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Conventional perturbation theory gives different results in different renormalization schemes, a problem which is
especially serious in quantum chromodynamics (QCD). I propose a theoretical resolution of this ambiguity which
uses the full renormalization-group invariance of the theory. The idea is that, in any kind of approximation scheme
which does not respect the known invariances of the exact result, the “optimum” approximant is the one that is
“most invariant,” i.e., least sensitive to variations in the unphysical parameters. I discuss this principle in several
examples, including the -Halliday-Suranyi expansion for the anharmonic oscillator. Turning to massless field
theories, I identify the unphysical variables which label a particular renormalization scheme as the renormalization
point 4, and the B-function coefficients. I describe how perturbative approximations depend on these unphysical
variables, and show how to find the stationary point which represents the “optimum” result. Certain
renormalization-scheme invariants, in one-to-one correspondence with the perturbation-series coefficients, arise
naturally in the analysis. An application to the e,u magnetic moments in QED provides a partial test of these ideas,
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with encouraging results. I suggest possible further theoretical developments, and advocate the method as a sound

basis for quantitative QCD phenomenology.

I. INTRODUCTION

Physical quantities in quantum chromodynamics
(QCD), or indeed in any field theory, are inde-
pendent of the particular scheme used to renor-
malize the theory. However, this exact invari-
ance is respected only approximately in pertur-
bation theory: Two nth-order results, calcu-
lated in two different renormalization schemes
(RS’s), will in general differ by a term of order
(n+1). The results of perturbative QCD calcu-
lations are therefore RS dependent.!™® This is
a very serious problem. Of what use is a per-
turbative prediction if it depends entirely on an
arbitrary choice of RS? It is essential to have
an objective means of resolving the RS ambiguity
if perturbative approximations are to have any
real, quantitative meaning.

A resolution of the RS-ambiguity problem is
not a matter of finding a “good expansion param-
eter for QCD.” 1t is quite unjustified to assume
that the same RS—and hence the same expansion
parameter—must be used for every physical
quantity. This false assumption is a holdover
from QED, where it is traditional to use the
canonical “on-shell” RS for everything. It is
time to recognize that the traditional QED pro-
cedure is wrong. This has been implicit ever
since the advent of the “running coupling con-
stant.”® One does not have to use the same re-
normalization point for different physical quanti-
ties: It can, and should, be adjusted to suit the
energy scale of the process in question. Simi-
larly, there is no consistency requirement that
forbids one from using different RS’s for differ-
ent physical quantities. Therefore, one must an-
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swer the question of what is the best way to choose
the RS separately for each individual physical
quantity. Otherwise, one is not facing up to the
issues raised by the RS ambiguity.

The aim of this paper is to show that the RS
ambiguity can be resolved satisfactorily by pure-
ly theoretical means. The proposed method is
simple, precise, and applicable at any order of
perturbation theory. I see my analysis as a re-
finement and extension of the idea of “renormal-
ization-group-improved perturbation theory’® and,
to exaggerate slightly, as a new kind of perturba-
tion theory, quite different from the traditional
concept of a power-series expansion in a fixed
parameter. \

My starting point is the philosophy that the RS
ambiguity is not so much a QCD problem as a
problem in “approximation theory.” The solution
is therefore to be found, not in a study of Feyn-
man diagrams, but rather by a careful reconsid-
eration of the nature of perturbative approxima-
tions. The key idea is that one has fwo kinds of
information about a physical quantity: (i) the
first few terms of its perturbation expansion in
some RS and (ii) the knowledge that the exact re-
sult is independent of RS (in other words, the in-
variance of physical quantities under the full re-
normalization group of Stueckelberg and Peter-
mann'®). I shall be concerned with the proper
utilization of the second piece of information.

The point is this: Since the true result is exactly
RS independent, the best approximation is the one
which is least sensitive to small changes in RS.
This is a particular example of a quite general
principle, applicable to any kind of approximation
scheme involving “unphysical” parameters, i.e.,
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parameters of which the true result is independent.
I call this the “principle of minimal sensitivity”
(PMS).

If an approximant depends on unphysical param-

eters, then their values should be chosen so as to
minimize the sensitivity of the approximant to
small variations in those parameters.

The motivation for this principle is the follow-
ing. In the space of the unphysical parameters
the exact result is a constant. Therefore the cal-
culated result cannot possibly be a successful ap-
proximation where it is rapidly varying. The
most reliable numerical result is likely to be
where the calculation shows the correct qualitative
behavior, i.e., where the approximate result is
flattest. I discuss the justification of this princi-
ple in detail in Sec. II. As an example I show its
success when applied to the Halliday -Suranyi ex-
pansion' for the anharmonic oscillator.

The application of this principle to field theory
requires a system for labeling RS’s so that the no-
tion of a “small variation” in RS is meaningful.

I address this problem in Sec. III and conclude
that RS’s can be labeled by their renormalization
point'? y and by the values of their f-function co-
efficients. I also discuss the nature of perturba-
tive approximations and how they depend on the

RS parameters. In Sec. IV the formula for opti-
mizing second- (i.e., next-to-leading) order re-
sults is derived. This is extended to third and
higher orders in Sec. V. I show that for every
(RS-dependent) coefficient in the perturbation ser-
ies there is a corresponding RS invariant. These
invariants play a central role in the analysis. Sec-
tion VI describes some examples and special
cases of the optimization formulas. In particular
the existing QED calculations of electron and muon
magnetic moments provide a test of the ideas de-
veloped here, with encouraging results. The con-
clusions are given in Sec. VIL

My notation is sometimes unorthodox and is
described in detail in Appendix A, where I also
give a careful discussion of the definition and
meaning of the QCD A parameters. For conven-
ience I employ a parameter A defined slightly dif-
ferently from the conventional A (see Appendix A).
Another important piece of nonstandard notation
is the use of (as/ 7) rather than o as the expan-
sion parameter in the perturbation series. This
is referred to as the “couplant” and denoted by
the symbol a. Also, I use the expressions “first
order,” “second order,” etc., as being synony -
mous with “leading order,” “next-to-leading or-
der,” etc. :

This paper addresses the problem of RS depen-
dence in massless field theories with a single
coupling constant. Although these two restrictions

do simplify the problem considerably, I believe
that the basic ideas can be generalized to any field
theory. My main interest is with massless QCD
(ignoring quark masses). Actually, in gauge the-
ories such as QCD some extra considerations are
involved: I discuss these in Appendix B and show
that they do not change anything. In order to keep
the presentation self -contained, only brief ref-
erences are made in the text to the existing litera-
ture on the RS-dependence problem. I discuss the
relation of this work to some other approaches to
the RS ambiguity 'in Appendix C.

This paper is an improved and extended version
of some unpublished work,” which in turn grew out
of an earlier article’® on the renormalization-.
group equations. The common theme of all this
work is that the concept of “renormalization-
group invariance” ' is best understood and ap-
plied without invoking the apparatus of renormal-
ization itself. The idea of renormalization is cru-
cial in what follows, but its technicalities will be
irrelevant.

II. THE PRINCIPLE OF MINIMAL SENSITIVITY
A. A lesson from the anharmonic oscillator

In this section I shall try to explain how and
why the principle of minimal sensitivity works.
I begin by describing the example which inspired
the formulation of this principle. The problem is
the calculation of the eigenvalues of the anharmon-
ic-oscillator Hamiltonian

H=Hypo(m) +5 x*

with

Houolm) =3(p%+m*?) . (2.1)
A simple and ingenious expansion technique has
recently been proposed by Halliday and Suranyi'!

(hereafter referred to as HS). Introducing an ar-
bitrary frequency parameter  they write

H=H{Q)+H,,Q), (2.2)
where \
Hy(@) =55 Hono )T, (2.3)

H,,(Q) = Hgyo(m) +§ x* -éx [Hggo(R) 2. (2.4)

Using H ) as the unperturbed Hamiltonian they
then apply the usual Rayleigh-Schrédinger or
Brillouin-Wigner perturbation theory. The cal-
culations are most easily done by introducing
creation and annihilation operators a', a, of fre-
quency : Both H(Q) and H,,,(Q) are fourth-order
polynomials in g,a'. The calculations are no more
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difficult than the conventional perturbation expan-
sion, based on Hg,.(m) as the unperturbed Hamil-
tonian. Unlike the conventional expansion, which
diverges quite horribly,'® the HS expansion has
been proved to converge.'* A peculiar feature is
that the HS series is not an expansion in powers
of any particular parameter of the theory.

(The anharmonic oscillator, which can be re-
garded as a field theory in one dimension,'® has
long served as a testing ground for new ideas for
solving field theories. Most such techniques have
been horribly complicated, even for this very
simple case. The HS expansion reduces the an-
harmonic-oscillator problem to the level of an
undergraduate exercise. Moreover, the success
of the method is very impressive, as will be seen.
Consequently an extension of the technique to field
theories would be a very exciting development.
One stands to gain from a benevolent paradox:
good, nonperturbative approximations can be ob-
tained by a familiar technique—perturbation theo-
ry. This is, however, beyond the scope of the
present paper.)

As both Hy and H, , are Q dependent, finite-or-
der results in the HS scheme are also dependent
on this arbitrary, unphysical parameter. I shall
argue that the best choice of Q is given by the PMS
criterion. (This observation has recently been
made, independently, by HS,'® but, somewhat sur-
prisingly, it was not noticed by them in Ref. 11,
although they came very close to it. To quote
from Ref. 11: “Order by order the perturbation
theory ... depends on ... . Clearly this fake
dependence imposes strong renormalization-
group-type constraints in our series, but we have
been unable to use this.” To fix @ they instead
adopted what I call a “fastest apparent conver-
gence” criterion, requiring the sum of the correc-
tions to the zeroth order term to vanish. This
gives much poorer numerical results, as will be
seen.)

It is convenient to replace € by a dimensionless
parameter Z,

Z=Q%g, 2>0 (2.5)
and to consider the Hamiltonian
H(Z,n)=H{Z)+nH,,(Z) (2.6)

with H, and H,,, as defined in Eqgs. (2.3) and (2.4).
The parameter 7 is introduced for purely peda-
gogical reasons: It has no physical significance.
The Hamiltonian we are interested in is H(Z,n=1)
=H, which is independent of Z. The Hamiltonian
we can solve is H,=H(Z,n=0). By Taylor-series
expansion we can find an expression for the eigen-
value E(Z,n), valid for sufficiently small values
of n. The perturbative approximation consists of

extrapolating this result all the way to n=1. Al-
though we do not know what the true result for the
eigenvalue E at n=1 actually is, we do know that
it is a constant, independent of Z. Therefore we
can judge the reliability of the extrapolation from
n=0 by observing how flat the result is at n=1
(see Fig. 1). The result will not be flat every-
where, so one should choose Z to lie in the middle
of the flattest portion of the curve. This is the
PMS criterion.

Numerically this criterion is highly successful.
Consider the ground-state energy of the quartic
oscillator [i.e., m =0 in Eq. (2.1)]. This problem
has been extensively studied numerically, so the
approximate results can be compared with the ex-
act result,'”

E/g'/%=0.420805 ... . (2.7

For brevity I shall quote all results in units of
g'/3. The approximate results, up to third order
in the HS expansion, have been calculated in Ref.
11. In zeroth order the result is

E@=323, _ (2.8)

Clearly the PMS criterion gives no information on
how to choose Z here. This is not surprising since
E© is not really an approximation to E, but mere-
ly the eigenvalue of H(f2), our chosen starting
point. The first-order result does, however, give
a genuine approximation,

E“’:Z'Z/s(%+§-Z)-O.429, (2.9)
where E®’ is defined as E© plus the first-order
correction term. The single minimum of this
function at Z = % provides the optimum result, ac-
cording to the PMS criterion. The result is good
to 2% [although there would be no way of judging

the reliability of (2.9) without knowing the true
result]. In this case the PMS criterion picks out

E(Zn)

FIG. 1. The ground-state energy of the Hamiltonian
H(Z,n) of Eq. (2.6). The exact eigenvalue is known to be
Z independent at n=1, and is _4122-2/3 for n=0. The ap-
proximate eigenvalue E !’ is obtained by a Taylor-series
expansion from n=0, but the extrapolation is reliable
only in the region where E) is insensitive to Z.
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the optimum result in the rigorous sense of min-
imizing the error, |E@»°X _E|  This is because
first-order perturbation theory corresponds to a
variational approximation

EW=E® ¢ (0|H,,|0q=o0|H|0)g, (2.10)

where |0>.m the ground state of H(Q), can be re-

garded as the trial wave function. The Rayleigh-

Ritz principle guarantees that E®(Z) > E, so the

optimum E®’ is obtained by minimizing with re-

spect to Z, in agreement with the PMS criterion.
To second order the result is

E®=Z/% & + 27 1277

-0.426. (2.11)

This function is flattest in the vicinity of its two
turning points at Z=(15+9/v5 )/8, ~1.3719, .
2.3781. The variation in the function between these
two points is less than 0.002, so although the PMS
criterion does not give a unique optimum value of
Z, there is no real problem. In fact—without re-
ferring to the exact result—the size of this am-
biguity, taken together with the change between
first and second order, indicates that the error is
of order of, say, 0.003. This is, in fact, quite a
fair error estimate.

One should note that the function E ®?)(Z) in Eq.
(2.11) takes on all values from +» to —». At some
point, therefore, it actually passes through the ex-
act result. However, without knowing the exact
result, there is no way of identifying this point.
Thus it is still reasonable to claim that the PMS
criterion indicates the “optimum” choice of Z,
provided it is understood that the word optimum
is used in the loose sense of “the best guess in
the absence of further information.” The strict
sense of optimum as minimizing the modulus of
the difference between the exact and approximate
results is just not useful in the present context.

The third-order result is

E(3)=Z:2/3( 5517_230 +'§:%%Z_?:E%Zz+z_ggza)

-0.42113:553. (2.12)

These results are illustrated in Fig. 2. (Note the
tenfold expansion in scale between 0.4 and 0.45.)
These curves are strong evidence for the correct-
ness of the PMS criterion. It is quite remarkable
how flat the curves become in the vicinity of the
true result, given that, by the nature of the HS
procedure, they must diverge at Z=0 and Z =,

The numerical convergence from the first-order
result, Eq. (2.9), towards the exact result may
seem a little slow, but this cannot be helped. In-
deed, the slow rate of improvement is mainly a
reflection of the excellence of the first-order re-
sult. By contrast the fastest apparent convergence

criterion employed by HS gives the results'* E
~0.63, 0.51, 0.45 in first, second, and third or-
ders (see also Fig. 2) which are much poorer than
even the first-order PMS result.

The HS expansion and the PMS criterion can
also be successfully applied to the excited states

- of the anharmonic oscillator. For example, the

first-order result for the kth energy level of the

. quartic oscillator is'*

A) 7Y = 7-2/3[ 3 1)2, 1 1
EyNZ)=Z 2 (k+2)?+ 1 Z(k+ )+ £]. (2.13)
The PMS criterion leads to the optimum choice

_3[4k+3)+1]

3 W (2.14) ‘

z

The optimized approximation is then

1y2 -1/3
E,{"(opt)=’§-(k+‘;)(%£%z)—%;—i) . (2.15)
A comparison with the exact eigenvalues is given
in Table I. Note that the agreement is within 2%
or better over the entire spectrum. Moreover,
while the success of the PMS criterion for the
ground state (and for the first excited state, be-
cause the parity under x -~ —x is a conserved quan-
tum number) can be attributed to the Rayleigh-
Ritz theorem, this is not true for the higher
states. In fact, by examining the exact result,
one finds that it lies just above the minimum of
the curve (2.13) for k= 2. Thus the PMS criterion
actually maximizes the error in a very local
sense. However, and this is the point, the exact
result lies only just above the minimum of E{ (Z):
The PMS criterion continues to work in a real, if
undefinable, sense.
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FIG. 2. Successive approximations to the ground state
of the quartic oscillator in the HS expansion, as a func-
tion of the unphysical parameter Z =Q3/g. Note the ten-
fold expansion in the energy scale between 0.4 and 0.45.
The exact result, indicated by the arrow, is independent
of Z. The best approximations correspond to the flattest
portions of the curves, as implied by the PMS criter-
ion. By contrast, the fastest apparent convergence
principle gives successive approximations correspond-
ing to the intersection of the nth-order curve with the
E®curve.
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Apart from noting the evident success of the
PMS criterion, there are three important lessons
to be drawn from this example. Firstly, the op-
timum value of Z is different for different energy
levels [see Eq. (2.14)]. This is entirely natural:
It corresponds to adjusting Q so that H(Q) gives a
good fit to the full Hamiltonian in the relevant en-
ergy range. Secondly, even for a single energy
level, the optimum value of Z is different in dif-
ferent orders [see Egs. (2.9)-(2.12) and Fig. 2].
It becomes larger at higher orders because the
ultimate convergence of the series is fastest at
large Z.!* The change is small, in the sense that
the previous optimum Z gives a good approxima-
tion, although not the best. Finally, note that the
operation of optimizing is not a linear one. If one
adds or subtracts energy eigenvalues, then it
matters whether one does the optimization before
or afterwards. This may seem a little disturbing
at first, but it seems fairly clear that it is most
natural to adjust Z, and hence the energy param-
eter 2, to each energy level separately, as was
done above.

B. Truth without theorems?

Although the anharmonic-oscillator case dis-
cussed above provided the inspiration for this
work, I emphasize that my arguments are not
based on making analogies between the dynamics
of the anharmonic oscillator and that of field the-
ories. The argument is simply that the principle
of minimal sensitivity embodies a general, ab-
stract truth in the “theory of approximations.”

Now, it is not possible to prove, or even for-
mulate, a useful theorem to this effect. One is
dealing with a situation in which the exact result
is unknown. There is a strictly limited amount
of information about the answer, and the problem
is to make best use of that information to find the
approximation which is most likely to be close to
the exact result. It seems almost impossible to
formulate this problem in precise mathematical
terms (particularly since our information does
not include a bound on the error). The situation
is such that any useful, general statement can al-
ways be contradicted by a suitably pathological
example.

For instance, any physicist seeing the series
Fx)=1+2+x%+2x°+x*+ -+ would assume that
for x=0.1 the calculated terms give an answer to
much better than 1% accuracy. However, a math-
ematician could point out that the right answer
might be f(x)=1/(1 —x) +sinx + ¢*"x°, in which
case the fourth-order result is monstrously in-
accurate at x=0.1. The physicist would say that
this is highly unlikely, but he could not explain
what he meant by “unlikely.”

TABLE I, The energy levels of the quartic oscillator.,
The approximate eigenvalues E,Ei) are obtained from
first-order HS expansion using the PMS criterion [see
Eq. (2.15)]. The exact results E, are taken from Ref, 17,
Table I, dividing by a factor of 41/3, Fork =0,1 the ap-
proximation is of the variational type so the error must
be positive.

k EV E, % error

0 0.429 27 0.420805 2,01

1 1.5269 1.507901 1.26

2 2.9514 2.958796 —0.25

3 4,5931 4.621 220 -0.61
10 19.7548 19.944 208 —-0.95
k — oo ~ (0.858 5) (0.867 145) -0.99

x(R+HYP xe+Ht

In the same way, when I talk of an optimum ap-
proximant as that “most likely” to represent the
true result, I am necessarily using undefined
terms. However, the very idea of perturbation
theory is equally scandalous, mathematically
speaking. Therefore I hope that the reader is
open to persuasion that the PMS criterion repre-
sents a “pragmatic truth,” even if that is a kind
of truth which no respectable mathematician could
recognize,

I can illustrate this pragmatic truth further in
a simple class of examples. Consider the follow-
ing problem: One wishes to calculate

P= fA ® fw)ax, (2.16)

where the function f(x) is not known exactly: f(x)

is known to be analytic on [A4, B] (where A, B are

given, and A <B), and one has a means of calcu-

lating the Taylor expansions about x=A and x =B.

That is all the available information about f(x).
By writing F as

= [‘raes [ s, (2.17)
. YA 4

one can form approximations to F by replacing
f(x) by its Taylor series about A and B in the first
and second terms, respectively. That is, the

(%, m)th approximation to F is

remg= [ rpacs [, (219
with '
780 =Y (e -2 (42)

(see Fig. 3).
The approximants F™™)(£) depend on the choice
of £, even though F manifestly does not. Of

(2.19)

x=X
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course, for any fixed £ one can obtain an arbitrar-
ily good approximation to F by calculating suffi-
cient terms in the two Taylor series. However,
that is not the issue. The problem is to get the
best “value for effort”. Given only a small finite
number of terms in each series, which value of

& is likely to be the best? This problem is a para-
digm of the situation in which the principle of
minimal sensitivity is supposed to apply. Within
this framework I can make some general remarks
about the PMS criterion, before proceeding to
specific examples. .

Firstly, in this context the PMS criterion states
that the approximant F™™)(t) should be evaluated
at the point ¢=£ where it is flattest. Essentially
this means that the optimum point £ is character-
ized by

dF(’"’")
dg =T

Actually this is an oversimplification—although
one which is adequate later on in the paper. By
the nature of the approximation scheme one would
only consider solutions for £ in the range A to B.
There may be no real solutions to Eq. (2.20) in
this range, in which case one seeks the point at
which dF™™/d¢t is minimized, as the point where
the approximant is least sensitive to small varia-
tions in £ (If all derivatives are monotonic, as
frequently happens in the lowest order of many
approximation schemes, then the approximant is
irredeemably ambiguous.)

Equation (2.20) may have two or more solutions
with A<E<B. This is interpreted as thé approxi-
mant undulating around, or near to, the exact re-
sult (cf. the anharmonic-oscillator example in
second and higher orders). The size of the undu-

=0. (2.20)

A ¢ B
—

FIG. 3. The integration example discussed in Sec, IIB,
The sketch shows a function f(x) and its finite-order
Taylor series f,, fzo The integral of f is approximated
by the area under f, from A to £, plus the area under
fp from £ to B.

lations indicates the scale on which the approxi-
mant successfully mimics the constant, exact re-
sult. Therefore, although the PMS criterion is
then somewhat vague —indicating that £ should be
chosen somewhere in the middle of the flat re-
gion—the uncertainty is of the order of the intrin-
sic error of the approximation. [The situation
discussed in this paragraph does not seem to occur
in the field theory case (see Sec. VD).]

[In the integration example the geometrical in-
terpretation of the PMS condition (2.20) is sim-
ple: E corresponds to the intersection(s) of the
Taylor series f{"(x) and f{"(x). This is intuitive-
ly a good choice for ¢ (see Figs. 3 and 4).]

Secondly, the approximation scheme discussed
here clearly assumes that f(x) is smooth and does
not have a great deal of structure between A and
B. If this is not true, the approximations will be
intrinsically poor, particularly in low orders. In
such circumstances the PMS criterion yields poor
numerical results—but then, so would any other
criterion, except by a pure fluke. Thus, it is not
that the PMS criterion fails, but rather that the
approximation itself is inadequate. The result for
F is poor because of the inadequacy of our infor-
mation about f(x), not because we have failed to
make best use of it. (The element of tautology in

. . g
—— 1,57
\/"23
@ | | 7 —
-ffi 12" Ef ! %r
x 3
. ' Fl2,2)
1.23
(b ) l‘,.':.,..' 1 74
- 0.92 T
; 2 £-057 2
x 3
F(3:3)
_
(@) m”
=947
3

FIG. 4. The integration example for f{x)=sinx, 0< x
< /2, The left-hand graphs show sinx and its Taylor-
series approximations infirst, second, and third orders.
The right—h?.znd graphs show the resulting approxima-
tions to o“ sinxdx, as a function of the break point £.
The optimum choice Z is indicated. (The graphs are
sketches, and are not drawn to scale.)
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this argument is inevitable, since without some-
thing such as the PMS criterion the approxima-
tion has no precise, numerical meaning.)

* Thirdly, I can use the present problem to con-
trast the PMS criterion with the “fastest apparent
convergence” (FAC) criterion—the idea that £
should be chosen to make different orders of ap-
proximation agree. I argue against the FAC cri-
terion for several reasons: (i) Higher-order ap-

proximants are, in some sense, better than lower-

order approximants, so one should expect them
to differ by some intrinsic amount representing
that improvement. By forcing different orders to
agree one runs the risk of the better (higher-or-
der) approximant being “dragged down” by the
poorer one. In contrast, the PMS criterion gives
a meaning to each approximant, based on its own
properties, whether or not it is one of a series of
approximants. (ii) It is somewhat artificial to
force the higher-order corrections to vanish,
since there is no reason to.suppose that the ap-
proximations “want” to behave in this way (where-
as they do want to become flat). The FAC criter-
ion appeals to a property which we would like the
result to have—rapid convergence —whereas the
PMS criterion appeals to a property which the ex-
act result does have—exact insensitivity to varia-
tions in unphysical parameters, such as £ (iii)
The results in different orders of approximation
_can quite often coincide for reasons largely, or
even entirely, to do with the nature of the approx-
imation scheme. The FAC criterion is then whol-
ly misleading as to where the true result lies.
This phenomenon is quite common in the integra-
tion example, and also occurs in the anharmonic
oscillator case: In Fig. 2 the intersection of the
higher-order results with the zeroth-order curve
is strongly influenced by the fact that all the ap-
proximants diverge in a similar fashion as Z -0,
which is purely an artifact of the approximation
method.
Turning now to a specific example, I consider
approximations to
rv/2 .
FEf sinxdx=1, (2.21)
]
using Taylor expansions about x=0 and 37. The
zeroth-order result F©*°(¢)=7/2 ¢ is, as usual,
irredeemably ambiguous. In first-order one ob-
tains

¢ T/ 2

F(l.l) = 1
() j(:xdx+[ dx
=38+ (3m-¢&), (2.22)

which has a stationary point at £=1, giving F;*’
=4(m -1)~1.07 [see Fig. 4(a)]. In this case the

PMS result is optimal in the strict sense. The
reason is obvious geometrically. A function which
is convex in the region A to B lies below the tan-
gents at A and B, so that F< F%1X£), Therefore
the optimum result is obtained by minimizing
F%1)(£), A parallel argument applies if f(x) is
concave on (A4, B), implying F> F%')(£), when the
optimum is obtained by maximizing F*'*)(£).
These statements are analogs of the Rayleigh-
Ritz theorem, which applies to the ground state of
the anharmonic oscillator. Such Rayleigh-Ritz in-
equalities seem to be common, and one should be
alert to the possibility of proving them in specific,
practical contexts.

Notice that the FAC criterion, which requires
F©°g) and Fe1)(£) to agree, would lead one to
choose £=0, yielding F&;2)=37=~1.57. This is
positively the worst first-order result. The rea-
son for the agreement between F©° and F®) at
£ =0 is obvious geometrically, and is clearly an
artifact of the approximation method, illustrating
a point made above. :

The second-order approximant

FO(g) =58 Gr - - £ (37

has no stationary point—corresponding to the Tay-
lor series not intersecting [see Fig. 4(b)]. The
approximant F®2)X{) is least sensitive to small
changes in ¢ where its slope is minimum, which
occurs at £=37 -1. This yields F3* = %-71‘2 -im

+ -‘;-= 0.9962. Proceeding to third order one ob-
tains

(2.23)

FONg ==+ L+ (G -8)

-L(im-pr, (2.24)
which has a maximum at £=0.947 [see Fig. 4(c)],
giving F$;*'=0.9982.

FAC -based criteria are less successful. Be-
yond first order, there are two ways of interpret-
ing the FAC idea. One can require approximants
in adjacent orders to agree (FAC’), which gives
£=0 or 37 always, and is clearly disasterous.
The alternative, choosing £ by making F™n)(£)
agree with zervoth order (FAC), is not as bad.
(However, the relative merits of FAC and FAC’
in the anharmonic-oscillator case seem to be the
reverse.) In second order one finds F{&2
=0.9965, which is marginally better than the PMS
result, 0.9962. However, the significance of this
is made dubious by the retrogression at third or-
der, which gives 0.9921 with this criterion—the
error being four times that of the PMS result.

One could compute still higher orders, and con-
sider approximants F™™)¢) for n+m, but this
adds little to the discussion. I have studied sev-
eral other specific examples, and find that the
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features discussed above are not atypical. The
reader is encouraged to investigate these points
in his own examples.

One other instructive example is worth describ-
ing here:

T
FEf sin®vdy =37 =~1.57. (2.25)
()

This is a somewhat “pathological” case, in that
sin®s does have considerable structure between
0 and 7, and is inadequately represented by the
low-order Taylor series about these end points. In

fact the initial results F©® and F®Y are both zero.

Being ignorant of the exact result, one might think
that all is well because (i) both results are per-
fectly flat in £, and (ii) they agree exactly. This
false picture is dispelled by a second-order cal-
culation, which gives

F@(g)=1g+L(m-8)°. (2.26)
The PMS criterion yields F2;*’= L. 7°~ 2,58,

opt
which, although poor, is thepbest available re-
sult. The large variation of F*®2)(t) for O0st<m,
and the big change from first to second order, are
danger signs that the second-order result is not
reliable. Several more terms in the Taylor series
are needed for an accurate approximation in this
particular case.

The moral is that one can never be sure with
approximations that all is going well: Problems
could always arise in the next order. One can only
(i) calculate as many terms as humanly possible,
(ii) use that information, and any other informa-
tion, as sensibly as possible, and (iii) hope for
the best. The PMS criterion comes in at stage
(ii), utilizing the known invariance of the exact
result, but there is no way it can eliminate stages
(i) and (iii).

“Noninvariant approximations”—ones involving
supposedly arbitrary parameters which actually
affect the approximate results—occur in many
branches of theoretical physics. Various methods
have been used to deal with the problem in specific
contexts.'® The special features of any particular
problem must, of course, be considered, because
they may provide extra information about the ex-
act result. Nevertheless, I argue that the princi-
ple of minimal sensitivity is a basic, general tool
for making sense of noninvariant approximations.

III. APPLYING THE PMS CRITERION IN
FIELD THEORY

A. Setting up the problem
Having described the justification for the PMS
criterion, I now consider how to apply it to the
problem of RS dependence in field-theoretic per-
turbation theory. I shall talk in terms of QCD,

but the discussion applies equally to any massless,
renormalizable field theory with a single coupling
constant and a perturbative 8 function which be-~
gins with an a® term (of either sign). Actually,
there are some extra complications connected
with the gauge nature of QCD which are ignored
here. Appendix B deals with these subtleties.

For definiteness I shall often use R=o(e*e”
- hadrons)/o(e*e”~ u*u") as an example. (Really
I use the “theorist’s R”, appropriate to a world
without heavy -flavor thresholds.) R is a function
of one physical variable @, the total e*e” energy,
although I usually suppress this dependence to
simplify the notation. All of the following analysis
is performed at fixed @. For convenience I define

R=(3)¢2)(1+®) (3.1)
(%)

so that ® is given by a perturbation expansion of
the form

R=a(l+ra+7r,a®++++). (3.2)

In fact, the analysis will apply to any physical
quantity having a perturbation series of this form.
Later I shall generalize the results to the case
where the series begins a¥(1+#,a+*) for arbi-
trary N.

In Eq. (3.2) the couplant ¢ = o,/ is RS depen-
dent. The coefficients #,,7,,... are also RS de-
pendent. In the full series these RS dependences
exactly cancel, because physical quantities are
independent of RS. However, these cancellations
occur between different orders. Thus when the
series is truncated, the resulting approximant
does depend on RS. This is just the kind of situa-
tion in which the PMS criterion applies: ® itself
is independent of RS, so the optimum ith-order
approximant ® ¥’ is the one which is least sensi-
tive to small changes in RS. That is, one should
look for an optimum RS characterized by

a®R 4
3ZRSj RS=Optimum RS

The problem is, of course, to decide what is
meant by 8/8(RS).

Therefore, I first need to explain how to trans-
late RS dependence into dependence on a certain
number of RS parameters. This is perhaps best
explained by stating the solution first, and then
justifying it.

For my purposes RS’s can be labeled by a count-
able infinity of parameters (r,c,,¢;,...), defined
as follows. In any kind of RS there is a parameter
4 with dimensions of mass—the “renormalization
point.”*? The dependence of the couplant g= as/ g
on the renormalization point is given by the B-
function equation

=0. (3.3)
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uéﬁ =), (3.4)

Bla)= =ba* (1l +ca+c,a®+ca®+++). (3.5)

The boundary condition on Eq. (3.4) is not pro-
vided by the theory, but may be expressed in
terms of a (u-independent but RS-dependent) scale
parameter [x, which must be fitted to experiment.
[A is related to the conventional A parameter, as
defined by Buras et al.,* by

./'\=A(ZTC)-M. (3.6)

I discuss the definition and meaning of A in detail
in Appendix A.]
The first RS parameter is 7,

r=bln(p/A), (3.7)

which represents the same “degree of freedom”
in the choice of RS as the renormalization point
u, but proves to be a more convenient variable to
use.

As is well known, the first two B-function coef-
ficients, b and c in Eq. (3.5), are independent of
the RS.'® However, the higher-order coefficients
Cy C3y. .. are RS dependent. Turning this state-
ment around: Different RS’s are characterized by
different values of c,,c;,... . These coefficients
can therefore be used to label RS’s, and they be-
come the other RS parameters. The dependence
of a on these parameters can be written as

9,
—50% =8,(a)

GoD a1+ Wia+Wig®+-++). (3.8)
The functions B,(a) can be determined from the re-
quirement that 7;c,,c;,... should form a set of
mutually independent variables with commuting
partial derivatives, as demonstrated in Sec. IIIB.
I prove in Sec. IIID that these variables give a
complete parametrization of RS’s as far as physi-
cal quantities are concerned, and also that jth-
order approximations depend only on (i —1) of
these RS parameters (for i = 2).

In Sec. III B (which may be omitted on a first
reading) I discuss the motivation for using c,, c,,
... as RS parameters, and determine the B,.(a)
functions. In Secs. IIIC and IIID I define ith-order
perturbative approximations, and describe how
they depend on the RS parameters.

B. The parametrization of renormalization
scheme dependence

As explained in Sec. IIIA, I require some meth-
od of labeling RS’s by a set of parameters so that

the notion of a small variation in RS is meaning-
ful. In other words, I need an explicit realization
of the full renormalization group of Stueckelberg
and Petermann (Ref. 10 and see also Refs. 20 and
21). The solution to this problem has already
been outlined above, but here I describe the de-
rivation in more detail.

The problem of parametrizing RS dependence is
simplified by three restrictions: (i) the restric-
tion to physical quantities, (ii) the restriction to
massless theories, and (iii) the restriction to per-
turbation theory. Obviously I shall only want to
consider the optimization of perturbative approxi-
mations to physical quantities. (Moreover, it is
only for physical quantities that one can apply the
PMS criterion, since only these quantities are RS
independent.) Consequently, I need only consider
two RS’s as different if they correspond to differ-
ent definitions of the couplant g (= ozs/ m), i.e.,
different definitions of the finite part of the renor-
malization constant Z in the relation a=Zq,,,.
Differences in the definitions of the other renor-
malization constants will be irrelevant since, al-
though these affect the Green’s functions, the dif-
ferences will cancel order-by-order in expres-
sions for physical quantities.

If mass terms are present in the theory, then
different ways of renormalizing the mass could
also affect the calculations of physical quantities.
I avoid this complication by restricting myself to
massless theories in this paper. Thus I shall use
the phrase “different RS’s” as synonymous with
“different definitions of the renormalized couplant
a.”

The restriction to perturbation theory is impor-
tant. It allows me to assume that anything and
everything can be expressed as a power series in

a (in whatever RS). In particular, the couplant o’
in some general RS must be expressible as a pow- -
er series in the couplant g of some “base” scheme,
i.e.,

a' =al+va+v,a®+-++). (3.9)

In a sense the coefficients v ,v,,... label the
“primed” scheme, but this is not satisfactery be-
cause it singles out the arbitrary base scheme as
special.- The point is not that the ¢ scheme cor-
responds to the special values 2, =0, v,=0,...,
but rather that by regarding »,,v,,... as indepen-
dent variables (in the sense that differentiation
with respect to », is implicitly performed with v,,
vg, . . . held constant) one would be giving the a
scheme a unique status.

However, it seems natural to assume that each
coefficient v,,v,,... corresponds to a distinct de-
gree of freedom in the specification of one RS in
terms of another. This suggests that there exists
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a hierarchy of parameters v,,v,,... such that 8a/
v, =0(a?), 9a/dv,=0(a"), etc., although one must
abandon Eq. (3.9) as a means of defining them. I
have already argued that the parameter v, should
be identified with 7=5 In( y./]i), since this gives an
0O(a®) variation:

b0 _pla)

o - b (3.10)

=—a¥l+ca+ca®++-+).
By analogy, one can write down a similar expan-
sion, with unknown coefficients, for the dependence
of g on the other parameters, whatever they may
be:

da

— =N, a1+ Wia+Wia*+-+*).

52, (3.11)

The previous discussion suggests that one needs
to consider the mutual independence of any candi-
dates for RS parameters. Consequently, I next
investigate the constraints imposed by requiring
(7375505, - . .) to be independent variables. In par-
ticular, the partial derivatives

9 ] -] 9

—_—Se— | and — =—
31' 31' v;=const avi avi ‘r,vj=const, J#i

(3.12)

must commute. It is easy to see, by differentiat-
ing (3.10) and (3.11) with respect to v; and 7, re-
spectively, that this requires that either the coef-
ficients N,, W{,W4i,.., are r dependent, or the
coefficients c,,c;,... are v, dependent, or both.
The first and last possibilities can be rejected
immediately because they imply that the W’s are
u dependent, and dimensionless quantities suchas
the W’s can only depend on p via a( ), since there
are no other massive variables in the problem.
(This is just dimensional analysis, or, more cor-
rectly, “one-parameter ambiguous dimensional
analysis” in the sense of Ref. 13.) But q dependent
W’s would contradict the requirement that 8a/6v,
must have an expansion in powers of . Therefore
the B-function coefficients c,, c5,... must be v,
dependent, i.e., they are RS dependent, as is well
known. However, one recovers the usual result'®
that (like b) ¢ is an invariant [see Eq. (3.13) be-
low].

By evaluating 8%a/8760, and 8%a/8v,8r and equat-
ing coefficients of a®,a%,..., a**?,4**3,... one ob-
tains the following equations (i=2,3,...):

8¢ 8(:2 aci-l

—_—m——t =, Se———=( .13
%, 8, 9, ’ (3.13)
i =nNi-1), (3.14)
v,

ac J )

— NI (i+j-1-20)c, Wi, (3.15)

avi

r=0

with j=1,2,... and ¢;=c, c,=Wi=1.

The most striking result is that ¢; depends lin-
early on v,. This suggests a very appealing solu-
tion, namely, to identify v, with c,. (Later re-
sults are in fact independent of this specific
choice: see Sec. V.) This is a self-consistent
solution, as I shall now show. The independence
of the v, from 7 was used to derive Egs. (3.13)-
(3.15), but one also requires the mutual indepen-
dence of the v, i.e., 9v,/60,=0, i#j. This will
be assured by Eqgs. (3.13) and (3.15), provided the
RHS of Eq. (3.15) is equal to zero, which leads to
a set of linear equations that determine the W} co-
efficients uniquely, i.e., identifying

v,=c, =N,;=1/(i 1) (3.16)

and

)
2 G+j-1=20)c,Wi,, (3.17)

r=1

i -1
WisGe-D

j=1,2,... with ¢;=¢c, Wi=1.

The solution to these equations can be expressed
as a determinant (see Appendix A). The variation
8a/8ci therefore has a well-determined series ex-
pansion,

2a
8(:i

= 1 i+l ('L - 2)
—'(-1’?—_—17& [1 —-i— ca

(G-1G=-2) , (=3) \ ., ]
*( G+ © “(i+1)02>a R
(3.18)
Notice that i=1 in Eq. (3.18) reproduces the B8
function, Eq. (3.10), apart from the singular nor-
malization. Thus one has the amusing situation
that ¢, behaves in one sense like 7= In( p/ﬂ), and
in another sense like the invariant ¢ (cf. the way
x° in calculus formulas behaves like both lnx and
1). Iwill always use ¢,=c, as in Eqs. (3.15) and
(3.17).
In fact the above analysis need not be phrased in
terms of series expansions. Defining

2Ba), 2L=8a),
-

ae, (3.19)

where B(a)=Ba)/ b, the commutation of the partial
derivatives requires

B a)B(a) = B'(a)Ba) —a'*?, (3.20)
where the prime indicates differentiation with re-

spect to @, regarding the c; as fixed. This leads
to the expression

x2dx

m (3.21)

B,(a)= -Ba) foa
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for B, in terms of B. Itis easily verified that a
formal expansion of this equation leads to Eq.
(3.18).

The problem posed at the beginning of this sub-
section is now solved: RS’s can be labeled by a
countable infinity of parameters (r;c,, Cy,. . .).
The dependence of ¢ on these parameters is, in
principle, fully specified by Eqs. (3.10) and (3.21).
A simple argument, given in Sec.IIID, shows that
this parametrization of RS’s is a complete para-
metrization for physical quantities, and that only
(i — 1) parameters are relevant in ith order, for
=2,

C. Definition of perturbative approximations

Before I can describe how to optimize perturba-
tive approximations by the best choice of RS, I
must define precisely what I mean by a perturba-
tive approximation. Consider for the moment
working in one particular renormalization scheme.
In this scheme the couplant satisfies

—=——=_g l+ca+ca’+cya®+ "), (3.22)

and the physical quantity ® has the expansion
R=a(l+ra+ra®+ra®+-++). (3.23)

The reason we have to resort to approximations
is because we only know a finite number of the co-
efficients c,c,,c;,... and v;,7,,7;,... . There-
fore it is most natural to define the ith-order per-
turbative approximation ® ¢’ by (i) truncating the
series (3.23) at ith order, and (ii) replacing a by
its ith-order approximant, defined as the solution
to Eq. (3.22) with the RHS truncated at ith order.

Having adopted this definition of ® ¥, it is im-
portant to recognize that no further analytic ap-
proximations are permitted. In particular I cannot
now approximate the solution to

aa(i)
aT

= (a1 +ca?

w0 ve,q(a)i] (3.24)

by, say, expanding ¢’ in inverse powers of r and
keeping only i terms. To do so, i.e., to redefine
® % by reexpanding in powers of 1/In(u/A) would
be unnecessary, unmotivated, and dangevous—
because it loses some of the information we have.
The point is that 1/In(u/A) is a very arbitrary and
artificial choice of expansion parameter, since the
precise definition of A is a matter of convention
(as witnessed by my use of a A parameter A de-
fined differently from the conventional A: see Ap-
pendix A, paragraph 3). The same point has been
made by Celmaster and Sivers [see Ref. 6, es-
pecially following Eq. (2.34)].

My insistence on respecting Eq. (3.24) exactly
means that transcendental equations will appear.
In practice this means that one must resort to nu-
merical methods. Although this is troublesome,
the effort involved is much less than that already
invested in calculating perturbative coefficients, so
I do not regard this as a drawback. The only ap-
proximations that are forced on us are the trunca-
tion of the series (3.22) and (3.23). Any other ap-
proximations can only be justified by showing that
they have negligible numerical effect on the final
result.

D. Scheme dependence of perturbative approximations

Having defined the perturbative approximation
® % in a particular RS, I now consider how & ‘¥’
varies when the RS is changed. In particular-I will
prove the statement that only (i - 1) RS parameters
are relevant in ith order (i > 2). From the defini-
tion of ¢ ’, Eq. (3.24), it is manifestly indepen-
dent of c¢;,c,,;,..., and clearly can depend on RS
only through the (i —1) parameters (7; c,,..., ;).
Therefore R, defined by

RP=ag L 4ra® +- 0 +7,4(aP)],  (8.25)
will be a function of 7;¢,,...,c,, too. It remains
to show that ® ¥’ cannot depend on RS through any
other parameters.

Consider perturbative approximations ®‘*’.and
®& %Y in two different RS’s. Since?®

(R=(R(“+O(a“"1)
and (3.26)
®R=R%" +0(at),

it follows that ® > and ® ¥’ can differ only by a
term which is, formally, O(ai*!). This self-con-
sistency condition, which I can write symbolically
as

AR )
o8 =) (3.27)

has important consequences. It shows immediately
that the coefficients »; can depend on RS only
through the parameters 7;c,,...,c;. Suppose this
were not the case, i.e., suppose there existed
some mysterious, extra parameter n which was
part of the characterization of the RS, yet inde-
pendent of 7;c,,...,c;,,. Then, by differentiating
® % holding T;¢,,...,C;.,, and hence a*’, con-
stant, one would have

() g2
a(R Z 81’,( Wy (3.28)

which contradicts Eq. (3.27) unless

;i _ . .
Tn-— y ]—1,...,1—1. (3.29)
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Therefore &’ cannot depend on the mysterious 7.
(The proof generalizes trivially to the case where
7 is presumed to be a discrete parameter.) This
shows conclusively that the parametrization of RS
dependence by 7;c¢,,...,c;, is complete for ith-
order approximations to physical quantities.

The self-consistency condition, Eq. (3.27), has
even stronger consequences. It requires that there
be a (partial) cancellation between the RS depen-
dence of ¢’ and that of the coefficients 7;, which
is enough to fix the functional dependence of the 7,
on the RS parameters 7;¢,,...,¢;. This will be
demonstrated in the following sections.

IV. OPTIMIZING SECOND-ORDER RESULTS

A. The optimization formula

I now specialize to the case of second-order ap-
proximations. According to the previous argu-
ments, there is only one relevant RS parameter,
namely r=b1n(u/A). This is saying that the RS-
dependence problem at second order is entirely
equivalent to the problem of how best to choose
the renormalization point within one particular
kind of RS. I can verify this statement by an inde-
pendent argument at the end of this subsection, but
it may be helpful to discuss this point a little fur-
ther here. ‘

In e*e” annihilation, which I continue to use as
an example, it is traditional to fix the renormal-
ization point p to be equal to the total e*e” energy
@, but there is no solid justification for this
choice. The argument is only a dimensional argu-
ment—the couplant depends on one massive param-
eter u, and the only massive variable in the prob-
lem is Q. However, the argument provides no
reason for setting u=¢Q rather than p=3¢Q, or u
=4¢, etc. Moreover, in other processes with
more complicated kinematics, this ambiguity is
even more evident. What is needed is an objective
criterion for choosing u, and this is what the PMS
criterion supplies. I shall show that by resolving
this renormalization-point ambiguity one auto-
matically resolves the RS ambiguity in second or-
der.

To begin with I choose some particular kind of
RS (say, minimal subtraction® for definiteness),
and consider the second-order approximant ] @
as a function of the renormalization point u. For
convenience I use the variable 7=51n(p/A) in-
stead of u itself, and write ®® as

RPN 7)=a®N7)1 + 7 (P)a®(7)]. (4.‘1)

The renormalization-point ambiguity arises be-
cause one has an infinite set of approximants
{&®X(r) | =0 <7<} which, although formally equiv-

alent, are numerically different. The PMS cri-
terion resolves this ambiguity by selecting a
unique member of this set, namely &2, =® *X7),
where 7 is characterized by

R (2)
97 et

=0. (4.2)
Differentiating Eq. (4.1) and using

= = (@2 (2)

o 5 (a®)*(1+ca®), (4.3)
one obtains (for the remainder of this section I
write ¢ as shorthand for a®)

@) 9
e —a2(1+ca)(1+271a)+a213- . (4.4)

ar or
The order-q® terms must cancel for the formal
self-consistency of perturbation theory, as dis-

cussed in Sec. IIID. This gives

g, (4.5)
T

corresponding to the well-known fact (easily veri-
fied by Feynman-diagram calculations) that under
a change of renormalization point p— ', 7, =7
=[7,+b1In(u’/w)]. Equation (4.5) shows that

p=7 =17 : (4.6)

is a constant, independent of the unphysical vari-
able 7.

The PMS criterion requires that the remaining
terms of Eq. (4.4) should vanish at r=7, i.e.,

27(1+ca)+c=0, (4.7)

where 7, =7,(7), a=a(7). Using this to eliminate

7 in @), =a(1+7%a) yields

a(z) __(1 +% cﬁ)

ot~ Tica) (4.8).

All that remains is to find z. This is, in fact, giv-
en by Eq. (4.7) because 7, is implicitly a function
of a. Recall that 7, is simply related to r by Eq.
(4.6), and that 7 is given as a function of a by inte-
grating the B-function equation, Eq. (4.3):

- (2), = b a 4
T= K (a) = f -3—(2)_7( 7\ 9 ( 09)
Where

-~ 'a dal
K(z)(a)= - j; m

1 ( ca )
==+cln .
a l+ca

[The lower limit of integration in Eq. (4.9) re-
flects the particular definition of A appearing in

(4.10)
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r=b1In(u/A) (see Appendix A).] Substituting

ry=1-p=K®a)-p, (4.11)
into Eq. (4.7) gives an implicit equation for a:
A 1 ¢
exzy.~ S o
K (a)+2(1+ca) o - (4.12)

The optimum second-order result is found by solv-
ing this transcendental equation for g and then
substituting the result into Eq. (4.8). [This is
really no more difficult than the usual perturba-
tion theory procedure, which also requires in-
verting a transcendental equation, namely 7
=R®qg).]

I can now show that the final result for ®%), is
independent of the particular kind of RS adopted
initially. Consider the quantity p,: Eq. (4.6) holds
for any value of 7, so I can, in particular, evalu-
ate it for u=@ to obtain

p, =b1In(Q/A) —,(calc). (4.13)

In the e*e” example 7,(calc) is the coefficient cal-
culated in Refs. 2 and 32, which use u=@. Now,
7,(calc) depends on which kind of RS is used in the
calculation, but so does A. Moreover, it has been
shown by Celmaster and Gonsalves' that the RS
dependence of A is determined exactly by a one-
loop calculation and is precisely such that the RS
dependences of A and 7,(cale) cancel in Eq. (4.13)
(see Appendix A, paragraph 4). Thus p, is a RS
invariant. The same is true of ¢, so it is immed-
iately obvious from Eqs. (4.12) and (4.8) that @
and ®2), are independent of the RS.

The physics of the particular process under con-
sideration enters the formulas for the optimized
result only through p,. So, from this point of
view, the goal of a Feynman-diagram calculation
is to determine the RS invariant p,: The conven-
tion-dependent quantity », is only an intermediate
step. Given p,, one can immediately obtain the
optimum second-order approximant &2, from Egs.
(4.12) and (4.8). The size of p, is an objective in-
dicator of the reliability of perturbation theory.
The larger p, is, the smaller g will be, and hence
the more reliable one can expect low-order per-
turbative approximations to be.

The next subsection is devoted to some remarks
aimed at clarifying the meaning of the preceding
algebra. Section IVC then summarizes the second-
order optimization formula for a general physical
quantity of the form R=a(1+7r,a+°*").

B. Remarks

The following points are noted.
(1). ‘An important step in the last subsection was
the change of variables from 7 to q. It is instruc-

tive, therefore, to look at ®® as a function of a:
®R“*Na)=a[1 +r,(a)a]
=a{l +[K®(a) - p,Ja}

=a{2 - p,a+calnfca/(1+ca)l}. (4.14)

This makes plain a very important fact: Pevtur-
bative approximations are not polynomials in the
couplant. Figure 5 shows, however, that a graph
of ® ® against a is roughly parabolic (for large
pl/ ¢). The curve is fully determined once ¢ and
p, are known, and this is equivalent to knowledge
of ¢ and the value of ® ®)(q,) at some arbitrary in-
itial value of q¢,. The PMS criterion selects the
stationary point of the curve as giving the most
reliable approximate result. The optimization
formulas simply perform the necessary analytical
geometry to find this result: Eq. (4.12) locates
the position of the maximum, and Eq. (4.8) gives
the value of the function ® ®’ at that point.

(2). Inview of the similarities with the examples
of Sec. II, it is very likely that in some cases, al-
though not in all, the exact result will actually lie
just above the maximum of the curve. Moreover,
it is tempting to speculate that one might be able
to prove an analog of the Rayleigh-Ritz theorem,
i.e., an inequality ® > @ ?Xq), all q, in certain
simple cases. This would be an interesting point
to investigate with functional integration tech-
niques.

(3). Another similarity with the examples of
Sec. II is that the lowest-order approximation
gives a monotonic function, since the first-order
approximant is just 8’ (a)=a. Thus leading-order
results are irredeemably ambiguous —there is no
objective means for choosing the correct renor-
malization point u at which to evaluate the cou-
plant. [This is, in fact, the same as the ambiguity
pointed out by Baée,?* although expressed in differ-

T T
R(Z) c=16/9 (N,=3) p|=l4.687375
0.05 -
Omin 95 @
0 ml" '15| | {
0.05 010 g

FIG. 5. The second-order approximant ®?’ as a func-
tion of the choice of couplant [see Eq. (4.14)]. This ex~
ample is drawn from e*e ~ annihilation at an energy @
=100Ay,;, (see Table II, Sec, VIA): ani, and agpg are the
couplants in minimal subtraction and modified minimal
subtraction, respectively, evaluated at y =@ . Varying
u in any RS (with the physical variable @ held fixed) cor-
responds to a variation ofa, and traces the curve shown.,
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ent terms (see also Ref. 25).] Thus, leading order
gives only semiquantitative results: One has to
guess at the best value for the renormalization
point, so the result is part calculation, part in-

tuition. This situation is peculiar to leading order. -

Second- and higher -order approximations can, by
the PMS criterion, be given a definite, quantita-
tive meaning, because the calculation itself indi-
cates which value of u to choose.

(4). The optimization process implicitly deter-
mines the optimum value of 4. An explicit ex-
pression for & is not obtainable, but it is instruc-
tive to observe that for small g (ca< 1), Egs.
(4.12) and (4.9) give

Tetp —3C, (4.15)
and therefore,

bIn(G/A) ~ b 1n(Q/A) —r,(cale) -3¢,
i.e.,

T~ Qexp{-[3c+7,(calc)]/b}. (4.16)

Thus, as one expects, K is given by @ times a
number which is of order unity —as long as
7,(calc) is not too big. A large result for »,(calc)
is an indication that the original choice of u=@
was far too optimistic.

Another pertinent question is what sort of value
the second-order coefficient 7,(7) has in the opti-
mum scheme. From Eq. (4.7) one has

7y=-3c¢/(l+ca). (4.17)

Note that |7, | is always less than ¢ so that,
viewed in the optimum scheme, the breakdown of
perturbation theory at low energies is due to the
effective couplant g becoming large, and not due
to the coefficients getting too large.?®

(5). Another interesting question is what does
the optimum result, &2} =a(1+7,a), look like when
reexpanded in terms of the couplant ¢ of the orig-
inal scheme, i.e.,

REY =R ®Ng) +a°Q @ +a% P +e e . (4.18)

The first two terms must, of course, agree with
®R®Xa)=a(l +7,a), but there will be definite, cal-
culable correction terms beginning at order 4°.
The coefficients @, &, . .. could be obtained by
a brute-force expansion of the optimization for-
mulas, but there is a simpler method, which I de-
scribe below. This will lead to an approximate
optimization formula, or “improvement formula.”
This exercise is, in a sense, unnecessary: I
have already shown how to find ®2) exactly, so
there is no need for an approximate method. How-
ever, there are two reasons for discussing this
approach further: (i) because the improvement

formula is very convenient for QED applications
(where it gives results essentially identical to the
optimization formula), and (ii) because the exact
optimization formula in higher orders is rather
complicated, and a step-by-step approach to the
optimum may then be more practical; this ap-
proach is most easily explained at second order.

The coefficients @, 3@, ... of Eq. (4.18) can
most easily be obtained by using the fact that ®(2)
is independent of the initial choice of renormali-
zation point, i.e., 8®{2 /87r=0. It is important to
be clear about the distinction between this re-
quirement and the PMS criterion. The former is
just the condition that ®2) 1s a RS invariant (and
therefore independent of the arbitrary, initial
choice of 7 used in the calculation), while the lat-
ter decrees that the optimum is a particular in-
variant, namely the value of ®® at its stationary
point [i.e., ®RZ) =R *?)(7) where 7 is characterized
by (8® ?”/87)| ,-7 =0]. The invariance condition de-
termines the form of @®,8®,,..; the PMS cri-
terion fixes the boundary condition.

This can be seen as follows. Differentiating the
RHS of Eq. (4.18) and equating the a2, a?,... terms
to zero yields

39(2)
ar

=27, +c,

aq,(z)

- = 3@+ 27.c, (4.19)

etc.

The integration of these equations is easy since
87,/87=1. The boundary condition is that the cor-
rection terms should vanish if r=7, i.e.,

Q%(7,) +a8 (%) +0(a®) =0. (4.20)
Since the PMS condition, Eq. (4.7), gives

7= —tc+0la), (.21
one obtains

Q@ =(r, +10)2, (4.22)

@ =(ry, +3c)(r, %+ 210 — 5. - (4.23)

The positive semidefiniteness of  ’ is no sur-
prise, since ®2) is the largest of all the ® ®’s.

I stress that the improvement formula is much
less satisfactory than the previous exact formula-
tion. If one does elect to use this step-by-step ap-
proach, one must be sure that one has kept suffi-
cient terms, so that ®2) is obtained to within the
required numerical accuracy.

C. How to use the optimization formula

In this subsection, I summarize the procedure
for optimizing second-order calculations of physi-
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cal quantities, and present the necessary formulas
for the general case. The aim is to show that the
method is perfectly straightforward to apply in
practice.

The results apply to any physical quantity that
can be written as A + BR, where ® has the form*

R=a"(1+ra+-++), (4.24)

and where A (the parton-model term, if any) and
B (the leading-order coefficient) are independent
of the RS. (This must be true for the self-con-
sistency of perturbation theory.) A and B play no
role in the optimization process. [N.B. In the
moment analysis the quantities —(Q/M,)dM,/dQ
are of the above form.]

i The first stage is to find the value of the appro-
priate RS invariant p,. Given that the second-or-
der coefficient 7, in Eq. (4.24) has been calculated
in some RS, one can construct p, from the formula

C p=To=n(1)/N, (4.25)
with
To=b1n(u,/A,) , (4.26)

where pu, is the renormalization point used in the
calculation, and Ko is the QCD scale parameter
appropriate to the RS employed. [A’s in different
RS’s are related exactly by a one-loop calcula-
tion,! so KO can always be expressed in terms of
A, of some “reference” scheme. Here I pretend
that the value of A_,, (and hence of A,) is known.
For a fuller discussion see Appendix A, para-
graphs 3-5.] Although the calculated coefficient
7, depends on the RS and renormalization point
adopted in the calculation, the resulting p, is en-
tirely independent of these arbitrary choices. In
general p, will be a function of several physical
variables which describe the kinematics, etc.,
of the process under consideration. Perturbation
theory is reliable only if p, is large (i.e., p, > 1,
or, more correctly, p, > |c|).

Secondly, one must solve the equation

(y)=lny++ y _]-&
S,,,(y)—lny+y (1 -—y) [1 +(lv—+ﬁ] = p

for y. [To compare this with Sec. IVA, note that
y=ca/(1+ca), where g is the couplant in the opti-
mum RS.] Finally one obtains the optimized sec-
ond-order result from

1 ¥ N
('2)'=—— Y -—

Sort = o7 T30 [1 W+D y] ‘
Equation (4.27) is readily solved by standard nu-
merical methods, e.g., Newton’s method converges

nicely, for a small enough initial value of y. - A

simple technique for obtaining rough answers is to
plot both S,(y) and ®®), as functions of y on the

opt

(4.27)

(4.28)

same graph. For any input value of pl/ c one can
then immediately read off the value of ®%2). This
is illustrated in Fig. 6 for the N=1 case.

An alternative approach—not recommended for
QCD applications, but convenient in QED —is to
approach the optimum result stepwise from the
naive result. That is, one first calculates the
usual approximant

R®=gM1+7a) (4.29)

in some RS. (This, too, requires solving a trans-
cendental equation to express a, which is short-
hand for ¢® here, as a function of A.) One can
then evaluate the correction terms in the improve-

ment formula
(R(ozp)t =(R(2) +Q (2)aN+2 +& (Z)aN+3+O(aN+4) . (4'30)

The general formulas for the coefficients ),
%@ are

ﬂm)_(]\;;,l) (r, +2)?, (4.31)
@)= (1:3]1;21) (7, + QNN +2)7, %+ (BN + ), &
-(2N+1)2%], (4.32)

where ¢=cN/(N+1). Expressions for higher-order
coefficients in the improvement formula can also
be obtained reasonably easily, if required.

This stepwise approach works well if the cou-
plant is small and if the initial RS is close to the
optimum scheme. It is more convenient in QED
and will usually give essentially the same result
as the optimization formula. Moreover, if the cal-
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FIG. 6. A graphical solution to the second-order opti-
mization formula for the N =1 case. The function S;(y)
of Eq. (4.27) is plotted with respect to the logarithmic
scale on the left-hand side. A graph of c(Rf,zp)f , Eq. (4.28)
referred to the right-hand scale, is superimposed. The
arfﬁ?ws illustrate how, knowing py/c, one can obtain
CRopt



23 OPTIMIZED PERTURBATION THEORY 2931

culation of 7, was performed in the canonical QED
renormalization scheme, then the appropriate
value of the couplant is just the fine-structure con-
stant divided by 7, so one avoids transcendental
equations altogether. A QED example is discussed
in Sec. VIB.

V. OPTIMIZATION IN HIGHER ORDERS

A. The optimization procedure in third order

Given the present situation with regard to QCD
calculations, it might seem rather academic to
consider the optimization procedure beyond sec-
ond order. However, the future comes sooner
than we imagine. Moreover, it is important theo-
retically to know how to deal with the RS-depen-
dence problem in arbitrary order —if only to have
a better understanding of second order, which is a
rather special case. In this section, I therefore
describe the more typical case of third order in
detail, and sketch the generalization to higher or-
ders.

I consider third-order results of the general
form

R®=g"1+r,a+7,0%. (5 1)

The notation here is very condensed a is to be
understood as a ®)(r;¢,), the third-order approxi-
mation to the full couplant, i.e., a®r,c,) is the
solution to

8‘;:) =BBYg®)
= (a®)1+ca® +ca®)?]. (5.2)

It also satisfies

aa(3) . V
802 =ﬁ(23)(a(3)) s (53)

where B{®)(q) is the third-order approximation to
the B, function defined in Eq (3.21). It is there-
fore given by

(3) 2 f

Bs (a)=a (1+ca+cza ) m . (5.4)
Since I am imagining here that the third-order
calculations for c, and 7, have been done (in some
arbitrary RS—the same for both, of course), the
functions B©’ and B’ are fully known.

Differentiating ® ¢’ with respect to 7 and c,

leads to
m(s)

ek B[N +(N+1)ria+(N+2)r,a?la™t

+a"™{N +[Nc +(N+1)r]a}, (5.5)

a(R(!i)

5o = PN+ (N +1)nya +(N+ 2)r,a®]a™* - Na™2,
2

(5.6)

where I have used the self-consistency equations

9 9
%—N -13=Nc+(N+1)rl,
T (5.7)
a'rl 37’2 -
ac, 0 oc, .’

which are required for the a? and o® terms to can-
cel. These equations are equivalent to the state-
ment that the quantities

p=7=7/N,

p2572+Nc2_(N+1) ( N C>2 (5.8)

2N \*N+T
are RS invariants. Justas 7, and 7,, p, and p,
are known quantities which embody the informa-
tion obtained from the diagram calculations but,
unlike the coefficients, p, and p, are independent
of the RS, and therefore should be regarded as
more significant.

As in the second-order case, it proves to be
convenient to change variables from 7 to g using

T=K®Ya;c,)

-~ dx
= @)
K®a)+c, b (L+ex)(L+cx+cyx%) ° (5.9)
where
PN 1 ca
@) =2
K®q) - +cln(1+ca> , (5.10)

as before. Equation (5.9) is obtained by integrating
the B-function equation, Eq. (5.2), with the bound-
ary condition (i.e., the definition of A) described
in Appendix A.

By substituting into Eq. (5.8) I can now express
7,, 7, in terms of the RS variables q, c,:

Ke Xa; cy) ~ P,
¥y=p; —NC,

NN +1) 2
T [Km(“’ €)= Pty 1]

Thus, given the values of the “physics param-
eters” N, p,, p,, one knows & ®) completely as a
function of the unphysical variables a, c,:

(5.11)

(5.12)

Obviously this is quite a complicated function. Its
behavior in the vicinity of the optimum point a,c,
is illustrated in Fig. 7: Basically it seems that,
for N=1, &® is quasilinear as a function of c,,
and quasicubic as a function of g, as one might
expect from the most naive considerations.

The optimum values of the unphysical variables
correspond to the stationary point of ® ¢Xa;c,),
according to the PMS criterion. The optimization

®R®Xa, c,)=a[l+7(a, c)a+7ya,c,)a’].
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condition is therefore 8R "/ 8(a, c,) | .z, oty = 0

These equations, which are just appropriate lin-
ear combinations of Egs. (5.5) and (5.6) equated
to zero, can be written as

[Nc,+(N+1)7,c + (N +2)7,]
+a[(N+1)7,¢,+(N+2)7,c]+aAN+2)7,c,=0,
(5.13)

a dx Na
- . (5.14
_[ (L+ex+T,%°)°  {N+[Nc+(N+1)7,]a} , (©18

Since 7,7, are known as functions of @, ¢, by Eqs.
(5.11), one can, in principle, solve Egs. (5.13)
and (5.14) for @,<,. One can then substitute back
for 7,,7,, and thereby determine the optimum re-
sult

RS =¥ (1 +7a+7,a9) . (5.15)

Obviously this procedure is quite horrendous an-
alytically, but it may be quite straightforward to
implement on a computer. The result is clearly
RS independent, since it is completely determined
by the RS invariants N, ¢, p,, and p,.

B. The improvement formula in third order

Since the exact optimization procedure is rather
complicated, it.may be useful to derive an im-
provement formula for the third-order case. In
this approximate approach one writes the optimum
result as the naive result in the original RS plus
correction terms, i.e.,

RE) =R 4+ Qg3 4 0(a™) . (5.16)

As in the second-order case, one can determine
Q® from the requirement that RS} is independent
of the original choice of RS. One needs the power-
series expansion of the 8(q) function, which can
be obtained from Eq. (5.4), or from Eq. (A8) of
Appendix A withi=2and c;=c¢,=...=0. The lead-
ing terms are

:—:2 = B(a) = a® + O(d). (5.17)

By equating the order ¢™** terms in 8R5)/8(7; c,)

=0 and using Eqgs. (5.5) and (5.6), one obtains

N 3)
- [Ney+ (N +Drc+(N+2)r,],
T (5.18)
an 3)
=—(N+1)7,.
dc, 1

It is convenient here to change to »,,7, as the RS
variables by making use of Egs. (5.7) and (5.8).
This leads to

8 (N+1)

”
9 1)
2 N (5.19)
o ® _WN+1)r, (N+1)2N+1)r?
a7, N 2N?
2
o c P2

N~ AN D TN

The boundary condition to be imposed is that £ ©’
=0 at », =%, 7,=7%,, where the optimum point 7,,
7, is characterized by the PMS condition. It is
easy to see that, up to O(a) corrections, this is
equivalent to the vanishing of Eqs. (5.18), i.e.,

7,+0(@)=0,
NT,+(N+2)7,+0(a)=0. (5.20)
[The vanishing of #, in the small g limit is a con-
sequence of the absence of an order ¢* term in
BJa). Notice that 7, here is not the same as 7, at
second order. There is no inconsistency in this:
As with the examples in Sec. II, the optimum point
is different in different orders of approximation. ]
Integration of Eqgs. (5.19) yields

Q®=y, [(N+ L)r, _(N+1)(2N + )7

N 62
cry 2 p,
TN tANAD) *F]' (5.21)

Finally, by resubstituting for p,, one can write the
result purely in terms of the directly calculated

(3)

/

%

FIG, 7. An illustration of the behavior of the third-
order approximant ®®, for N =1, as a function of the
RS parameters a and ¢, in the vicinity of the optimum
point (indicated by a cross) [ See Eq. (5.12)] . The
sketch is based on a numerical study using the same ex-
ample as in Fig, 5 and Table II, assuming a moderate,
positive value for p;. Changing p, is qualitatively like
a translation with respect to the ¢, axis.
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quantities 7, 7,, ¢,:

3 (N+2)7, (N+1)(N+2)r cry
Q”—r[ = L ——]

3N® 2N
(5.22)

Further coefficients in the improvement formula
can also be obtained, if required, by straightfor-
ward, if tedious, calculation.

C. RS invariants and optimization in higher orders

In this subsection, I will briefly sketch how the
optimization procedure works in higher orders.
In (2 +1)th order one will need the coefficients 7,,

ey 7y in

RED=g¥(Leyg+ + +7,a"), (5.23)

and the g-function coefficients c,...,c, in

1l+ca+ca®+---

_a_a=B(kﬂ)(a)= -

k
5 +c,a¥),

(5.24)

where g is shorthand for g**) here. All these
coefficients must be calculated in the same RS,
but it is immaterial which scheme is used.

The approximant & #**’ depends on RS through
(15¢3y...,¢,). From the self-consistency condi-
tion that 8@ ®1/a(r; c,,. . ., c,) =0(a™®*), one can
determine the RS dependence of all the coeffi-
cients:

31’, Z (N +m)7 € ppes
me=0 (5.25)

|\‘.

1-7
=_—_Z N+m)rsz-j-m’ l?]
m=0

[~

c, (j
=0, I<j

where co=7,= Wi=1, ardc,=c. The W} coeffi-
cients appear in the expansions of the g,(a) func-
tions, and are given in Appendix A, Eq. (A8).

By integrating these differential equations, one
can produce a set of RS invariants p,, p,,..., 0,
In fact, only p, will be new, in the sense that the
others are known from lower orders. I have al-
ready given expressions for p, and p, in Eq. (5.8).
(The first invariant, p,, is rather special and
needs to be large if perturbation theory is to work
well.) The normalization, etc., of the higher-or-
der invariants can be chosen such that

N
pkzrk+m ck—ﬂ"”, k=2 (5.26)

where Q® is the coefficient of the correction term
in the previous (i.e., kth) order’s improvement
formula, and depends on 7,,c;, i=1,...,k-1. It
can readily be shown that the right-hand side of

Eq. (5.26) is RS independent, i.e., satisfies 8p,/
8(r;cy-..,c,) =0 [e.g., the reader can explicitly
check this statement for p,, using the expression
for ©©®’ given in Eq. (5.22)]. These RS invariants
summarize the results of the diagram calculations
in a complete, RS-independent form, and they nat-
urally play an important role in “optimized per-
turbation theory.”

Once the values of p,,...,p, have been calcu-
lated, one knows the exact form of & *!) as a
function of the RS variables a;c,,...,c,. (Again it
is convenient to swap 7 for a=a ***’ by making use
of the integrated f-function equation.) Applying
the PMS criterion, one seeks the stationary point
of this function. The condition for this, a® *')/

(a5 Cyye vy Ch) |opt ot =0, vields the equations
3 ®
Z a' 2 (N+m)'rmckﬂ-m= 0 ’
1=0 msl (5 27)
reg 1
fa xj+2dx aj-l [g a "%(N+m)r Wl-m]
WO (j=1) [ )
[B1)(x)] J [Z‘ i (Nem)r c,-m]
1=0 m=0
(§=2,...,k).

These equations generalize Egs. (5.13) and (5.14).
It is to be understood that there should be an over-
bar above 7,,...,%,, C3...,C,, and a wherever
they appear (explicitly or implicitly), since these
are the equations for the optimum point a;¢c,,
...,C, Once these equations have been solved,
one can immediately construct the optimum re-
sult R\ =g 1 +7a+*+ +7,a%).

D. Remarks

The following points are noted.

(1) An important question is whether the opti-
mization procedure gives a unique result in every
order. The following argument indicates that this
is in fact the case. Consider the improvement
formula for ®%*1), i.e., the expansion of ®%tV in
powers of the original couplant ¢. The coefficients
Q&) @) of this series can, in principle,
be calculated by a generalization of the method de-
scribed in Sec. VB. By its very nature, this pro-
cedure clearly generates unique coefficients. This
does not mean that Egs. (5.27) have only one solu-
tion, but it does suggest that there is only one so-
lution in the region of interest. [For instance, in
second order, & ?(q) has a second stationary point
at negative a, which is of no physical interest. It
is close to, and an inevitable consequence of, the
logarithmic singularity at a= ~1/c.?® In third or-
der when c, is negative, 8 ®’(a; c,) acquires a
logarithmic singularity at large a, and in the per-
turbatively inaccessible region beyond this wall of
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singularities there may exist other, spurious,
stationary points. The singularities of ® ***) cor-
respond to zeros of the approximate 8 function
B%1)(g), which obviously mark an outer boundary
of the perturbative domain. ]

I conclude that, for all practical purposes, the
optimization procedure does lead to a unique re-
sult. I might add that nonuniqueness is not fatal
to the philosophy of the PMS criterion: It occurs
in the higher orders of the approximation schemes
of Sec. II. The result is then a narrow range of
values instead of a single value, the width of the
range being a measure of the intrinsic error of
the approximation. The special feature of the
field-theory case is that each order introduces an
extra unphysical parameter, which breaks the de-
generacy that would otherwise.occur, leading to a
unique result.

(2) Secondly, I point out that the optimized re-
sult is independent of the specific choice of v,=¢;
for the RS parameters, made in Sec. IIIB. Any
consistent scheme for labeling RS’s would lead to
the same result. This is almost obvious: The
value of ®& #**) at its stationary point is invariant
under changes of variables. [Formally one can
prove this by showing that the PMS conditions
aR**1)/8p,=0(i=1,2,3,..., with v, =7) are
equivalent to the % equations R **)/8(r; c,,. . .,c,)
=0 used above. The proof involves the observa-
tion that ® ***) is manifestly independent of c,,,,
Cpezs - - at fixed 15¢,,...,¢, (cf. Sec. IIID), and
the use of Eqs. (3.13)—(3.15) which are necessary
for the labeling scheme to be consistent.] In this
connection I remark that the RS with ¢,=¢;=
=0 discussed, in another context, by ’t Hooft*®
(if it exists®’) does not have a special status in
optimized perturbation theory.

(3) The effect of optimization on the high-order
behavior of perturbation theory is an interesting
theoretical question. It is usually believed that
perturbation theory gives only an asymptotic ser-
ies which ultimately diverges.®* However, this
paper casts some doubt on whether it is useful to
regard perturbation theory as an expansion in pow-
ers of a fixed parameter: Certainly, written in
terms of RS invariants, perturbative approxima-
tions are not polynomials in the couplant. More-
over, in optimized perturbation theory one not
only calculates coefficients, but also readjusts
the RS at each order in response to the results.
Thus it is conceivable that perturbation theory
might diverge in almost all RS’s, yet converge in
the optimum RS, towards which the optimization
procedure guides one. This is sheer speculation,
but it does emphasize that the ultimate behavior
of perturbation theory is very much an open ques-
tion. .

VI. EXAMPLES AND SPECIAL CASES
A. Example: R in e*e” annihilation

For illustrative purposes, I give an example
of the optimization process at work in second or-
der. The example considered (not intended to be
particularly realistic) is the QCD correction to
the e*e” ratio R in a world with three massless
quarks at an energy @ =100 /'\.mm, where Amm i
the value of A in the “minimal subtraction” (min)
scheme. .

Table II lists the approximate couplants g
the second-order coefficients ,,>'%* and the naive
results ®®, in two different RS’s, min and MS
(modified minimal subtraction). These quantities
are all evaluated with the conventional choice u
= Q.

The optimum result is computed at the bottom
of the table, using Eqs. (4.25)—(4.28) of Sec. IVC.
I used min scheme quantities to compute p,, but
the reader can easily check that p, is RS invari-
ant, because Aﬁ and A . are related by*

In(Agg/A,,,) = 5(Ind7 -'yE) =0.976 904 292, (6.1)

min

which precisely compensates for the difference be-
tween 7, and 7,55.

These results are illustrated in Fig. 5 It is im-
portant to remember that a_, and gy are the
couplants evaluated at 1= Q in the min and MS
schemes. If u is allowed to vary in any scheme,
then one traces out the whole of the curve shown
in Fig. 5. In this example MS gives a better re-
sult than min, but this is not necessarily always
the case: The relation a;, <ag stays fixed, but
the position of the maximum of ® ?’(q) with re-
spect to them depends on the process.

This example shows perturbation theory in a
fairly favorable light. At lower values of @, and

TABLE I. A numerical example of the optimization
process. The coefficients 7y nin and 7, 35 are taken from

Refs. 2 and 32,
R=(s Zqi )+

C=9_6 Q/Amin =100

Example: N,=3, ..b =g—

min scheme:

(2) =
( P a. o 0.039 088 (R%zlgn =0.048 3
=
k 71 min =6.035890514
— . 2 =
Ms(zczhzr;le ays =0.047963 } ®®) =0,05174
riis =1.639821202) M

Optimized result:
p1=b 10(Q/Amin) =74 min =14.687 375
y =0.089 0926
(@ =0,055 016)

&3, =0.052565
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in other processes, the variations between results
in different schemes can be even more dramatic.
Notice that 7 and R 2} are quite similar, indicating
that optimized perturbation theory apparently con-
verges quite well. One can perhaps estimate the
intrinsic error in the second-order approximation
as ~a|®2) -a|.

Finally, I can illustrate the workings of the im-
provement formula, Eqgs. (4.30)—(4.32). Starting
from the min result and successively adding the
correction terms Q ?g® (=0.0029) and & ?g*

(=0.0009), with g=a'? here, gives

min
®?),=0.0483 - 0.0512~ 0.0521, (6.2)

to be compared with the optimum result 0.052565.
The improvement formula works better starting
from M—S, since this scheme is closer to the opti-
mum. The first and second correction terms are
then 0.00071 and 0.00010, giving

(R%i0.05174-—0.05244-0.05254. (6.3)

B. Application to anomalous magnetic moments in QED

The anomalous magnetic moments of the elec-
tron and muon have been calculated to third order
in QED and, for the muon, estimates of the fourth-
order coefficient exist (see Ref. 33 and references
therein). This provides a chance to test the opti-
mization formulas by comparing the nth-order re-
sult, before and after optimization, with the known
(n+1)th-order result. (This is a purely theoretical
exercise: I am not concerned here with non-QED
contributions, or with the comparison with experi-
ment.) A slight cheat is involved in applying the
previous results here: A proper treatment would
require an extension of the present work to mas-
sive theories. However, I will ignore this de-
ficiency here. This may not be too unreasonable
since (g - 2) is finite as m,,m ,~ 0, provided that
the ratio m,/m, is held fixed.

In QED there is a natural choice of RS in which
the renormalization is performed on-shell and

~ the couplant is a,/m, with a, the fine-structure
constant. (For the purposes of this exercise I
take a,, as exactly 1/137.035987.) The existing
calculations are all based on this canonical RS.
Table III presents a comparison of the normal .
perturbative results, taken from the review of
Calmet et al.,3® with the optimized results. Since
ay is so small, it makes little difference whether
one uses the exact or the approximate formula.
I use the latter here for simplicity, quoting the
correction term  ?’g® of Egs. (4.30) and (4.31),
and adding this to ®® to give ®2). By comparing
these second-order results with the third-order
result ®®’, one can see that, in both electron and

muon cases, the optimization does improve upon
the canonical result, albeit marginally.

In the muon caseé the third-order result can it-
self be optimized and compared with the estimate
of the fourth-order term. The correction term
given by the improvement formula, Egs. (5.16)
and (5.22), is surprisingly large, =214.7 ¢*. How-
ever, this is very much in line with the best esti-
mates of the actual fourth-order term. The rea-
son for this success is not hard to find: A large
part of the fourth-order coefficient is predictable
from the third-order result by renormalization-
group arguments,® and the optimization formula
uses the same kind of information, although in a
different way. In my approach the large value of
7,, caused by ln(me/ m,) terms, indicates that the
optimum RS has a couplant g, rather larger than
a,s/ 7, resulting in a larger value of (g ~2).

There is an interesting parallel here with Ref. 35,
which also argues that the effective coupling con-
stant is larger than a, for the muon anomaly.

My conclusion from this exercise is that the op-
timization procedure does seem to work in the way
it should. The improvement gained is quite small,
but this is hardly surprising: There is every
reason to expect that the canonical RS is a good
scheme, well suited to the calculation being done,
and hence close to the optimum RS in each case.
This latter statement is rather less true in the
muon case than in the electron case, as one might

TABLE III. The electron and muon anomalous mag-
netic moments in QED as a test of the optimization for-
mulas. The numbers are taken from the review of
Calmet et al ., Ref. 33.

R=(g-2)

c¢=%, cp=—1& (in canonical RS)

a=az,/m=2.322819 67 x10~3

’ 2nd order (electron)

71 =—0.656 956 890 @ =2,319275 x 103
correction term

a3(0.0795) ®%) =2.319 276 x 1073

3rd order (electron)
75 =2.376 + 0.05 A =2.3193048 x10~3

2nd order (muon)
71=1.531564460

correction term
a3(3.6350)

®R?) =2,331083 x10~3

R =2.331129 x 103

3rd order (muon)
73=48.90 £ 0.1

correction term
a4(214.7)

®R® =2.3316962 x10~3

R =2.3317025 x 103

4th order (muon)

732257 +126 R4 =2,3317037(37) x10~3
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expect. A point to bear in mind is that even if one
had used some noncanonical RS, such as minimal
subtraction,*® —where the naive results are poor-
er—one would still, via the optimization proce-
dure, arrive at the same, excellent, optimized
results.®

C. Thecase N=-1

The situation in which the physical quantity ®
behaves like a™ in leading order has very special
features. This case is of physical interest since
it occurs for moments of the photon structure
functions.3®3° For N= -1 the coefficients £ ®,  ®
of the imprqvement formula, Eq. (4.30), become
divergent. The individual equations, (4.27) and
(4.28), of the optimization formula also become
singular, but together they yield

RE(N=-1)=p,. (6.4)
This can be written as
REUN=-1)=bIn(Q/A) +7,(n=Q), (6.5)

which resembles the naive result R%"=4"(Q)
+7,(4=@Q), except that a(Q)has its leading-order,
not its second-order, form. This implies a purely
logarithmic @ dependence, as in leading order.

However, this result must be treated with cau-
tion, because &%’ is a monotonic function,

®2Ma)=p, - cIn[ca/(1+ca)] . (6.6)

(all derivatives are monotonic too), and the result
quoted above corresponds to @—=, %, =p,, which
is clearly rather disturbing. The case N= -1
seems to lag one order behind the general case in
that the approximant remains monotonic. It may
be that the result in Eq. (6.4) is actually a lower
bound on the exact result and it would be interest-
ing to see if this could be proved.

There is no similar difficulty in third order.
Remarkably, the optimization equations (5.13)
and (5.14) for N= -1 can be solved explicitly.
They become

f" dx a , (6.7)

(T+cx+c,x9? 1l+ca

T+ T+ AT,C +BTC,=0. (6.8)

The solution to Eq.(6.7) is clearly ¢,=0, and
therefore Eq. (6.8) gives 7,=0. One now uses the
definitions of the RS invariants, except that the
definition of p, in Eq. (5.8) is obviously unsuitable
for the case N=-1. Removing the singular, and
irrelevant, c?term, I define

Py=¥y—Cy—CVy, (6.9)

which is RS invariant and obtainable from caLcu-
lations of #,,7,,c, in any RS. In the optimum

scheme one has 7, = —pj/c, so that F7=p, +p}/c.
Hence, @ is given by

K®@)=p,+py/c, (6.10)

where I have used the fact that, since ¢,=0, ,
K®Xz,¢,) reduces to K®(g). Combining all this,
one finds

RE) =a U1 +7,a+7,a%)

=g -py/c, (6.11)

where g is the solution to Eq. (6.10).

Notice that ®(3) has the same structure as a
second-order approximant, suggesting again that
the N= -1 case somehow lags one order behind
the general case in its properties.

I note that the third-order optimization equations
can also be solved explicitly for N= -2, although I
do not know if this corresponds to a case of physi-
cal interest. The solution is ¢,=0, 7, =0, 7,=p,
+c?, ¥=p,, so that

REUN = -2)=a2+(p,+c?) (6.12)

with @ given by

K®@)=p,. (6.13)

D. Partially exponentiated perturbative approximations

It has been observed that in some cases second-
order coefficients involve large 7% terms, which
can be proved to exponentiate*®® (or, at least, it
can be shown that exponentiation is plausible). In
such cases one has an extra piece of information.
It is natural to make use of this by adopting par-
tially exponentiated perturbative approxima-
tions,*®® i.e., in second order one would use

®2 (a) =a”e (1 +s,a) , (6.14)

where k is the (RS-invariant) part of the coeffi-
cient 7,, =k +s,, which is known, or supposed, to
exponentiate.

One can apply the PMS criterion to this modi-
fied form of perturbation theory very easily. The
generalization is very straightforward, so I need
not go into details. I simply quote the formula
for optimizing such partially exponentiated ap-
proximants in second order:

a¥e [(N+1)+ca)

(6.15)

& (opt) “T+ca) [(N+1D)+ka] ’
where @ is given by
A oy [Nc+l<(1+cﬁ)]
(@) = 6.16
K*a) +N(l +ca)l(N+1)+«a] o ¢ )

with o, being the RS invariant
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~p + (6.17)

N
Note that this is different from optimizing the con-
ventional perturbative approximant and then taking
that series and partially exponentiating it. How-
ever, there is no question about which is the prop-
er procedure. One must first decide which ap-
proximation scheme one is using, i.e., the form
of the approximants. One then selects from that
set of approximants the one which is least sensi-
tive to variations in the unphysical parameters.

VII. CONCLUSIONS

In the past few years it has become increasingly
clear that perturbation theory in field theories is
really rather more subtle than the old-fashioned
idea of an expansion in powers of a fixed coupling
constant. We have learned that the “coupling con-
stant” can be more usefully considered as a func-
tion of a renormalization point chosen to suit the
energy scale of the process in question. This is
the so-called “renormalization-group-improved
perturbation theory.”® The present work carries
this process one step further, providing a precise
means of identifying the best choice of renormal-
ization point. Moreover, it indicates how to tailor
.other aspects of the RS to suit the particular
quantity being calculated. In this way the whole of
the renormalization group'®* —not just the Gell-
Mann-Low!* subgroup associated with renormal-
ization-point dependence—has a chance to be use-
ful.

The connection with the renormalization group
can be made clearer by restating the main argu-
ment in the following form. Physical quantities
are RG invariants, a statement which translates
into a set of RG equations:

R ] a 9 e in
?;=<8—Td+ﬁ(a)5;>(ﬂ=0 (“§=17), (7.1) |
AR 9 ! 9 )

-56'—,"= (E a+3;(a)'a—a)(ﬂ=0 (]:2,3,._.)' (7.2)

In ith-order perturbation theory only (i — 1) of
these are nontrivial. These (i — 1) equations are
satisfied formally in any RS, in the sense that the
remainder term is of the same order as the terms
already neglected. However, the remainder term
is an indication of the direction in which the per-
turbation series is going, since one knows that
the higher-order terms must conspire to cancel it
exactly. The most reliable ith-order approxima-
tion corresponds to that @ ¥’ which satisfies Eqgs.
(7.1) and (7.2) exactly: This eliminates any krown

reason for the higher-order terms to be large.
The PMS criterion simply requires the approxi-
mants to satisfy the RG equations. What could be
a more natural way to make use of the renormal-
ization group?

The optimized result (which is of the normal
truncated-power-series form only in the optimum
RS) is obtainable from perturbative calculations
performed in any RS, and I have described the
mechanics for doing this. I have named the
proposed method optimized perturbation the-
ory, to emphasize the conceptual differences
from traditional ideas. The calculation of
coefficients becomes only an intermediate step
in computing the RS invariants p,,...,p;, which
then determine the optimized result through the
optimization equations.

I stress that, particularly at second order, the
method is quite straightforward and practical.
There are obviously several immediate applica-
tions to existing QCD calculations which would
help to put quantitative QCD phenomenology on a
sounder theoretical basis. Further work is also
needed on the extension of these ideas to massive
field theories. Not only is this important for
treating quark mass effects in QCD, but it would
also open up applications to QED, electroweak
gauge theories, and grand unified theories. The
RS-ambiguity problem in these theories is, in
principle, just as severe as in QCD, and is not
always phenomenologically negligible either.*

Another problem to which the PMS criterion
might also be applied is that of “factorization
prescription dependence,” discussed by Celmaster
and Sivers.*? This problem arises when dealing
with hadrons in QCD perturbation theory by fac-
torizing the collinear divergences of perturbation
theory into parton distribution and/or fragmenta-
tion functions. The resulting cross sections de-
pend on the “arbitrary” scale used in the factor-
ization, as well as on the precise definition of
the parton-hadron functions. This is strongly
reminiscent of the RS-dependence problem,*? and
can probably be treated analogously. Presumably
the factorization scale replaces the renormaliza-
tion point, while the coefficients of the appropri-
ate anomalous dimension play the role of the 8-
function coefficients. However, this conjecture
requires further investigation.

Since this paper clearly stands or falls by the
principle of minimal sensitivity, I close with
some final remarks on this. The claim that the
PMS criterion represents a general truth in ap-
proximation theory is not a statement susceptible
of proof. The main reason for believing in it is
the intrinsic logic of the argument, and because
it uses, in a very direct way, the remarkable in-
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variance property of the exact result—a piece of
information that is otherwise wasted. As support-
ing evidence, I have also demonstrated that, in a
number of examples, the PMS criterion clearly
works.

I would also venture to argue on aesthetic
grounds that the PMS criterion provides a natural
way to harness the beauty and power of the renor-
malization group in perturbation theory. It forces
one to consider the problem of the parametrization
of the full renormalization group, the solution to
which is unexpectedly simple and appealing. One
is also led, slowly but inexorably, to discover the
RS invariants p,, p,,. . It seems hard to believe
that such invariants could exist without being sig-
nificant. Field theory has a habit of being strange-
ly simple when one is doing the right thing (and
ferociously difficult when one is not). Throughout
this investigation I have been repeatedly sur-
prised by the strangeness and simplicity of the
mathematics: I take it as.a confirmation of the
soundness of the approach.

Note added in proof: Some aspects of the pres-
ent work were remarkably foreshadowed in a
paper by W. E. Caswell [Ann. Phys. (N.Y.) 123,
153 (1979)]. The paper treats the anharmonic
oscillator by a method different from Halliday
and Suranyi’s, but with the same feature that
finite-order results depend on an arbitrary pa-
rameter 8. Caswell recognized that 8 should be
chosen by requiring minimal sensitivity to small
variations in g, and obtained very accurate re-
sults thereby. His concluding remarks on the
implications for field theory make interesting
reading.
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APPENDIX A: COUPLANTS, 8 FUNCTIONS,
AND A-PARAMETERS

The following points are noted.

(1) It is more natural to write perturbation ser-
ies in terms of («a,/7) rather than a,=g?/4m, the
so-called coupling constant. I use the symbol g
for a,/m, and refer to it as the couplant, both to
distinguish it from @, and to avoid the false im-
plication that a is a constant. The couplant is a
function of the renormalization point yu as well as
depending on the RS through the parameters c,, c,,
vl e :

a=alr;cy Csy...), T=bln(pu/A). (A1)

The u dependence of the couplant is governed by
the B8 function, which I define here as

9a _
“3; = rB(a) ) (AZ)
Bla) = =baX(1 +ca+ca®+ca++ ). (A3)

The coefficients » and ¢ are fundamental constants
of the theory. In massless QCD with N, flavors*®*

b=g.§.:.3_:§2_1\_’£l , (A4)
(153 -19N,) '
= NEE o) - (45)

(2) The higher-order B-function coefficients
€, Cgy ... are RS dependent, and can be used to
label RS’s. The dependence of ¢ on these param-
eters is given by

x 2y
(Bl)?
where B(a)=p(a)/b. These functions have power-
series expansions

‘;‘f; =B.(@)= -Aa) f ’ (A6)

Bla) =Gy @+ Wia e Wiate-), (A1
with coefficients W} given by the determinant
_.|_(2) c + _i c, - —; Cy...(=1) _]:i ¢;
1 - —: c + _2 Cye .. —(=1) _]]:; Cju
1 | o (ar "jif €1ma
' ) ];:1 ¢

(A8)
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where is shorthand for [(i +n)/(i +m)].

(3) Equation (A2) can be integrated to give
7=bln(pu/ li)

=K(a)= fa;ﬁ% +(infinite) constant. (A9)
° Blx

A particular choice of the infinite constant corre-

- sponds to a definition of A. It is natural to use a
simple, known integral whose integrand has the
same singularity structure as 1/5(x) as x - 0.

The particular choice is purely a matter of con-
vention. My definition of A is based on the choice*

infinite constant= - Ai-
o 3(2)(")
[ ax
- [ A (A10
so that
=R )+fadx 1 1 (A11)
R T A T
where
K®(g)= - Adx =1 +cln( L ) (A12)
A ﬁ(2>(x) a 1+ca

The second term in Eq. (All) is a convergent inte-
gral and gives a term O(aq). In second order, as
implied by the notation, 7 is given by K?(a) as
defined in Eq. (A12).

Since the integration of the B-function equation
is performed at constant c,, it is not obvious a
priovi that one should assume that the integration
constant is independent of the ¢, as in Eq. (A10).
The question comes down to whether this assump-
tion is compatible with the limits of integration
used in the definition of the B, functions, which
were chosen such that g,(a)=0(a*"!). This can be
checked a posteriori by showing that the partial
derivatives of the right-hand side of Eq. (A11)
with respect to c; (i=2,3,...) are zero, as they
should be.

The conventional A parameter is defined in terms
of an expansion of g in powers of 1/In(u?/A?) (see
Ref. 4 for details). That definition corresponds to
using a constant which differs from Eq. (A10) by a
term c1n(b/2¢), so that

bIn(A/A)= —cIn(b/2c)
i.e., (A13)

Thus the two parameters are related by a known,

RS-independent factor, which however, depends
on the number of quark flavors. (It varies be-
tween 1.10 and 1.18 for three and six flavors.)

' There is no physics reason for preferring one

definition over the other. I elect to use A rather
than A for algebraic convenience, and to avoid
the spurious reappearance of the constant b in the
R functions, which I find unaesthetic.

(4) The definition of A through Eq. (A1l) is a
E{S-dependent definition, simply because a and
B(a) are RS dependent. However, A’s in different
RS’s can be related exactly by a one-loop calcula-
tion. The argument is due to Celmaster and Gon-
salves,! and I repeat it here for completeness.

Consider two different types of RS with couplants
related by -

(A14)

Note that this relation is written with the renor-
malization-point parameters (which may have
quite different meanings in the two schemes) hav-
ing the same value, p. Writing Eq. (A1l) in the
two schemes, again with the same u values, one
has

r=b1In(p/A) =K ®(a) + Ola)
' =bIn(p/A)=K®(a’) +0(a’).

Then, using Eqs. (A12) and (A14), one can quickly
show that

a(W)=a(l+va(p)+--].

(A15)

r—r'=bln(A’/K)=1 -l, +0(a)
a a

(A16)

Since the argument is true for all u, one can, in
particular, take p-, The O(aq) term will then
tend to zero because of asymptotic freedom. [For
other theories one could work the same trick by
taking u—0. The extra terms in Eq. (A16) actually
cancel for any value of u, but this fact is made
obvious only by a shrewd choice of p1.] Therefore
the relation between A (or A) parameters in differ-
ent RS’s is given exactly by

=0, +0(a).

4

= exp(v,/b). (A17)

;>|| =l
g L

This result is easy to understand. The definitions
of the pu parameters in the two schemes are, in

_general, quite unrelated. The coefficient v, re-

flects this mismatch, and the relation between the
A’s simply corrects for this so that the ratio u/A
has, loosely speaking, the same significance in
each RS. (For example, the optimum value of w/
A, at any order, is a RS invariant, but the opti-
mum renormalization point u is scheme depen-
dent. This is one reason for using 7 rather than
u as a RS parameter.)
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(5) Finally, I discuss the relation of the A pa-
rameter to the one-parameter ambiguity of QCD.
Viewed perturbatively, massless QCD is a theory
with one, and only one, free parameter. In the
original Lagrangian this free parameter is the
bare coupling constant g,. However, this turns
out not to be finite, and the theory must be renor-
malized, i.e., reparametrized. In the renormal-
ized theory the one -parameter ambiguity is mani-
fested by the absence of a boundary condition for
the B-function equation. The missing boundary-

condition information is economically parametrized

by ]i, as defined in paragraph 3 above, and so it
is convenient to regard A as the free parameter of
QCD which must be fitted to experiment.*®

However, since A is a RS dependent concept, it
is vital to be clear about which A one is talking
about. The simplest plan is to adopt A in some
convenient, “reference” scheme (such as MS*)
as the free parameter of QCD, always referring
other A’s back to this one. The choice of a ref-
erence scheme is genuinely arbitrary: It is purely
a bookkeeping convention and does not affect the
physics at all.

The RS-independent predictions of optimized
perturbation theory depend on the free parameter
of QCD only through p,. If the RS used in the cal-
culation is not the same as the reference scheme,
then one can rewrite p, as

p =b1n(p/A,,,)+bIn(A_,,/R) -%rl, (A18)

ref
where the second term is obtainable from the one-
loop relation between the two schemes, as de-
scribed in paragraph 4. In this way all purely
perturbative QCD predictions can be expressed
unambiguously in terms of the fit parameter ﬂ"f.

The procedure for testing the theory is exactly
the same in principle as for any theory with one
free parameter, i.e., one calculates predictions
for N physical quantities and compares them with
experiment: This provides (N —1) tests of the
theory, and yields a best-fit value for A_,,. In
practice, since QCD predictions are complicated,
transcendental functions of A,,,, it would be hard
to do a proper fitting procedure. However, one
can always use the direct, unsophisticated method,
i.e., simply evaluate the set of N predictions for
various values of A, in the likely range, and see
which value works best. From this point of view,
it is not too much of a distortion of the practical
situation to pretend, as I do in the text, that A
is a known quantity.

APPENDIX B: SPECIAL CONSIDERATIONS IN GAUGE
THEORIES

The quantization of gauge theories requires a
choice of gauge before a renormalization pre-

scription can be defined. One might therefore
suspect that extra parameters besides 7, c,, ¢,
... are needed to fully characterize the RS, im-
plying that, for gauge theories, the analysis de-
scribed in the text is incorrect, or incomplete.
This is not the case. As so often in gauge theo-
ries, the apparent extra degrees of freedom are
essentially spurious. However, the problem re-
quires some discussion.

Firstly, I can divide the types of RS’s in gauge
theories into two classes: “gauge invariant” and
“gauge noninvariant.” The former class includes
minimal subtraction and an infinite number of
other schemes related to it by

a= amin(l + vlamin +02amin2+ v ) ’ (Bl)

where v,,v,,... are gauge-invariant, but other-
wise arbitrary quantities. For minimal subtrac-
tion it is known (see Ref. 47, Sec. 5.4) that

88| _
BEL "

where £ is the renormalized gauge parameter.
This means that the B-function coefficients in
minimal subtraction are gauge invariant. Obvious-
ly all RS’s in the class defined by Eq. (B1) will
share this property. It follows, by the ubiquitous
self-consistency argument of Sec. IIID, that per-
turbative approximations to physical quantities
must be gauge invariant in such schemes, i.e.,
gauge invariance is respected order by ovder.
Thus, within the class of “gauge-invariant RS’s,”
all gauge dependences have canceled before my
analysis begins.

Renormalization schemes of the second class
(e.g., those of the momentum subtraction type':®)
do not respect gauge invariance order by order.
In such schemes there are two inequivalent ways
of defining the 8 function, according to whether
the renormalized or the bare gauge parameter is-
held fixed, i.e.,

(B2)

9a | _

wie| =), (B3)
da 7z

e Cbm—ﬁ(a) . (B4)

(In gauge-invariant RS’s 8=4.%") Since it is not in
the spirit of this paper to deal with bare quanti-
ties, I use Eq. (B3) and not (B4) as the definition
of the B function. The reader is warned that this
differs from the standard literature®®; in fact my
B, B notation is opposite to that of Gross.*” This
is not mere perversity. The point is that the
statement that the first two coefficients of the 8
function are RS independent is true only for B de-



23 OPTIMIZED PERTURBATION THEORY 2941 -

fined by Eq. (B3).

[Otherwise one runs into a problem pointed out
by Llewellyn Smith.® In the usual argument for
the RS independence of the second B-function co-
efficient,'® it is assumed that o, in

a=al+va+***) (B5)

is independent of u. This is not true if the u de-
rivatives are taken with £, held constant, be-
cause the renormalized £ is then a running (x-de-
pendent) gauge parameter. An extra term arises,
namely

2 (8% LY S
¢ (“ 51, ) “5E \Mou )’ (B6)
bare ‘Ebaro

which is O(a®) since u(9£/9p) begins at order a.
Thus the second-order coefficients of B(a) and
B'(a’) differ by a term proportional to 8v,/8¢.

For the same reason the argument in Sec. IIIB
that a¢/8(RS) =0 would break down if the 8 function
were defined by Eq. (B4).]

With the adoption of the definition (B3) for the B
function, the question of extra RS parameters be-
comes merely a semantic difficulty. To speak of
scheme “A” (which might be, say, momentum sub-
traction based on the quark-gluon vertex':*¢) as
being one RS which is gauge dependent, is unhelp-
ful. Rather, one should think of the Landau gauge
and the Feynman gauge versions (for example) of
scheme A as two different RS’s.” The fact that the
two RS’s are similarly defined and go under the
same name is not relevant: What matters is that
they have different values for A and for the c, pa-
‘rameters, and therefore yield different perturba-
tive approximations.

_Conversely, if two RS’s have the same value for
A and for the c;, then (for the same renormaliza-
tion point p) they always give the same perturba-
tive approximations. The proof goes as before:
Equal 7’s and c,’s guarantee the equality of the
a*’s in the two RS’s and the self-consistency
argument shows that perturbative coefficients
cannot depend on any parameter that ¢’ does

not depend on. Therefore, by varying r and c;,
one ranges over the entire set of possible pertur-
bative approximations: There are no extra RS
parameters which need to be varied.

This conclusion can be reconfirmed in the fol-
lowing way. Suppose, to the contrary, that the
gauge parameter £ represented an extra, inde-
pendent, RS parameter. The dependence of the
couplant on £ would have to be of the form

oa
9|,

because self-consistency requires that Bc(a) be
O(a?). The coefficients X,X,,... can be ¢ depen-

=B(a)=xa®+x,a®+* "+, (B7)

dent, but cannot, by dimensional analysis, depend
explicitly on u. Since ¢ is supposed to be an in-
dependent parameter, /8%, and 8/8u |, must
commute. Therefore

82y

by =B@)8{a) (B8)
- aza
=H3top
S C LI FLE . Y, @9

where the prime indicates differentiation with re-
spect to a, regarding the series coefficients as
fixed. From this one finds that

Bla) =% pla) + 252 B(@), (B10)
i=2

where the 8, functions are defined in Eq. (3.21).
The first coefficient x remains an undetermined
constant of integration (which can be fixed by a
one-loop calculation), and corresponds to the pos-
sibility of redefining the normalization of &.

The important point about Eq. (B10) is that it
shows that ﬁg(a) is a linear combination of the B
and B, functions. Thus, a satisfies a constraint
of the form

[5%+L(u5%,5%>]a=0, (B11)
where L is a linear combination of derivatives .
with respect to the RS parameters pu;v,,vz,... .
This simply means that £ is not an independent
parameter.

With my usual convention of identifying the RS
parameters v; with the ¢,, the argument becomes
even simpler. Equation (B9) simplifies because
dc,/8¢|,, ......= 0 by definition, so at constant
C, C3y. .., any variation in £ is equivalent to a
shift in u.

APPENDIX C: COMPARISONS WITH SOME
OTHER APPROACHES

In this appendix I comment on the relationship
of the present work to a few of the alternative
proposals for dealing with the RS-ambiguity prob-
lem.

(1) A very clear account of the nature and ser-
iousness of the problem was given in the papers
of Celmaster and Gonsalves,''? which greatly in-
fluenced the present work. Their proposed solu-
tion—the use of a particular type of RS known as
“momentum subtraction” —has been studied ex-
tensively; in particular, by Celmaster and Sivers.®
The latter paper also contains a great deal of
wisdom and good sense about the RS-dependence
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problem and its importance. On the question of

- where the solution should be sought, there is a
great difference in philosophy between their ap-
proach and mine. Nevertheless, in terms of their
effects, the two approaches are far from bemg
contradictory.

I would explain the virtue of the momentum -
subtraction idea with a rather different emphasis
from most authors. The principal ambiguity in
perturbative QCD calculations lies in the choice of
the renormalization point p. This is the entirety
of the problem at second order, and remains the
most serious ambiguity in higher orders. The
virtue of a momentum-subtraction RS is not so
much that its couplant is intrinsically a “good ex-
pansion parameter,” but rather that it provides a
framework within which one can make an educated
guess as to the best value of 1. In dimensional-
renormalization schemes (such as MS) one has
no intuitive feeling for a good, a priori choice of
1 because the “interpretation” of this parameter
is obscure. Momentum -subtraction schemes, by
contrast, are defined such that the radiative cor-.
rections to a particular vertex are absorbed into
the couplant when the incoming momenta have par-
ticular values characterized by p. Thus one can
expect to obtain a well-behaved series with such
a couplant if u is chosen to be a “typical” momen-
tum flowing through the relevant diagrams.

This argument is correct, but the problem with
this approach is its inherent vagueness: The
choice of u is still left to one’s intuition. The

connection with the present work is that, in a mo-
mentum-subtraction scheme, one can expect the
intuitive choice of u and the PMS choice to be, in
general, very similar. There are several indica-
tions that this is in fact the case: Ref. 6 tends to
obtain small, and often negative, second-order
coefficients, as one would also find with the PMS
criterion (see also Ref. 8). I would argue that the
PMS criterion provides the means to convert the
“art” of choosing a RS, described in Ref. 6, into
a “science.”

(2) An interesting paper by Grunberg® is closer
to the spirit of the present work in many ways.

It too proposes to choose the RS a posteriori,
such that the approximant has a particular prop-
erty. Grunberg uses what I call the fastest ap-
parent convergence criterion, requiring the cal-
culated corrections to the leading-order result to
vanish. He shows that this corresponds to a choice
of u, thereby connecting directly with the work of
Wolfram.* However, as explained in Sec. II, I
have reservations about the FAC criterion, which
I believe is logically, and practically, less satis-
factory than the PMS criterion. The former does
not use the very special renormalization-group-
invariance property of physical quantities which
is so essential to the latter.

(3) Most other approaches make the implicit
assumption that it is mandatory to use the same
RS for every physical quantity. As I said in the
Introduction, this assumption is false. Such ap-
proaches are therefore fundamentally misguided.
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