phase transi-
tions from the other "Higgs-confinement» phase.
This is in good agreement with other analyses
using Monte Carlo"' methods or 1/N expansions. '
The points of intersection of these phase bounda-
ries with the axes for p, =1, viz. , z = 0.37 and
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FIG. 3. The phase diagram for p, =1. Solid lines
represent second-order phase transitions. The line of
crosses indicates first-order phase transitions. The
broken lines are displaced zeros of the mass gap.
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X

FIG. 4. The phase diagram for p, =0.2. Note the cross-
over from boxiton to link at g = ~. The curve n*= ~ lies
completely outside the plotted range of variables.
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FIG. 5. The phase diagram for @=0.1. Note the cross-
over from boxiton to link at q = 2. The curve n*= ~ lies
completely outside the plotted range of variables.

X= O. 3V, are in good agreement with the 1/N ex-
pansion' which gives the values z =0.405 and X

=0.405. The direction of curvature of these lines—
slightly towards smaller A(s) values rather than
towards larger X(z) values —does not agree, how-
ever; but it will be noticed that the link zeros for
p =0.2 and p =0.1 do have this property. This is
to be expected since the link series has more
terms and is thus probably more reliable than that
for the boxiton.

It is expected that higher-order ca.lculations
would improve these results and show indications
of the line of first-order transitions. This is only
possible because the line of first-order transitions
terminates, allowing analytic continuation from
one side to the other of this line.

The close similarity of our phase diagrams for
the large range of p investigated 0.1 & p & 10 would
seem to indicate that p, or some closely related
parameter, is irrelevant at or near the critical
points of the theory. This would mean that the
critical behavior of the theory is described by
only two of the three parameters of the theory. We
might expect this to happen, since our extra pa-
rameter is a result of the anisotropy of the Ham-

iltonian theory. Such anisotropy would be expected
to vanish at a critical point where symmetries
are likely to be restored.

To summarize, our calculations of the phase
boundaries of the Z, Abelian Higgs model are in
agreement with previous calculations using dif-
ferent methods' ' except that we cannot elucidate
the first-order transitions to this low order.

At this point we should emphasize that the ad-
vantage of our method lies in that these analytic
techniques are most suited for finding zeros in
functions where the zero is approached contin-
uously. It is thus most suited to finding continu-
ous phase transitions. Monte Carlo techniques, on
the other hand, are numerical in nature and are
thus most suited to firiding the abrupt discontin-
uities associated with first-order transitions. 1/N
expansions are also best suited to finding first-
order transitions.

Finally we should point out that the results of
Table II represent, as far as we know, the only
explicit calculation of the low-lying excitation
spectrum of this model.
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