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String dynamics, the heavy-quark potential, and the restoration of rotational symmetry in lattice gauge theory are
studied using Hamiltonian methods. tI)tr'e find that off-axis strings experience unbounded transverse fluctuations at
all finite couplings. A fermion formulation of lattice strings is used to do systematic calculations. The heavy-quark

potential is seen to have power-law corrections to linear confinement. Rotational symmetry in the string sector of
the theory is restored in two stages. There is a finite coupling g„("roughening") where the equipotential surfaces of
the heavy-quark-potential become well-approximated by spheres, and there is the bulk critical point g = 0 where
short-distance violations of rotational symmetry disappear. A new order parameter, the "kink" mass, is introduced
to distinguish the smooth and rough phases of the string sector of any lattice gauge theory. Roughening coupling
constants are determined using the kink mass for a variety of theories, These results are compared against more
traditional width calculations. In the Hamiltonian formulation of SU(3) lattice gauge theory the roughening point
lies inside the weak-coupling region.

I. INTRODUCTION

Lattice formulations of gauge theories are
proving to be effective tools for studying strong
interactions. Systematic studies using strong-
coupling' and Monte Carlo' simulations have gen-
erated numerical evidence for quark confinement
in pure non-Abelian gauge theories in 3+1 dimen-
sions. A simple physical picture of confinement
accompanies these numerical results. Familiar
arguments show that the lattice theory confines
quarks at strong coupling because of an "electric
Meissner effect"—the ground state repels chro-
moelectric flux forcing the flux existing between
a widely separated quark and antiquark into a tube
of finite intrinsic width. ' The numerical studies
have shown that a.s the lattice coupling is decreas-
ed the properties of the theory smoothly approach
those expected from ordinary weak-coupling per-
turbation theory. " This is good evidence for the
fact that the properties of the lattice disappear in
the continuum limit, Lorentz invariance is re-
stored, and confinement remains.

These successes have led us to study the dyn-
amics of flux tubes ("strings") in more detail.
We are particularly interested in understanding
the heavy-quark potential for all distances r and
the restoration of rotational symmetry in the
string sector of the theory. This work has led us
to thy following ideas.

(1) The static-flux-tube picture of confinement

is incomplete. In a renormalized, continuum lim-
it the flux tube experiences unbounded transverse
fluctuations.

(2) The heavy-quark potential contains terms
in addition to linear confinement. If

~
r ( is much

greater than the bulk correlation length (recipro-
cal of the glueball mass), then V(r) has an asym-
ptotic expansion,

Q~ Q~
V'(r) =Tlrl + + s+ ~ ~ ~

lr I I r I

'

and the constants n, are computable by lattice
te chniques.

(3) The restoration of rotational symmetry oc-
curs in two steps in the string sector of the theo-
ry. There is a finite coupling gn ("roughening")
where the equipotential surfaces of the heavy-
quark potential are well approximated by spheres.
Short-distance violations of rotational symmetry
disappear at the bulk critical point g=0.

It is interesting to briefly consider the physics
behind these three observations. Consider a flux
tube placed along a coordinate axis of a spatial
lattice. At strong coupling, where electric energy
dominates the lattice Hamiltonian, distortions of
the straight flux tube cost finite amounts of ener-
gy. Therefore, the string is essentially straight
("smooth"). The crucial question is whether the
string remains smooth in the continuum limit of
the lattice model. The answer is "no" and the
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reason lies in simple considerations. The lattice
theory itself possesses only discrete elements of
the translation and rotation groups of a space-
time continuum. At a strong-coupling, long-wave
length, gradual fluctuations of the string are ab-
sent because of the lattice scaffolding. Thus, the
on-axis lattice string has a qualitatively different
excitation spectrum than its continuum partner.
Elementary considerations show that a string in
a space-time continuum can support ft,uctuations
of arbitrarily long wave lengths and low energies.
Of course, as the lattice coupling g is decreased
one expects the on-axis string to evolve into its
continuum relative. It is clear, however, that it
cannot do this in an analytic fashion because the
two strings have qualitatively different excitation
spectra. In fact, several investigations have
shown that the lattice string experiences a phase
transition called roughening at a finite coupling

g~ where it develops many properties of the more
familiar physical continuum string. At all coup-
lings between g~ and the bulk critical point g= 0,
the lattice string experiences unbounded trans-
verse fluctuations because its excitation spectrum
has no mass gap.

The fact that g~0 presents a serious challenge
to lattice calculations. The nonanalyticity in the
string tension at gz limits the use of strong-coup-
ling expansions. The unbounded transverse fluc-
tuations make computer simulations on small lat-
tices subject to systematic error. One needs a
lattice approach to string dynamics which proper-
ly incorporates unbounded transverse fluctuations.
Nontrivial, useful steps towards this goal are pre-
sented in this paper. We have found it useful to
consider the off-axis string. Place a quark and
an antiquark at arbitrary positions on a spatial
lattice. Then even at strong coupling the string
between them does not travel a unique path —any
path of equal length contributes to the state of the
string. Therefore, to study strings at a general
orientation with respect to the lattice and, equiv-
alently, the spatial character of the int'erquark
potential, one must first solve a nontrivial prob-
lem in degenerate perturbation theory. This will
be developed in detail in the next section of this
article. We shall find that the off-axis, fluctuat-
ing string is "rough" for all finite coupling g. The
fluctuating string will be described by fermion
variables. In addition, a straightforward calcula-
tion reveals that the transverse fluctuations of the
string are unbounded —strings with nonzero ten-
sion and length L experience transverse fluctua-
tions of mean width lnL in 2+1 dimensions.

The second observation listed above is closely
related to the first. The energy in the fluctuating-
string sector of the theor'y is the adiabatic poten-

tial between heavy quarks. The absence of a mass
gap in the spectrum of the fluctuating string in-
duces corrections to. linear confinement which are
power behaved in )r ). The very existence of
massless modes on the string generates the
o.',/ ir [ term of Eg. (1.1) and the coefficient o.,
is believed to be universal —independent of the
gauge group. ' Strong-coupling expansions for T
and the a, coefficients can be developed using lat-
tice perturbation theory and some relativel. y short
series are presented here.

One of the virtues of the lattice approach is that
P(r) can be studied for all Ir I

—large or small
compared to the bulk correlation length. Formu-
las more general than the asymptotic expansion
Eg. (1.1) will be presented in the text. In addition,
the restoration of rotational symmetry can now be
studied in a systematic fashion. At strong coup-
ling the flux between the quark and antiquark must
travel along a path of minimal length. So,

where go is the bare coupling on a spatial lattice
of spacing z. The equipotential surfaces of Eq.
(1.2) are octahedrons. In a proper continuum lim-
it the equipotential surfaces must be spheres. As
go decreases and Eg. (1.2) is modified by finite
coupling corrections, the octahedrons must
evolve into spheres. But the octahedrons are not
differentiable surfaces —they have kinks along
each coordinate axis. Therefore, the octahedrons
cannot evolve into spheres in an analytic fashion.
In fact, we shall see in the text that the kinks in
the octahedrons disappear at the roughening point

g~ and the equipotential surfaces are well approx-
imated by spheres for all g ~ g~. Thus, rotational
symmetry is restored in two stages in the string
sector —at g~ where the equipotentials become
spheres and at g=0 where short-distance asym-
metries of the more familiar kind are washed out.

It should be clear to the reader that our investi-
gations cast the roughening transitions of lattice
gauge theory in a fresh light. We study roughen-
ing for several models in 2+1 and 3+1 dimensions
by studying the mass spectrum of the on-axis
string directly. We are led by our various consid-
erations to consider the "kink" state of a string.
This is a configuration of flux with one transverse
link on an otherwise straight on-axis configura-
tion. Roughening occurs at that coupling where
the energy difference between this configuration
and the straight string vanishes. Using the kink
mass as the order parameter distinguishing the
smooth string phase from the rough string phase,
we locate the roughening coupling for Hamiltonian
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SU(3) lattice gauge theory. gs is seen to lie in the
weak-coupling region, i.e. , at a coupling distinct-
ly smaller than that characterizing the rapid
crossover from weak to strong coupling in the
theory. This result should be contrasted with
recent determinations of g~ in the Euclidean four-
dimensional versions of SU(2) and SU(3) lattice
gauge theory. ' There g~ was found to lie in the
middle of the crossover region. The Hamiltonian
regularization procedure is, therefore, better
suited to studying string dynamics and confine-
ment. And certainly strings themselves and heavy
quark potentials are better analyzed in a Hamil-
tonian (or transfer matrix) formalism.

In the final section of this article traditional
width calculations are presented to determine g„.
They are in good agreement with the kink calcula-
tion conclusions.

II. THE SPATIAL STRUCTURE OF THE QUARK-
ANTIQUARK POTENTIAL AND THE

FLUCTUATING QUANTUM CHROMODYNAMICS
(QCD) STRING

In this section we shall discuss the strong-coup-
ling limit of the static quark-antiquark potential
as a function of the separation vector x=(x, y, z).
%'e wil. l find that when the separation vector is
not directed along a lattice axis, a wealth of new
physics emerges. By looking away from the coor-
dinate axes we will see that the string or flux tube
connecting the qq pair will wander without bound
as their separation distance is increased. In fact,
we will find that the width of this flux tube will.
diverge logarithmically with the separation dis-
tance of the qq pair. These soft transverse string
fluctuations will be responsible for inverse-power-
law corrections to the pure linear confining poten-
tial. As the coupling is weakened we shall find
that the qq potential tends to a rotationally invar-
iant form as it must in order to have a sensible
continuum limit.

Consider a static quark-antiquark pair located
at the origin (0, 0, 0) and at the point x = (x, y, z)
=a(n„,n, , n, ) on a regular cubic lattice with lattice
spacing ~. The physics is described by the lattice
gauge theory Hamiltonian '

2

V(x, y, z) = —g (x,) "V„(n„,n, , n, ) .
2a

(2.2)

In states which contain quarks, electric flux con-
servation requires that there be one unit of elec-
tric flux flowing between the quark and the anti-
quark. ' The lowest-energy states in the strong-
coupling limit x,-0 are those with each of the
links on the shortest of paths joining the qq pair
in the fundamental representation, and all others
in the singlet representation. Such a state is
shown in Fig. 1 and the energy of such a state is
given to zeroth order in x, by

2 4
V(x, y, z) = —'

3 ( In„ I + In, I + In, i )

2=~ V,(n„,n„n.) .
0

(2.3)

The equipotential surfaces of this zeroth-order
potential are octahedrons which are clearly non-
analytic along the coordinate axes as can be seen
in Fig. 2. The set of all such paths with this
same energy value are those with n„steps along
the ~ axis, n, steps along the y axis, and n, steps
along the z axis taken in any order. The &umber
of degenerate paths is thus

( In„l + In, I+ In, I)!
ln„l ~ In, I

~ In. l
~

(2.4)

/
/

/
/

/
/

/I
/

/

I i(

We would like to compute the energy of a state
with a qq pair present, relative to the vacuum en-
ergy, as a power-series expansion in the strong-
coupling expansion parameter x, =2jg,'. Such a
series may clearly be written in the form

(2.1)

where g is the lattice spacing and g, is the bare
coupling constant. The sums extend over the links
l and the simple plaquettes p of the regular cubic
lattice. E' is the quadratic Casimir operator on
links and U is the group element in the funda-
mental representation of SU(3) obtained from the
oriented product of group elements around plaqu-
ette p.

FIG. 1. A typical string state connecting a static
qq pair;
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direction. The hopping term in (2.5) is respons-
ible for exchanging an xy link pair with a yx pair
as was shown earlier in Fig. 3. This Hamiltonian
is diagonalized by introducing the single-particle
wave functions

and fermion operators

(2.6)

FIG. 2. The zeroth-order equipotential surface. Note
the nonanalyticities along the coordinate axes.

n=1, 2, . . . , L (2.7)

2a 4 x
(a,a i+, + a,+,a,),

go
(2.5)

which acts in the subspace of in, I particles creat-
ed by the fermion operator a 's. These fermions
represent electric flux in the y direction and the
vacancies or empty sites represent flux in the x

To first order in x„all of these degenerate
states are mixed by the second term in Eq. (2.1)
and these terms are shown in Fig. 3. The poten-
tial exchanges nearest-neighbor link pairs which
are not parallel. To compute the first-order en-
ergy shift V(n„, n„n,), we must diagonalize the
perturbation in the subspace of degenerate zeroth-
order states. The formalism for diagonalizing the
mixing matrix was discussed at great length in
Ref. 7, where it was found that an exact diagonal-
ization could be performed for arbitrary n„and n„
in the plane n, =0. We shall now restrict ourselves
to this case and study V(x, y) =- V(x, y, 0) and return
later to the general case.

As was shown in Ref. 7, to first order in g,
= 2/g, ' the Hamiltonian of the system when z =0
is equivalent to a system of In„I fermions con-
fined to a box of length L = In„l + In, l . There it
was shown that the first-order effective Hamilton-
ian is given by

With these substitutions, one easily finds that

2a 4 x
2 eff 3 3 n n n

—H =-L-~ c b'5
0

(2.8)

with a free single-particle spectrum given by z„
=2 cos[pn/(L+1)j. In the string sector of the
theory there are I n, I particles present and the
lowest-energy state is the one with the first In„I
levels occupied, i.e. , a filled "Fermi sea." The
energy is then given by

In@i
2a ~ x . ( mn—,V(x, y) = ,' L —~ g-2 co)

= —,(I n„l + In„i)

I n„I —I&, I &i

2 In„I + In„I +1j

2(In„I + In I + 1)j~

(2.9)

Before we go on to compute the higher-order
correction to this low-order result, there are
many questions to ask of this simple first-order
one. First, we ask about the angular and radial
dependence of the qq energy. To display this de-
pendence, we rewrite Eq. (2.8) in dimensionless
polar coordinates x and 8 where n„=r cos8 and n,
=xsin8. We see that

(c)

FIG. 3. The mixing term. The potential has the effect
of exchanging link pairs which are different. (a) Initial-
string state; (b) string state and potential term; (c)
final-string state.

2a—,V(r, 8) = —,
' r(

80
I cos8 I + Ising I)

(vr I cosg I
—Ising'

.COS—
I,2 Icosg I+ I singI +1/r

1sini-
'(2r ( I cos81 + I sing I + I/r)&i

(2. 10)
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2

V(r, 8) = ~ Q ~ 'f,(8,x,)
2Q

(2.11)

and of course each of the f, 's may be separately
expanded in x,. Of particular interest is the angu-
lar-dependent tension f,(8,x) which we obtain to
first order in x, by expanding Eq. (2.9},

x =0

The angular dependence of Eq. (2.9) is most easily
displayed by plotting the equipotential surfaces
V(p, 8) = constant. These surfaces are shown in
Fig. 4 for several values of x,. We see from the
figure that as ~, is increased from zero that the
surfaces evolve continuously from squares into
almost perfect circles when ~, —-2. As x, is in-
creased beyond this value this circularity is lost,
but one hardly expects such a low-order result to
be valid for such large values of x,. One actually
expects this circularity to persist as x, —~ so
that the weak-coupling theory is rotationally in-
variant.

To display the radial dependence of our result
it is convenient to expand V(x, 8) in the form

f,(8,x) =-', ( I cos8 I + Isin8 I) 1 —~ sin
2m 1+ ]tang I

(2.12)

When ~,=2 this function is almost independent of
0 and differs from a constant by a maximum rel-
ative error of 2 percent.

We also examine the "Coulomb term" f,(8,x,)
in Eq. (2.10) to see whether it is attractive or re-
pulsive. We find that

v (41sin8 I I cos81 —1) . ( v
'18 ( IsinHI + Icosg I)' ~pl+ Itan91)

(2.13)

which can have either sign, depending on 8.
f,(8, x,) is mostly negative, however, for if we
average over all angles we find -0.022'„which
suggests that the Coulomb term is indeed attract-
ive.

Another extremely interesting quantity to meas-
ure in our first-order QCD string is the "width"
of the string. For simplicity consider a string at
45' when n„=n,. For such a string we would like
to compute its width at the string's center. To
calculate it, we will need an operator which meas-
ures the string's perpendicular coordinate x, at
the string's center. A little thought shows that
such an operator is given by

(2.14)

xs= I

z~ simply counts the differences between the num-
ber of particles in the left and right halves of the
box. Several string states and their associated
g~'s are demonstrated in Fig. 5. We would like
to know how the string's mean-square width g~'
behaves as the string's length I. is increased.
By expressing Eq. (2.14) in terms of the single-
particle operators and wave functions of Eqs.
(2.5) and (2.6) one finds that in the string's lowest-
energy state,

xs= 2 xs= 5/2 (x,'}-InL (2.15}

EQUIPOLLENT I AL SURFACES

FIG. 4. The first-order equipotential surfaces for
various values of x,. The small dots denote lattice
sites.

for I, large. This result says that the electric
flux is not confined to a region of finite width as
the qq pair's separation distance is increased.
This logarithmic behavior is reminiscent of the
continuum-string-model result. '

Still restricting our discussion to the plane g = 0,
we now look at the higher-order corrections to
our first-order result. To second order in g„
there are five district graphs that contribute to
V'(x, y} which are displayed in Fig. 6. As can be
seen in the figure, three of the graphs are diagonal
and two are off diagonal. The SU(3} group weights
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2. t 2.5

2.2 2.4

2.5

FIG. 6. The five second-order graphs projected into
the plane. The numbers represent the number of times
the potential acted.

familiar in ordinary Rayleigh-Schrodinger pertur-
bation theory. Naively, such a term would be of
fourth order in g„but since E0-g„ is of order x„
the total result contributes in third order. '

We have computed the second- and third-order
corrections, V, (n„,n„) and V,(n„n„). We have
tabulated these values for various small values

FIG. 5. Some typical 45' string states and their ~~
coordinate at the center.

33 3.4

were computed using the methods of Ref. 8. Since
the string wave function involves a certain linear
combination of the zeroth-order states discussed
earlier, the "lattice constants" for the graphs
shown in Fig. 7 involve computing such operators
as "the average number of corners" in the string
wave function. This is quite tedious.

To third order in x, there are fourteen district
graphs which are displayed in Fig. 7. Again the
lattice constants for such graphs involve compli-
cated matrix elements in the string wave function.
In addition to these fourteen graphs there is a
"Feynman graph" which involves a sum over ex-
cited intermediate string states and comes from
a term of the form

n&0

2 I

3.5

2 I

)
2 I

3.7

3.8 3.9 3.IO 3.I I

I I I

3.I2 3.I3 3.I4

FIG. 7. The 14 third-order graphs. The lattice con-
stants for these graphs involve complicated matrix ele-
ments in the string wave function.
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of (n„n, ) in Table L Using these results we may
compute the string tension at 45', that is,

TABLE I. Second- and third-order corrections to
V'(x, y) for several values of (n„,n„).

=iim V'" "'
45+ (2.16)

and compare how renormalizing the theory, holding
the 45' tension fixed, differs from the on-axes
case. To third order in g, we find that

7 4,~ = 1.8856-0.3001g, -0.2005', '
—0.031'l g, s. (2.1 t}

Notice that this series has a term linear in g, in
contrast to the 0' tension where such a term is
not present. ' By demanding that p4, is independ-
ent of the lattice spacing g, one induces a cutoff
dependence in the bare coupling g~ which is ex-
pressed in terms of the P function (P4,,(go}}/go
= —d lngo/d lna. From the 45' tension series we
find the third-order P function

V(r) = ' [(1.8856 —0.3001x, —0.2005x, ') (r/a)
2Q

+ (0.12211m, + 0.0652 m, ')

+ (- 0.061'l g, —0.0285@ ') (a/r} . (2.19}

Note that the (,"oulomb term (the coefficient of
1/r) is attractive, as one might expect from a
weak-coupling analysis.

We now return to the general case g g0, and
the problem of computing the first-order correc-
tion to V(x, y, g), namely, V,(n„,n„n,). This is
a highly nontrivial problem to solve since for
each point (n„n„,n, ) one must diagonalize a matrix
in a vector space of dimension (ln, l+ ln, l+ ln, l}!/
In, l!In„I!In,l! . For example, to compute V, (4, 4, 4)
this involves 12!/(4!)'= 34650 states, which is
a nontrivial numerical problem.

We have been able to diagonalize the first-order
mixing matrix for several small values of r'= n„'
+yg„'+g, ' and have listed some of these in Table
II.

To see the approach to rotational invariance
in the general case we plot our first-order re-
sults Vo(n„, n„, n, ) +x,V,(n„n„,n, ) against r' =n„'
+I '+~, ' and look for scattering at given r values.

=1-0.32, —0.37', '+0.12x,' (2.18)
8'0

Again, the major difference between the 45' series
and the 0 one is the presence of the linear term
in x, in the 45' case. As expected this linear term
flattens out the steep crossover region seen in
the on-tees calculations.

If we examine the radial dependence of the qq
potential at 45, we find that to second order in g,
and to first order in 1/r that

(n, n„)

(l., 1)
(2,1)
{2,2)
(3,1)
{3,2)
(3,3)
(4, 1)
(4,2)
{4,3)
(4,4)
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(6,1)
(6,2)
(6,3)
(6,4)
(6, 5)
(6,6)
(7,1)
(7,2)
(7,3)
(7,4)
(7,5)
(7, 6)
(7,7)
(8,1)
(8,2)
(8,3)
(8,4)
(8,5)
(8,6)
(8,7)
(8,8)
(9.1)
(9,2)
(9,3)
(9 4)
(9,5)
(9,6)
(9,7)
&9, 8)
(9,9)

(10,1)
(10,2)
(10,3)
(10,4)
(10,5)
(10,6)
{10,7)
(10,8)
(10,9)
(10,10)

V2(n„,n„)

( 2+ 2)1/2

-0.1633
-0.1595
-0.1802
-0.1461
—0.1778
-0.1865
-0.1347
-0.1694
-0.1851
-0.1898
-0.1258
-0.1603
-0.1797
-0.1889
-0.1918
-0.1189
-0.1520
-0.1730
-0.1851
-0.1912
-0.1932
-0.1135
-0.1447
-0.1663
—0.1802
-0.1885
-0.1927
-0.1942
-0.1091
-0.1384
-0.1599
-0.1749
-0.1847
-0.1907
-0.1989
-0.1950
—0.1055
-0.1330
-0.1541
-0.1696
-0.1805
-0.1887
-0.1923
-0.1947
—0.1956
-0.1026
—0.1283
—0.1488
-0.1645
-0.1760
—0.1843
-0.1899
-0.1934
—0.1953
-0.1961

V3(n„,n„)

( 2+ 2)1/2

-0.0181
-0.0206
-0.0156
—0.0256
-0.0172
-0.0150
-0.0291
-0.0205
-0.0159
-0.0146
-0.0314
-0.0237
-0.0181
-0.0153
-0.0145
-0.0329
-0.0263
-0.0206
-0.0168
-0.0149
-0.0143
—0.0339
-0.0283
-0.0229
—0.0187
-0.0160
-0.0147
-0.0142
-0.0346
-0.0299
-0.0249
-0.0206
-0.0175
-0.0155
-0.0145
-0.0142
—0.0351
—0.0311
-0.0266
-0.0224
-0.0191
-0.0167
-0.0152
—0.0144
—0.0141
—0.0354
—0.0320
—0.0280
-0.0241
-0.0207
—0.0180
-0.0162
-0.0149
—0.0143
-0.0141
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For example, if the potential is rotationally in-
variant, we would expect the potential at (1,1, 5)
to be the same as the potential at (3, 3, 3). In Fig.
8 we have plotted our first-order result for various
values of x, . We see that for x, —-2.3 there is very
little scatter in the data signaling a rotationally
invar iant potential.

These calculations summarize our results to

TABLE II. First-order energy V&(n„,n~, n } for various
small values of ~ =n„+n 2+n, .

this date. It is clear that this program is far from
exhausted. Higher -order calculations are feasible
and should be interesting. It will be particularly
interesting to calculate more terms in the strong-
coupling expansions of the functions f, (e, ~, ) and
obtain better numerical estimates of the power
corrections y ' to the confining potential. This
will allow us to check string theory arguments
for the universality of the r ' term' and perhaps
do some heavy-quark phenomenology from first
principles.

y2

0
1
2

4
5
6
8
9
9

1Q

11
12
13
14
16
17
17
18
18
19
20
21
22
24
25
25
26
26
27

29
29
30
32
33
33
34
34
35
36
36
37
38
38
40
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Vo(n„, n„,nz)+x, Vg(n„, n~, nz) vs r . The scatter
in the points is a measure of the rotationa1 invarianee.

III. KINKS, ROUGHENING, AND THE RESTORATION
OF ROTATIONAL INVARIANCE

Roughening and the restoration of rotational
symmetry are intimately related phenomena. The
bridge between them is provided by the "kink"
mass, a quantity to be discussed here in some
detail. First consider roughening. Place a static
quark and an antiquark along an axis of a spatial
lattice and let them be a distance & lattice spac-
ings apart. In the strong-coupling limit (~, = 0),
a straight and static flux tube will form between
them. At finite but small g the magnetic field
term of the lattice Hamiltonian will cause the tube
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FIG. 9. The lowest-order, lowest-energy fluctuation
of a straight flux tube.

to fluctuate and thicken. The lowest-energy ex-
citations consist of configurations of length &+ 2
with the flux in the fundamental representation.
The Eeroth-order energy of the configuration shown
in Fig. 9 is (g'/2a)(4/3)(N+2), if the gauge group
is SU(3). The fact that the energy of this configur-
ation is a finite, nonzero amount above that of
the straight tube implies that at sufficiently strong
coupling these fluctuations will be sufficiently
suppressed that the transverse extent (thickness)
of the infinitely long string wil. l be finite. The
convergence of the strong-coupling expansion for
small. g, means that there is a "smooth" phase '

for such flux tubes.
The lowest-energy, simplest-transverse excita-

tion of the straight stririg is shown in Fig. 10—two
arbitrarily long straight sections of string are
connected by a single "kink." This configuration
af flux has an energy (g'/2a}(-', }(N+1}in the
strong-coupling limit —the transverse link costs
2g'/3a units of energy. The existence of this
mass gap in the spectrum of transverse excita-
tions of the string implies that the transverse spa-
tial distribution of the string is bounded. Now
consider increasing g, . Then fluctuations in the
string occur and the mass gap decreases. There
is the possibility that the kink mass vanishes at
a finite value of g, =g„. At that. point transverse
excursions of an infinitely long string are no long-
er suppressed by an energy barrier so the string's
mean width is expected to diverge. This is the
character of the roughening transition. Our de-
scription here could apply to a quantum Hamilton-
ian analysis of the famous roughening of the inter-
face in the three-dimensional Ising model. "

It is conventional to calculate the width of the
string in strong-coupling expansions to search
for the roughening transition g„. Such calculations
will be presented later in this article. However,
we can also determine z~ by computing the kink
mass and noting where it vanishes. Since this
is a different approach to an old problem, we will
relate it to more familiar descriptions of roughen-
ing before continuing. We can view the kink of
Fig. 10 as an ordinary particle excitation living
on the string. I.et g denote its location in Fig. 10.

FIG. 11. The graphs included in the SOS approxi-
mation.

Then a kink of momentum 2n k/(N+ 2) is described
by the state,

(3.1)

where pf is the length of the straight string and k
can be 1,2, . . . , ~+1. We will be particularly
interested in kinks with k =1 since then their ener-
gy is a mass gap. In fact, in those cases in which
roughening is well approximated by a solid-on-solid
(SOS) model, "the kink is precisely the lowest-energy
excitation of the (1+ 1)-dimensional field theory de-
scribing the wandering of the string. Consider
the three-dimensional Ising model as an illustra-
tion. In the quantum Hamiltonian formulation the
fluctuations of the interface are described by the
(1+1)-dimensional Hamiltonian~

(3.2)

where j labels a one-dimensional spatial lattice,
and L, is an operator on links which is canonically
conjugate to Q„

(3.3)

Some thought reveals that Eq. (3.2) describes the

graphs of the string illustrated in Fig. 11—a string
fluctuates without "overhangs" in an inert back-
ground and L, is the transverse position of the
string on link g. This is the SOS model of the
three-dimensional Ising model and it is thought
to be a good approximation to the dynamics of the
real interface for all temperatures near or below

g~, the roughening temperature. This is so be-
cause g„ is much less than the bulk critical point

g~ so bulk fluctuations and overhangs are rare.
Now consider Eq. (3.2) for ~, near zero, The
lowest-energy state has all the L, equal. Choose

FIG. 10. The kink at strong coupling.

(O,O)

FIG. 12. A shortest path between a quark and an anti-
quark which contains two kinks,
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(0) (b) (c)

(a) (b)

FIG. 13. (a) An initial kink at link g along a string.
(b) Final-kink states after one application of the mag-
netic-field perturbation.

g2 4
V(» y 8)= 2, 3 (I»l+lyl+l~l) (3.4)

since the flux must travel a path of minimal length
from (0, 0, 0) to (», y, z). For purposes of illustra-
tion choose z = 0 and let V(», y, 0) =—V(», y). The
violation of rotational symmetry is substantial
in Eq. (3.4)—along a ray» = y Eq. (3.4) is a factor
of W2 larger than the physical distance between
the source and sink of flux. The equipotential sur-
faces af Eq. (3.4) have been shown in Fig. 2. The
coordinate axes are singled out by the cusps in
the equipotential surfaces. It is important and
interesting to realize that this nonanalyticity in
the spatial character of V(», y, z) is a consequence
of the nonzero value of the kink mass at strong

L,, = 0. This configuration describes the fixed
string and the choice I.

&

= 0 has spontaneously
broken the discrete translational symmetry in
Eq. (3.2). The first excited state of the model,
therefore, will have a single kink —I., will be
zero to the right (left) of a link j and will be one
to the left (right) of link j. The second term in
Eq. (3.2) allows the kink to propagate along the
string and it also puts kink-antikink fluctuations
on the string.

Now we turn to the connection between the kink
an'd the restoration of rotational symmetry. We
are particularly interested in the interquark poten-
tial. . Place a quark at the origin and the antiquark
at the lattice site (», y, g). In a sensible, renorm-
alized continuum limit of the theory, the static
potential energy V(», y, g) should be spherically
symmetric. However, in the strong-coupling
limit it is clear that

FIG. 15. As in Fig. 14, but the fluctuation lies on
the kink which hops one site.

coupling. To see this consider V(», y) in the case
that y is just a few lattice spacings while g is
large and arbitrary. Then the configuration of
flux is illustrated in Fig. 12—there are ~y( kinks
on an otherwise straight string Ea.ch (y( kink
costs an energy equal to ~~, the mass of the kink,
80

V(», y) =
3 J»/+m, fy(.

u 4
(3.5)

if a[») is a macroscopic distance and [y) is but a
few links, then in a proper continuum limit having
spherical symmetry only the first term in Eq.
(3.5) should survive,

V(», y) =TL, (3.6)

where L, =gx and g is the celebrated string ten-
sion. So it is necessary that m~ vanish identically
for the restoration of rotational symmetry. From
our earlier discussion we expect ypg~ to be zero
for aO coupling g between g„and the bulk critical
point g~ = 0. So, at the roughening transition a
source of the long-distance violation of rotational
symmetry is eliminated. That leaves behind, of
course, short-distance sources of rotational
asymmetry such as lattice differences replacing
continuous derivatives. ' These later effects should
scale. to zero at the bulk critical point as ordinary
irrelevant operator s.

Now we shall present results for the kink mass
in a variety of lattice gauge theories. Consider
a few illustrations taken from the SU(3) calcula-
tion in 3+1 dimensions. The method of calculation
will be the strong-coupling expansion, and results
to O(g ")will be obtained and analyzed. To
zeroth order the energy of the kink Eq. (3.1)
above the straight string is —, in units of g'/2g
for SU(3). At first order in», the kink is able to

(o) (b) (c) (c)

FIG. 14. Sequence of states in a contribution to sec-
ond-order perturbation theory to the kink mass. The
vacuum fluctuation is excluded from the string.

FIG. 16. As in Fig. 14, but the fluctuation- lies out
of the plane and a link on the string is excited to the
representations of SU(3).
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A

(0) (b) (c)
(a) (b)

I+2

(c)

FIG. 17. As in Fig. 14, but the fluctuation lies on
the kink and two links are excited to a flux representa-
tion g in the intermediate state.

FIG. 18. As in Fig. 14 but the fluctuation lies on the
string and permits the kink to hop two links to the left
or right.

hop by one unit along the string as shown in Fig.
13. One must compute the matrix element of the
magnetic field term -x,(tr UUUU+H. c.) in the
state Eq. (3.1). The result is -2xg3 —the factor
of 2 can be traced to the two directions along the
string and the —', is an SU(3) group-theoretical
weight. The second-order effects are more nu-
merous and are shown in Figs. 14-18. These
figures show the two intermediate states involved
in the calculation of the matrix element of
V(E, -H, ) V familiar from ordinary Rayleigh-
Schr5dinger perturbation theory. In each case
we compute the contribution to the intensive
energy of the kink, i.e., a vacuum energy sub-
traction and a subtraction of the energy of the
straight string is done order by order in z,. The
contributions from each graph are

(3.7a)

(3.7b)

(3.7c)

dim& 1,. 806

t

mediate state are excited to representations 4
=3, 6, or 8 each with a weight dim(A)/8 and an
energy denominator (2C„) ', where C„ is the
relevant quadratic Casimir operator]. These
routine matters have been discussed at length
elsewhere. ' To continue to higher order it is
helpful to have a table of SU(3) Racah coefficients'
and to do the summations over intermediate
states by computer. We will report the calcula-
tions of five terms in the strong-coupling series
of the kink below. Since the calculations closely
resemble those for the mass gape in (1+1)-
dimensional spin models, it should be possible to
computerize the kink-mass calculation and ob-
tain a series of ten to twelve terms. It should be
worthwhile to pursue this because the results we
will report below are quite interesting and are
comparable in accuracy to the studies of rough-
ening reported in the statistical. mechanics litera-
ture.

In Tables III and IV we list the kink-mass
series for Z„U(1), and SU(3) lattice gauge theo-
ries in 2+1 and 3+1 dimensions. The expansion
parameters are defined through the following
Hamiltonians. For Z, in 2+1 dimensions,

(18) =- —,'~x,2 .
(3.7d)

(3.7e)
1

(1 o|) x~ Q 0'~o'~o'~(x~
1iiks boxes

(3.8)

Besides the enumeration of graphs, the calculation
requires the computation of lattice sums (e.g. ,
in Fig. 14) one needs the number of ways a kink
excludes a vacuum fluctuation) and SU(3) group
theory [e.g. , in Fig. 17 two links in the inter-

Recall that this theory is dual to the Hamiltonian
form of the three-dimensional Ising model. " The
system's bulk critical point lies at g, =1.53 q0.03
(Ref. 13). For U(1) in 2+1 dimensions,

TABLE III. Strong-coupling series for the kink mass in (2+1)-dimensional lattice gauge
theories. For SU(3) an overall factor of —multiplies the series.

(dp

SU(3) 1

2

i
12

-0.220 261 438

1

8

25

0.009 475 984

1

8

0.145 045 883

0.029 206 037
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TABLE IV. Same as Table III except for (3+1)-dim-
ensional theories.

COp Q7)

Z2 1 . —2 |
2

U(1) 4

SU(3) 1 i 178
2 72p

5

85
48

85
96

-0.597 554 976

+ 0.006 671 073 0.031 450 710

where x, = 2/g'a'. The bulk critical point is
thought to be at the origin ~, '=0 and a nontrivial
continuum limit which confines is expected. Now

we turn to the theories in 3+1 dimensions. The
Ising lattice gauge theory is described by Eq. (3.8),
but in 3 +1 dimensions its strong- and weak-cou-
pling regions interchange under a duality map
which has a self-dual coupling x,*=—,

' (Ref. 12).
The strong-coupling phase confines and the theory
undergoes a first-order phase transition" into a
theory in which free charges exist at z,*=—', . The
U(1) theory in 3+1 dimensions has the Hamil-
tonian,

where x, = I/g~ and it also has two phases. The

H=~W= —g I,'-.x, P (tr UIItJU+H. c.) i,j
(3.9)

where x, = I/g~a' is a dimensionless coupling
constant in this superrenormalizable theory (g

'
has dimensions of mass). This system's bulk
critical point lies at the origin ~, i=0 where its
correlation length diverges with an essential
singularity. ' The SU(3) theory in 2+1 dimensions
has a similar form,

strong-coupling phase (x, ) 0.5-0.6) confines elec-
tric charge and has a mass gap. " The weak-
coupling phase admits free charge and contains a
massless photon in its spectrum. The SU(3)
theory in 3 + 1 dimensions was reviewed in the
previous section. Numerical evidence is accumu-
lating in support of the hypothesis that the theory
has only one phase in which asymptotic freedom
and confinement coexist."

There are several ways of analyzing these series
in search of zeros. %e will discuss two methods.
'The first approach uses a strong-coupling series
for the Callan-Symanzik P function of the kink
mass. The kink mass is given by

(3.12)

where the coefficients ~„are listed in Tables III
and IV. The P function follows from the condi-
tion that m~ is a fixed physical quantity,

d
m, =0. (3.13)

In order to satisfy Eq. (3.13};g must depend upon
a in a specific fashion. Working out Eq. (3.13)
by substituting into it Eq. (3.12), we find

(3.1,4}

where W is the dimensionless series in Eq. (3.12)
for the kink mass. The p-function series are
listed in Tables V and VI. The advantages in
studying the P-function series are (1) its zeros
label points ~, of second-order phase transitions;
and (2) since it depends on the logarithmic deriva-
tive of 9, it vanishes with a simple zero at x,
even if W itself vanishes with an anomalous dimen-
sion W- (x, -x,)". Our second approach will search
for simple isolated poles in the series for in'g.
The motivation for this comes from the three-
dimensional Ising model in which the roughening
transition is thought to be well approximated by
the planar model in 1+1 dimensions. The strong-
coupling end of this theory's critical line is des-
cribed by the Kosterlitz renormalization group

TABLE V. Strong-coupling series for twice the H function of the kink mass in (2+1)-dim-
ensional lattice gauge theories.

Hp

U(1)

SU(3)

25

—0.381045 752

61
4

138
8

0.908 163 094

29

33.021 478 17

—0.016 024 113
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TABLE VI. Same as Table V except for (3+1)-dim-
ensionaI theories.

H() Hg 82

TABLE VIII. Positions of the pole in the [p, q] Pads
approximant to the ln %' series for Z2 lattice gauge
theory in 2+1 dimensions.

1 -4 6

U(1) 1 -4 7

SU(3) 1 -1
45

1.026 137 549

289
12

-11.363 773 14

0.067 741 31
0.500

0.565

0.574

~ ~ ~

0.576

0.576

~ ~ 0

0.576

which predicts that as g, approaches x, from be-
low, m~ should vanish with an essential singulari-
ty j.e

exp[- b/(x, —x,)'i'] (3.15)

whose ln' is a simple pole.
Now consider the results of these analyses. The

Pads tables for the p functions and In'gr are given
in Tables VII-XVIII. We consider each case in
turn.

(1) Z2 in 2+1 dimensions. The Pade table fo'r

the p function indicates a stable zero at x„=0.526.
However, this zero is accompanied by other zeros
and poles at slightly' larger values of g, . This in-
dicates that the P function has a cut on the real
axis beginning at ~„and that m~ vanishes at g„
with a more complicated zero than (x, —x,)". The
Pads Table VIII for In'Vis particularly satis-
factory —there is good evidence for an isolated
zero at ~„=0.576. This gives some evidence for
the Kosterlitz- Thouless description of the rough-
ening transition. " Since g„=0.576 is much smaller
than g~ = 1.53 +0.03, we have good evidence for
roughening deep inside the confining phase. This
is the expected result. "

(2) U(l) in 2+1 dimensions. The analysis is
very similar to the Z, theory in 2+1 dimensions.
The Pade Table IX for the p function indicates a
zero at x„=0.549, but this zero is accompanied by
other singularities at slightly larger values of

The hypothesis of Eq. (3.15) fits the series
very well, however. The Pads Table X for the
ln'g series shows good evidence for an isolated
pole at gR =0.601. This is a particularly in-
teresting result because ~~ ' is known to be pre-

cisely zero and the lattice theory is asymptotically
free."

(3) SU(3) in &+1 dimensions Th. e qualitative
features of this analysis are completely different
from the Z, and U(1) Abelian theories. The Pade
Table XI for the P function does not reveal a
stable zero —as higher-order Pade approximants
are constructed, the estimate of gR moves toward
weaker and weaker coupling g. It appears that
~„~ 1.72. The Pade table for in'~ does not re-
veal the presence of a simple pole and has not
been included. The Pade Table XII for in~ is
shown and gives some weak evidence for roughen-
ing at a relatively large value of x„~ 2.3. %'e

learn from all this that if the theory roughens, it
does so only in the weak-coupling region &Ra 1.73.
In a later section width calculations will be dis-
cussed which also support this conclusion.

(4) Z, in 3+2 dimensions. The Pade analysis
Table XIII for the P function indicates the presence
of a cut beginning near the self-dual point g~ = ~.
The analysis of ln'Q' in Table SIV is clearer and
shows good evidence for roughening at or slightly
below the self-dual point. This gives some sup-
port for a Kosterlitz-Thouless description of
roughening in this model. Note that our estimate
of gR does not differ greatly from that for the g,
model in 2+1 dimensions. We shall find that this
trend is common to the groups studied, the rough-
ening point is not strongly dimension dependent
(while the bulk transition points are, of course)

(5) U(l) in 3+3 dimensions Both the p.function
and 1n'@' Pade Tables XV and XVI show evidence

TABLE VII. Positions of the zero in the [p, q] Pade
approximants to the p function for Z2 lattice gauge theory
in 2+ 1 dimensions.

TABLE IX. Same as TabLe VII except for U(1) gauge
group.

0.500

0.527

0.526

0.525

0.526

0.526 0.522

0.553

0.549

0.549

0.549

0.549
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TABLE X. Same as Table VIII except for U{1)gauge
group.

TABLE XII. Same as Table VIII except for the in%
series of the SU{3) theory.

0.521

0.591

0.600

0.603

0.602

0.602

1.423

2.417 2.293

for roughening at gR -—0.56. The analysis of the
ln'9' series is compatible with a Kosterlitz-Thou-
less transition. The bulk transition point has also
been estimated to li.e in the vicinity of 0.55, but
the theoretical uncertainty in this number is large.
It may be that z„=x~. This possibility deserves
further attention.

(6) Sp(3) in 3+2 dimensions The. analysis here
is similar to that i.n 2+1 dimensions. The Pade
Table XVII for the P function, suggests that g„
& 1.63 and a higher-order calculation is necessary.
The Pade Table XVIII for in% does not reveal a
definite transition but suggests g„)2.2. The ln g
analysis is very erratic and several of the Pads
approximants have no poles on the real axis. In a
later section of this paper we shalI. see that calcu-
lations of the width of the string suggest that ~„
=1.80. In summary, these calculations suggest
that if the SU(3) theory roughens, it does so in
the weak-coupling region. Recall from analyses
of the string tension series that the theory has a
strong-coupling region for ~,~ 0.40, a crossover
region for 0.40 ~g, ~ 1.44, and a weak-coupling
region for z, a 1.44 where ordinary perturbation
theory applies. ' Our roughening estimates lie
well within this later region and suggest that
roughening has nothing to do with the narrowness
of the crossover region. In addition, the roughen-
ing transition does not constitute a barrier to the
use of strong-coupling methods to describe the
intermediate-coupling physics of the theory. This
conclusion is different from that obtained in the
Euclidean formulation of the SU(2) theory 'Series.
expansions for these models suggest that the string

roughens in the crossover region. Since critical
points are nonuniversal, these results do not con-
tradict ours. If these estimates are accurate,
then the Hamiltonian formulation of the model is
a better framework for studying string dynamics
and confinement. These points are worth pur-
suing. A final observation involves the use of
SOS models for roughening in non-Abelian models.
Since x~ lies in the weak-coupling region, the
bulk systems are fluctuating wildly and the usual
justifications for SOS approximations fail.

In summary, it is clear that the kink introduced
here is a useful quantity both theoretically and
computationally and that several of the ideas and
calculations initiated here may be worth pursuing
in greater depth.

IV. THE STRING WIDTH

At the roughening transition, fluctuations of the
string with infinite amplitude have finite probabili-
ty, leading to delocalization of the string. Thus,
any reasonable definition of the string width will
diverge at the transition point. %e have there-
fore looked for this divergence as an alternative
way of determining where (if at all) roughening
does occur.

%e choose only to consider those elements of
the string and vacuum fluctuations parallel to the
original direction of the string in our estimate,
since these do give us a measure of the position of
the string. Our density profile p(x~) at a dis-
tance g~ from the string will be taken as the
number of links, weighted by the square of the
flux (eigenvalue oi' Z') on the link, at g, . The
mean square string width is then given by

TABLE XI. Same as Table VII except for SU{3) gauge
group.

TABLE XIII. Same as Table VII except in 3+1 dim-
ensions.

2

0.712

0.894

1.611

1.720

0.400 0.548

0.467
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TABLE XIV. Same as Table VIII except in 3+1 dim-
ensions.

TABLE XVI. Same as Table XIV except for U(1) gauge
group.

0.400

0.543

0.482

0.499

0.455 0.444

0.608

0.536

0.556

Q„,X,sp(X, )

(„) ~ (4.1)
(4.5a)

First let us consider the (2+ 1)-dimensional
Ising model. Here the numerator in Eq. (4.1) is
3ust

(4.2}

where the exception value is taken in the ground
state of the Ising gauge theory with a string. To
do this calculation, we use the Feynman-Hellman
technique and evaluate the energy of a string state
for the Hamiltonian,

H= z 1 —og + — g~ 1-g
links 2 //links

for Fig. 19(a).
In Fig. 19(b) one application of the perturbation

on a plaquette adjacent the string produces a de-
formation of the string which is restored by a
second application of the perturbation. This
yields a contribution

-2n 2

2+%.
(4.5b)

We have extended this calculation to sixth order
for Pz. After differentiation this yields

(X
'

—,'(1 —O,))=nX, '[I+ 33 X + 331776 X +O(X )]

(4.5)

phquettes

as a function of X. If we call this energy g„,

(4.3)

(4.4}

to sixth order.
A similar but much simpler calculation of

(2g . (1 -c,)) yields

() -e,)) = m [) ——,
' x,' + O {a,') ]

//hnks

(4.7)

%e can now proceed to calculate Ez as a per-
turbation series in ~, (high-temperature expansion
for the Ising model). At zeroth order, &1 is
clearly z, independent of ~. To second order, &~
(relative to the same quantity for the vacuum state)
is given by the two graphs of Fig. 19. In Fig.
19(a) a vacuum fluctuation is created and subse-
quently annihilated on a plaquette not adjacent to
the string. Such contributions are precisely can-
celed by the corresponding vacuum graph, which
in addition subtracts contributions from adjacent
the string giving

g„=0.556, (4.9)

where the &width diverges, gi.ving an estimate of
the roughening point in good agreement with other

to fourth order. The ratio to sixth order measured
in units of the string tension T is then

(2 i s I 6~ 2[1+ 13 2+M71631 ~ 4+0( 6)]
(-'x '(1-e ))

(1(1 ))
I s 6 s 124416 s s

(4 9)

In order to analytically continue this series to the
roughening point we write it as a [2, 1] Pade ap-
proximant. This has a pole at

TABLE XV. Same as Table XIII except for U(1) gauge
group.

TABLE XVII. Same as Table XIII except for SU(3)
gauge group.

0.444 0.615

0.521

0.438 0.672

0.869

1.565

1.630
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TABLE XVIII. Same as Table XII except in 3+1 dim-
ensions.

E'+~ x,'E'
links / bnks

Tr UqU2U3U~+ H.c.
p4quettes

(4.12)

1.343

2.347 2.190

estimates.
Now we turn to the SV(3) gauge theory in 3+ 1

dimensions (lattice @CD). Here the numerator
in Eq. (4.1) is 4nx 2

4x '-+ '-)
3 3

(4.13a)

Perturbatively, to zeroth order in «„E~ is 4n/3
independent of g. The second-order contribution
is given by the graphs of Fig. 20. The only essen-
tial difference between these graphs and those of
the Z, case is that (b) includes contributions where
one link of the string is left in an excited state.

The contribution of Fig. 20(a) is

(~ *") (4.10) and that of Fig. 20(b)

while the denominator is

(~ ')
//Ihnks

(4.11)

The quantity in Eq. (4.10) is calculated by the
Feynman-Hellman theorem for the string state
energy F„of the scaled Hamiltonian,

(4.13b)~ dim(A) 2g
9 (2x';+ C„+ ';y) '

where the sum runs over A =1, 3, 6, and 8 and
is the quadratic Casimir operator for the repre-
sentation A.

We have extended this calculation through fifth
order in g, with the result that

g~ E =tg 0.065845401' 1+0.68622V 805 g + 0.3V60V2583 + +0.230043416 + +~ ~

A similar calculation yields

( = + g I -0.044 846 534 g, ' —0.011 V11 241 x',2 -0.004 902 915 g, +0 x,
/ links

The string width in units of the string tension Z' is then

(4.14)

(4.15)

' x T = (0.065 845 401 x ~) [1+0.686 227 805 x, + 0.366 997 548 x,'+ 0.207 494 028 x,'+ O(,~) ].x 2E')

(4.16)

We have expressed the series as the [4, lj and the
[3,2] Pade approximants. These have isolated
poles at 1.V68V and 1.V8V9, respectively, so we
predict to this order that the string roughens at

g„=i.VV —l.V9. (4.17)

However, examination of the ratios of successive
coefficients of the series or of the Pade table in-
dicates that the position of this pole has not yet '

(b)
(a) (b)

FIG. 19. (a) Vacuum fluctuation contributing to the
width of the string in second order. (b) String fluctua-
tion contributing to the width of the string.

FIG. 20. (a) Vacuum fluctuation contributing to the,
width of the SU(3) string. (b) String fluctuation in sec-
ond-order perturbation theory. & labels the SU(3)
representation on the indicated link.
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stabilized. The prediction is thus weakened to

g~z 1.77. (4.18}

This value of g~ lies in the weak-coupl. ing domain
of the theory gs 1.03 or ~,s 0.085, in contrast
with the Euclidean prediction, and is not inconsis-.
tent with a roughening transition occurring at
the bulk (zero-coupling} critical point, although it
is suggestive of a roughening transition for a
finite but small coupling.
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