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I propose a simple set of equations for mean-field non-Abelian statics with c-number sources, at general inverse
temperature P, working from the Euclidean path-integral representation of the Hamiltonian partition function. The
problem of finding the background-field configuration, and the mean-field potential, for point sources can be
reduced to a classical differential equation problem involving a suitably defined thermal effective action functional.
As an application I study the interaction of a pair of static classical sources coupled to a quantized SU(2) gauge field,
using the simplified model defined by keeping only the leading-logarithm renormalization-group improvement to the
local Euclidean action functional. I prove that the mean-field potential in this model grows at least linearly with the
source separation, giving a simple model for bag formation. The use of these methods to construct a leading
approximation to the qq binding problem in SU(3) quantum chromodynamics is discussed in two appendices.
Appendix A describes the use of color-charge-algebra methods to generate an equivalent classical source problem,
while Appendix B develops the properties of the transformation to a running coupling constant for which the one-
loop renormalization group is exact. As a consistency check, in Appendix C I calculate the total mean-field ground-
state energy, with source kinetic terms included, and show that it has the expected form.

I. EFFECTIVE-ACTION FORMALISM FOR
NON-ABELIAN STATICS

I analyze in this paper the question of calculating
the mean-field potential of classical point sources
coupled to a quantized SU(2) gauge field, at zero
and at finite temperature. This problem is of in-
terest both in itself as a mathematical model, and
because arguments based on the use of color-
charge algebras suggest' that c-number source
models should give a leading approximation to the
problem of calculating the heavy quark-antiquark
static potential in quantum chromodynamics.

My analysis proceeds from a field-theoretic gen-
eralization of the Euclidean (imaginary-time) ver-
sion of Feynman's sum over histories. In poten-
tial scattering in one dimension, with Minkowski
I agrangian

-Vx,
the Euclidean sum over histories reads

T|le ")=f rrxr(x, le "ivy)

z Tr(e '") n=f ay, =. (5)

On the left-hand side of Eq. (5), H is the Hamil-
tonian operator defined from the stress-energy
tensor

[d4]e "

H = d3x Tpo

while on the right, S~ is the Euclidean action

=N dx, ' dxe (4)
Xf

where the paths in Eq. (4) now run from x(0) = x,
back to x(P) =x&. The generalization of Eq. (4) to
a boson field theory containing spin-0 scalar fields
and spin-1 gauge fields, denoted collectively by Q,
can be written as

+X

(xi(e "/x, ) =N [dx]e (2)

t 8

dt d'x ~,
4()

On the left-hand side of Eq. (2)
i
x,) and

i x&) are
position eigenstates and H is the Hamiltonian,
while on the right-hand side N is a normalization
constant and 8 is the Euclidean action

1(dx '
S = df -i —+ V(x) , (2)

p i 2id

and f [dx] denotes a functional integration over all
paths x(i) obeying the boundary conditions x(0)
=x&, x(P) =xi. Setting x& ——x, and integrating over
initial states gives a formula for the partition func-
tion,

obtained by continuing gpp from -1 to 1 in the gen-
erally covariant form of the Minkowski Lagrangian
density

gen cov

00

The trace on the left is understood to be evalu-
ated in any canonical gauge, where the Hilbert
space contains only physical states, while the path
integral on the right again extends over periodic
paths, with jb(0) =P(P) = Q&. The following obser-
vation makes the form of Eq. (5) intuitively plausi-
ble: For a field theory of scalars and spin-1 gauge
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fields, the generally covariant Lagrangian density
is linear in goo,

gen cov
~(0) (1)goo &

Since

d gbo ~ 5jo ——— d g 5jo ~ H
~io

(18)

with Z((j
~ i) independent of goo whence from Eq. (8)

we have

we can reexpress the mean-field potential directly
in terms of the partition function

~(0) ~(|) ~

~s = (~(0 &
+ &(») ~

But forming the Minkowski energy density T

ggoo oog 2=g
~goO

(10)
1 3 . 5

5Vjjjeejj field= d X5j() ' . lnZ[j ]
&jo

1= 5 —lnz[j„],

Vje rj fie]r] =—(lnZ[j „]—lnZ[0]]

(17a)

(17b)

( 1)(~(0& ~((&) 2~(1&

we see that it is identical to the Euclidean Lagran-
gian density ~. Hence, . the Euclidean action of
Eq. (7) is a functional representation of the opera-
tor PH, just as in the potential theory case. A de-
tailed justification of Eq. (5) can be obtained by a
transformation from the conventional canonical
formalism given by Bernard.

I now apply Eq. (5) to an SU(2) gauge theory
(with gauge potential b„and electric and magnetic
fields E' and B~) coupled to a system of massive
sources, and replace the source current density by
its expectation, represented by a time-independent
c-number external source j„. The equilibrium
gauge field can be studied by keeping only the
terms in & and Sz which explicitly depend on the
gauge field variables, while omitting the source
dynamics (hence, H in the following formulas is a
truncated Hamiltonian, and not the Hamiltonian
for a closed system). With this simplification, we
have

where I have fixed the constant of integration so
that V „„&,&& vanishes for vanishing source density.
The problem of calculating Z[j„]can be further re-
expressed in terms of a classical differential equa-
tion problem involving a classical background field
c„and a vacuum effective action functional I'[c„].
To do this, we write

Z[j.]=c """, (18)

and we introduce the time-independent classical
background field c (x) induced by the time-inde-

~ ~pendent external source distribution j„(x),

( )
5W[jje]

=Z N db„] d b„— drab„x e ~~.
0

In this notation, the mean-field potential is given
by

f &yg
Z[j„]=Tr(e )=je

fr( ji„& J(
"ZI'Se]e

b~]

where on the left

, (ss-a= d'x~ —
2

—(E~ ~ E~+ O' ~ B~) —bg j

is an operator, while on the right

(12)
v, „.„,=-w[j„]+w[0].

Defining the Legendre-transformed functional
I'[c„]by

jr(j.] = T(e.] —f Z'ee„(r) j.(e),

a standard calculation shows that

(21)

(I 1
Ss=„i dt „] dx~ 2 (E E +B B&) —b„'j„

I, g

~ ~mean fiel&:— d xbo ~ 5jo

=Tr(e "feerie llje) ( (]H) (15)

is a functional. The mean-field potential ' as-
sociated with the static external source distribu-
tion j„=(joee0,j,=0), including self-energies, is
defined as

51'[c ] =j.(x) . (22)
5c„(x)

Equations (18)-(22) are the principal result of
this section. They show that the mean-field po-
tential, for any inverse temperature P, can be cal-
culated by solving the classical differential
equation problem of minimizing the functional
I' —J d'x c„j„,with I' the thermal effective action
functional. ' In the limit P -~, where I' reduces
to the Euclidean vacuum effective action functional,
this minimum problem reproduces the variational
principle of the "Euclidean statics" method which
I have advocated elsewhere, but with some signifi-
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cant differences in physical interpretation.
According to Eqs. (28)-(22), the problem of

studying the mechanism for confinement in the
modeldiscussedherecan be rephrased in terms of
the following two related questions.

(1) Is there a physically reasonable class of vacu-
um action functionals for which Eqs. (18)-(22) give
a confining potential for. static point sources?
This question is answered in the affirmative in the
following section.

(2) Does the exact vacuum action functional cal-
culated from the functional integral of Eq. (20) be-
long to the confining class?

The methods appropriate to studying these ques-
tions are quite different. For a given functional
or class of functionals I", the first question is one
of classical analytic or numerical methods for in-
vestigating partial differential equations. In the
following section, Eq. (22) is investigated analyti-
cally for the leading-logarithm approximation to
the renormalization-group improved local effective
action functional, for which I' takes the simple
form I'[c.„]=I'(E~ ~ E~+ B~ B~); numerical methods

I

of solution applicable to this class of functionals
are currently being developed. ' The second
question is probably best studied by numerical
Monte Carlo methods for doing the functional in-
tegral. Since confinement is an infrared effect,
it should suffice to establish the properties of I'
for slowly varying source currents j„and back-
ground fields c„. In this case, appropriate lattice
transcriptions of the functional integral of Eq. (19)
may give quantitatively accurate estimates of the
behavior of the continuum effective action.

I'[c„]=
J

d'x(Z„; —&,'"), (23)

with

II. A SIMPLE MODEL FOR BAG FORMATION

I

As an illustration of the formalism developed in
Sec. I, I analyze the following simple model, ob-
tained by keeping only the leading-logarithm re-
normalization-group improvement to the local
Euclidean action functional

Z„,= Z„,(F )

1 (E~ E~+B~;B~)
g g

E~ K~+BI BI)1+Tgpg ln
2 g p,

4

= gboF' In[F'/(ex')],

—jeff (IP) — Ij'50 K
2

rc = e 'o~ 5 = —C [SU(2)] =p -4 ( 2) 1 11 1 11
0 8 2 3 2 2

(24)

8E~=-,-c -c~xc =-&,c,ex~

+ —c"xc, F =E~ ~ E~+ Ba~' 2

(26)
lail = lQ2I =e.

As has been extensively discussed in the litera-
ture, the minimum of , g occurs at the nonzero
field strength F= K. The source density jp is
taken to be a pair of classical sources of equal
magnitude,

~, =Q,6'(x- x,)+Q,6'(x -x,),

&,(«') = j(),

&" X),(eB )=c x(&E'),

(26a)

(26b)

~ = ~(F')=, = -', I, In(F'/~') .
s(L F2)

(26c)

Acting with &„on Eq. (26b) and using Eq. (26a)
gives the constraint

In analyzing the model defined by Eqs. (18)-(25),
I make the physically plausible technical assump-
tion that it suffices to minimize over potentials c„
for which E~ E~ is axially symmetric around the
line joining the sources.

The variational equations following from Eqs.
(22)-(24) are

hence, if we write

c (x)=c(x)c(x), c c=l,
we have

c(xf) xQ~ = c(x2) XQ2 =0,

(2'7)

(28)

(29)
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which implies that

c p(x) jp(x) = c(x)j(x),

with either

(so)

We are now left with the purely Abelian problem
of minimizing W[c], to which we apply simple flux
conservation estimates introduced by 't Hooft. '3

Varying 8; we get the flux conservation equation

or

j(x) =+@[6'(x-x&)-6'(x-x2)] (31a) B

Bx, D'=j(x),

DP =gg& 8
Bx~

(s6)

From here on it will be convenient to work in the
gauge with c(x) = », in which we have

F'= + c'(c'x»)'+ 8' ~ lT'.
Bx' (33)

e(Z'Z~) where Z'Z'&»',

0 where E~E~ ~ v'.

I now will show that the minimization of 8'with
respect to the vector potential c can be carried
out explicitly, with the result

R"

K)in))'-=))K[K].=.
J

d'K Z, K
[ i -K(K)j(K)I,

0

|' Bc Bc
(Bx' Bx&

(33)

jeff
B f = eff

2
nK in-S,« for

Bx ]
To prove Eq. (33), we note that S,«(F ) —Z,«(» ) is
a monotonic decreasing function of its argument
for 0-E ~ z, and is a monotonic increasing func-
tion of its argument for ~ ~E'. Hence, W is min-
imized by the following choice of vector potential,

c'=»&a(p, »), p=(~'+y')'",

a(p, ») =
ap

dp'A(p', »),

B
2

A(p', »)=0, where Bx'

B 2q i/2

Ki(P, K)= K ( K )
rt'Bc

, where!
I[, Bx

which gives (with P the azimuthal unit vector)

c&xz=0,

&=-»j'x(p, ») ~

E =max,

(s4)

(36)

and from which Eq. {33)immediately follows.
(Note that it is at this point in the argument where
the axial symmetry assumption has been used. )
What is happening is that wherever the color-elec-

- tric field is less than z in magnitude, a color-mag-
netic field fills in to bring the total squared field
strength up to the value g at which 2,« is mini-
mized.

Evidently, wherever the E field strength is less
than v, the D field vanishes. This fact can be
exploited to get a lower bound on Vmean field and an
upper bound on %; which by Eqs. (33), {36), and

(37) can be rewritten as

W„„„„,„,„.= I d'x[2.«(Z~Z~) —Z~D~],
D&0

(s8)

with the integral extending only over the region
where D~ is nonvanishing. Dividing the integrand
of Eq. (38) by D=(D~D~)'~', we get

D '[z'D'- &.real=»[2:s+ 2f(N)1 (38)

with" (in the domain where D & 0)

u=(z~z~)"'/» o- l,
u —12

f(gg)= 2
) 1.

u lngg

(4o)

Vmean field ~ &I7: ) (4l)

d xD, A=domain x-gq ~y

X-X2 o-~.
[

The final step of the argument is to write d x
=dldA with I the length along the flux lines of D~

and dA an element of area perpendicular to the
flux lines. Denoting the flux by 4, we have

Ad=Di@di - d 4',
(43)

d xD~ dC /(4) ~ 4„(l~,„
~h

with l;„the length of the shortest flux line. For
the charge orientations of Eq. (31b), where the

To turn Eq. (38) into a meaningful inequality, it
is necessary to exclude the divergent self-energies
of the charges by defining W" to be the contribution
to Eq. (38) coming from the exterior of small
spheres of radius x centered on the charges. We
then get

8""~ -gI",
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flux lines terminate at infinity, we have

@tot 2Q )

~min= ~
y

(43)

and I"is infinite. ' For the charge orientations of
Eq. (3la), the flux lines run from the positive to
the negative charge, giving

@fot —
y

/m)n =R —2g y

W" - -~q(ft —2r),
(44)

which proves that the mean-field potential in-
crea, ses it least linearly for large R. In the limit
of small R, a simple calculation shows that

Vtttt)tttt f(tt)t(
—self-energies = —

4 & 1 +

(45)

APPENDIX A: CONNECTION WITH SU{3)
QUANTUM CHROMODYNAMICS

I briefly describe in this appendix how the meth-
ods of the text, together. with the color-charge-

as expected from a leading-logarithm renormaliza-
tion-group improved formalism. Hence, the sim-
ple model of Eqs. (18)-(25) interpolates smoothly
between asymptotically free behavior at small
source separations, and "baglike, " confining be-
havior at large separations. The above analysis
readily generalizes to the full renormalization-
group improved local effective action functional, '
provided that the effective action minimum remains
at nonzero Euclidean field strength v. " More gen-
erally, the results obtained above support the con-
jecture that a bag will form for large source sepa-
rations, irrespective of the functional form of
I'[c„], whenever the minimum of I' occurs at po-
tentials c„with nonvanishing mean-square field
strerigth.
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algebra analysis of Ref. 1, can be applied to give
a leading approximation to the qq binding problem
in SU3 quantum chromodynamics (QCD). In the
static quark limit, ' the gluon source current for
the qq binding problem in QCD is

~AS 0
(A1)

f"'.=q"5'(x-x, )+q"5'(x-~, )

with Q,
" and Q"; the quark and antiquark color-

charge matrices. As discussed in Ref. 1, the
gluon source current is now a 9x9 matrix opera-
tor acting on the nine-dimensional Hilbert space
spanned by the q, q color states. The analysis of
Sec. I can be extended to this case by including a
factor y tr, tr,- in all formulas and symmetrizing
all inner products, so that Eq. (12) becomes

z[j"„]= -,
' tr, tr,-Tr „,„„„(e'")

~A

=~- tr, tr,- db"„& d 5"„e, A2
bl 5

where on the left

d3~ ~AREA J +~A JggA f11
g 2

A A .A A

is an operator in the product of the q, q and gluon
Hilbert spaces, while on the right

1 1
Ss =

I dt ' d x —(E"'E"j+B—"jB"')
g' 2

is a functional in its dependence on the gluon vari-
ables, but is still a matrix operator in the finite
dimensional q, q color Hilbert space. ' Using
cyclic invariance of the trace, the steps leading to
Eqs. (18)-(22) go through just as before, giving

z['"]= (A5)

Vtttcan field — IVIj(d]+ IV[0 ] r (A6)

CW[j"„)-=—', tr tr,-) d'xc"„(x)ttj"„(x)),

tr(t'"„)= &(c"„)—(t tr, tr,- ( d'xc"„(x)j"„(x)), (&tt)

(A7)

C&(c"„)= —', tr, tr; (fd'xdc", (x)j"„(x)
)
. (A9)

Note that Eq. (A7) defines c"„ to be a potential
which, like the source current j„, is matrix valued
in the nine-dimensional qq Hilbert space. To con-
struct a QCD analog of the analysis of Sec. II, we
must calculate a leading approximation to the ef-
fective action. In the classical limit, the effec-
tive action density is given by
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1
4g

F2 1 tr tr (EA /EAJ+ fiA/fiA J)
. 9 e e

EA4 AP y PA( 4 0)
8

ex' f

BAJ ~/Pl A( PA( )t ])
~

(s
(ex 2 & ' ]'

(Alo)

sign, while the SU(2) effective charges have equal
magnitudes. Hence, the quark and antiquark ef-
fective charges can be made antiparallel by an
SU(2) gauge transformation, ' leading to a solution
with the same form as that obtained from Eq. (31a)
in Sec. 0, apart from the substitutions

e-(-,')'",

11
&0-

8m

~(.".]=f d'*(d.„(d') —d.„(.')].
4

g (F2) 1
b F2 In(F2/e/02) /(2

+ e 4/( PPg )
eff 8 0 e

1 11 11
bp —, C, [SU(3))=

Bn 3 Sm

(Al 1)

(A12)

To carry out the remainder of the analysis of
Sec. II, we must reexpress Eqs. (A8)-(A12) in
terms of number valued, as opposed to matrix
valued, source density and gluon variables. To do
this, let us recall' that the qq color-charge alge-
bra is spanned by a basis w~, . . . , u4, . which
satisfies the SU(2) xU(1) outer product algebra

1
P~(24)„24),) = i

2
&„„„24)r,s, f = 1, 2, 3

(A13)
Py(24/„d 24)4) =0 )

is orthonormal in the color-trace inner product,

0 tr, tr;(24),"24),")=~ 5„, (A14)

The renormalization-group improvement of Eq.
(A10) is obtained by taking g to be a running-coup-
ling function of the argument g Z„giving, in lead-
ing-logarithm approximation (cf. remarks in
Ref. 28),

APPENDIX B: TRANSFORMATION OF THE
RUNNING COUPLING CONSTANT TO EXACT

LEADING-LOGARITHM FORM

As already noted, the argument given in the text
for a confining mean-field potential generalizes to
the full renormalization-group improved local-ef-
fective-action functional, provided that the effec-
tive-action minimum remains at nonzero Eucli-
dean field strength. When expressed in terms of
the P function, this condition translates into the
requirement that the integral

d(d)' (Bl)

dn'
(n') ' (B2)

where P =gP has the power-series expansion [with
the coefficients given for SU(3) QCD with N& light
quark flavors ]

should be convergent at its upper limit. Assuming
convergence of the integral in Eq. (Bl), I show in
this appendix that one can make a nonanalytic
transformation to a new running coupling constant
g& for which the one-loop renormalization-group
structure is exact. The transformation is simply
(with n/4 —g/4d n =g )

and over which the quark and antiquark color
charges have the expansions

A 3 A A ~~ A= y2V] +24)2 + 24)4 t4f' 2
(A15)

P(n) =-[-', b, n'+b, n'+ O(n')1,
(B3}

bp= 2 (ll TN)r) bl = 2 2 (51 N~) .1 2 1 1
8v ' 2 8w

A 3 A A ~~ A
'Q - = 2()] 24)2 I/42

[As a check, we note that 3 tr, tr;(4)],"4)],")= (8/27)
x (18/4) = 4/3. 1

Expanding qA, gA, jA, cA, E /, and B / over the
basis xe"„with c-number coefficients, reduces the
variational problem

()I'[c„"„]-r tr, tr;(f dxdc"„(x)j"„(x}~)=0 (r(16)

to a classical SU(2) x U(1) problem, analogous to
that discussed in Sec. II. According to Eq. (A15),
the U(1) effective q and q charges are opposite in

dn'
lim —(,)

——0, (B5)

and so ~~ -~ as ~ -~. Hence the transformation of
Eq. (B2) gives anonsingular mapping from the half

Substituting the expansion of Eq. (B3) into Eq.
(B2), we learn that for small running coupling con-
stant,

n/4
——n —(2n (inn + const) + ~ ~ ~,2 25)

(B4)
b0

and so a~-0 when &-0. On the other hand, the
convergence of Eq. (Bl) implies that
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=-1 2—-- QOQ~, (86)

and so has exactly one-loop form.
A particularly interesting case of Eq. (82) is ob-

tained when p(&} terminates at two-loop order,

P(g) = -(T b, g'+ b(g'), (BV)

a situation which can always be achieved [pro-
vided Eq. (81) converges"] by an analytic trans-
formation of the running coupling constant [i.e. ,
by a rearrangement of the perturbation series
which does not introduce coupling-constant logari-
thms]. In this case, Eq. (82) can be explicitly
integrated to give the transformation

1 1 (1= ——a In~ +In(1+an)
Qg Q (gQ

(86)

which for small gQ can be developed into a series
expansion

" (-gg)oI+.
Qg Q gQj

n &

The series of Eq. (89) can be inverted by sub-
stituting

(89)

(82) gives a nonsingular mapping from the half
line 0- Q&~ to the half line 0- QR&~. The re-
normalization-group structure in the new variable
o(s is determined by PR(&s), given by

ps(&s) =p(&), =p(&)( &s-')
s

™s

1 E
(,)

t = —,
' ln(E'/e~') .

(814)

Substituting the one-loop running coupling Q&,

gives

1

( )
——bot (815)

Z„,s(E ) =
o boF ln(F /eg ), (816)

as used in Eq. (23) of the text. As a function of
complex F, Eq. (816) is analytic apart from a
cut in the E plane running along the negative real
axis from E =0 to E = -~. Such a timelike cut
is expected from unitarity, and so 2,«& has the
maximum allowed analyticity domain in E . To
study the analyticity properties of the general
S,«(E'), let us calculate the derivative

inverse transformation given by Eqs. (810)-(813),
yielding a series expansion in powers of Q& and
In(gn~). In this series, the terms of order &s
contain only powers 0, 1, . . . , n- I of 1n(go(s}.

An important property of the one-loop running
coupling Q& is that it simultaneously maximizes
the domains of analytici. ty of the renormalization-
group' improved local effective action S,«(F ) and
of the P function P(n) F.or a general running coup-
ling g(t), the renormalization-group improved lo-
cal effective action density is given by

g = gs(1+ gsf) 8

which after some algebra gives

(810)
d(E') "' 8 tt(t) 8 dt tt(t)) ' (817)

(-ag.)"(I+g.f)"+a
ff =~

n

Substituting

(811)

0=+ (-f)"o(s" +gin(a&a) -agg tf
(-&zf)"

n
N=~ fl

From Eqs. (82) and (815), we get

d 1 P(g)
dt g(t)

and so

(816)

fo
——a In(gg„},

2 2fi=fo +afo-g ~ ~ ~ (813)

Hence, starting from any convenient calculation-
al scheme (for example, minimal. subtraction in
dimensional regularization), the QCD perturbation
series can be reexpressed in terms of Q~ by a
two-step transformation'. First, one transforms
to a running coupling constant for which p(&) is
given by Eq. (BV), and then one substitutes the

(812)

into Eq. (810), and equating the coefficients of like
powers of Q, gives explicit expressions for the
coefficients fo as polynomials in ln(age),

d
Z Eo 1 1 1P(n(t))

d(F') "' }
2 g(t) 4 g(t)' (819)

We have seen above that at the spacelike E
where I; vanishes, both Q& and Q become infinite.
Hence, dZ, «(F )/d(F ) is singular at spacelike F
unless p(o. )/n is bounded as o( becomes infinite.
This is possible with P(g) an entire function [which
corresponds to the maximum allowed analyticity
domain for the function P(n}] only if P(n)/a' is a
constant. Hence, the one-loop running coupling
gives the maximal analytic extension of the renor-
malization-group substructure of QCD. This re-
sult suggests that the one-loop model of Sec. II
may give a universal, leading, semiclassical ap-
proximation to the confinement problem.



2912 STEPHEN L. ADLER

APPENDIX C: TOTAL GROUND-STATE ENERGY

As a consistency check on the formalism of Sec.
I, I show here that when source kinetic terms are
included, the ground-state expectation of the total
Hamiltonian for a system of two well-localized
sources, in mean-field approximation, is

(0IHr lo) = V „„„,«(X„X2)+ recoil terms+ constant.

(Cl)

To most simply parallel the discussion of the text,
I consider only the case of massive distinguishable
fermion sources, with classical ' SU2 charges, for
which &~ has the form

d X& =X+Xk,.„,

d x ——(Ed ~ E~+ B~ ~ B~) —b .J
g 2 ' ' (C2)

~p —ij'1Ql tl + ii&2Q2if&2 a

kin — ~ X 1&ep g
+ 2&ep

le lao;. lo& =,iol I"«"' «& ioi«&~I o&, (C9)

The right-hand side of Eq. (C9) can be reexpressed
in terms of the P —~ limit of the partition function
and then further rewritten using Eq. {19)of the
text, giving

(of f a «og &'D(«&fo&, =&™——1«z[ai]I

(C1Oa)

ground state contributes to the partition function,
from Eqs. (12), (18), and (20) of the text and Eq.
(C6) we learn that

(0 I Xl 0& =1Vljp7 = Vmean field(xi& xp) + constant . (C7)

To evaluate the second term in'Eq. (C3), we use
the source field equations of motion

isol{&l ——Qigl ' bp(x) + recoil terms,
jCBj

iso&{&2 =Q2il&2 ' lip(X) + recoil terms,

which, together with Eqs. (C4) and (C5), give

(0IH I 0& =&01xl0&+(ol x„.I 0& .

To apply mean-field theory, one assumes a Har-
tree factorization of the ground state (g= gluon,
s = source)

(C3)

(C4)

with

,(ol o&,=.(ol o&.=1,
e&OI &pl o&e=Qi5'(X- Xl) +Q25'(X- X2) = jp .

Hence, for (0
I Xl 0& we get

&olxlo& =,&o IHI o&„

]H= d x 2
—(Ed Ei+ Bi Bi) —bp ' jp

g 2

(C5)

(C6)

which involves the truncated Hamiltonian intro-
duced in Sec. I. Since in the limit P- ~ only the

Taking the ground-state expectation of Eq. (C2),
we have

dxcp x jp x . Clob

Hence, we have

O&=co(x, ) Ql+co(X2& Q2, (C11)

c,(x) = c,'"'(x, x„x,) + c,""(x,x, ) (C13)

with cp chosen so that cp is regular near x = xi
~(3 ) (A) ~

and satisfies

[6., l"'(, , )7l. ..=0.
Using Eq. (15) of the text, in the P -~ limit, we

get

(C14)

and we can complete the proof of Eq. (Cl) by show-
ing that

cp(xl) ' Ql = Vmean field(xi« X2) + constant
& (C 12a)

cp(x2) ' Q2 = Vmean f&eid(xi& x2) + constant . (C12b)

To prove Eq. (C12a), let us write cp(x) in the
form

3 . 3
6z Vmean field(xi« X?) = d X Co(X) Ql6z 6 (X Xl)

6 X Cp X Xi~ X2 ' g~» ~ X —X( + 6 X Cp Xy Xi ' f5» ~ X —Xi (C15)

The first term on the right of Eq. (C15) can be rewritten, by use of Eq. (C14), as

cf xcp x x~ x2 ' g5 x xf 6 x 5 cp x xf x2 ' f5 x xj —~ cp xf xf x2 (C16)
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while the second term on the right of Efl. (C15) is
independent of x2. Hence, Etl. (C15) implies

V mean t1eld (X1t X2) Q1 C0(X1) V1(X1) V2(X2) t

with Vq independent of x2 and V2 independent of xq.
But since translational, rotational, and local SU2

gauge invariance imply that both terms on the left-
hand side of Etl. (C17) depend only on the relative
distance xq —x2, the terms Vq and V2 on the right
must be constants, proving Etl. (C12a). A similar
proof, using 5„, gives Efl. (C12b).

According to Efls. (C11) and (C12), a consistent
mean-field approximation to the source wave equa-
tions is given by

$80 t/11 c0(xt) ~ Q, g, + recoil terms

= [V a ftettt(xt x2) + constant) t/tt + recoil terms,

2SOtll2 c0(x2) 'Q2tl)2 + recoil terms

t. Vm«e ftettt(X1t X2) + COnetant]t/t2 + reCOil termS .

(C18)

These are just the usual one-body wave equations
obtained from the potential theory of two sources,
interacting through a potential V e ftet0(xtt x2), in
the limit that the sources are well localized.
Hence, the formalism of Sec. I reproduces all of
the expected potential theory results.

R. Giles and L. McLerran, Phys. Lett. 79B, 447 (1978);
S. L. Adler, Phys. Rev. D 17, 3212 (1978); S. L. Ad-
ler, ibid. 20, 3273 (1979). For a review, see S. L.
Adler, in The High Energy Limit, proceedings of the
of the 18th International School of Subnuclear Physics,
"Ettore Majorana", edited by A. Zichichi (Plenum,
New York, to be published). Further references are
given here. [In @CD, the quantized gauge field is the
underlying SU(3) gauge field, while the effective c-
number sources lie in an unquantized, overlying SU(2)
x U(1) gauge field. See Appendix A for a detailed dis-

cussionn.

]
I define~ ""to be a scalar, so that

S = d v"-g

3C, W..Bernard, Phys. Bev. D 9, 3312 (1974). I thank
L. Dolan for bringing this reference to my attention.
For a discussion of the generalization of Eq. (5) to the
case when fermions are present, see D. J. Gross,
B.D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53,
43 (1981). Equations (12)-(14) remain valid for mas-
sive fermion sources at rest.

4The functional measure in Eq. (12) is understood to in-
clude the exponential of the gauge-fixing term, and
the compensating Faddeev-Popov determinant (which
can be represented as an additional functional integral
over ghost fields). When the kinetic terms and func-
tional integrals for the source fields producing j& are
included, Sz is properly gauge invariant, justifying
use of the Faddeev-Popov functional measure. In the
situation studied in this paper, where the only sources
present are infinitely massive sources at rest, the
source current can always be made time independent
by an appropriate time-dependent gauge transforma-
tion. In such static-source gauges, the source func- '

tional integral can be omitted, leaving the expression
.for the partition function given in Eqs. (12)-(14), with
j„=(j&~0, j; =0) and with jo time independent. The
static-source formalism is no longer invariant under
all gauge transformations, but remains invariant under
the subclass of time-independent gauge transforma-
tions. Since in a stationary state we have d(b&)/dt
=d c&/dt =0, we are assured that the mean-field po-

tential can be calculated from the expectation of the
scalar potential (50) =c'0.

In a linear system the incremental potential BV mean t'ietd

can be defined as either (Jd xb0 ~ d j0), which gives the
mean energy change when an increment in source den-
sity 6j0 is brought in from infinity, or as (d fd2xatE' ~ E'/
g2), but in general these expressions are not equiv-
alent: only the former can be used for nonlinear
systems and is renormalization group invariant. When
we study the nonrelativistic motion of the sources, the
leading coupling of the sources to the gluon field in-
volves only the values of 60 at the source positions.
Hence, an average potential calculated from (Jd xb0
~ 6 jo) is the correct starting point for a mean field,
potential theory analysis of the source motion. See
Appendix C for further details.

From Eq. (17) we can see that the zero temperature
(p ~) mean-field potential is not the same as the
static potential calculated from the Wilson loop, which
in the notation used here is

Vstatie = lim ( [1Vi j j —W[0)).g~ ao P

The physical interpretation of V,f,f,, is that it is the
ground-state eigenenergy of a static qq system. [See,
for example, the derivation of the Wilson-loop formu-
la given by L. S. Brown and W. I. Weisberger, Phys.
Hev. D 20, 3239 (1979).] Since eigenenergies are de-
fined only by continuation back to Minkowski spaee-
time, it is not surprising that an imaginary source
occurs when we formally represent V,t„t;, by a Eu-
clidean path integral. The motivation for introducing

f g is that it can be calculated strictly within the
Euclidean formalism. In a perturbation expansion in
the external source strength j&, the mean-field and
Wilson-loop potentials agree in order (j&)2, but differ
beyond this order. In the Abelian case, there are no
terms of higher order than (j&), and so the two form-
alisms give the same static potential. In the non-Abel-
ian case, the formalisms are inequivalent, and give
different formulations of the confinement problem. It
appears that the simple effective action approach to
confinement developed in this paper can be obtained
only by using a mean value formalism. I wish to thank
R, F.Dashen for several discussions of these points.
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(See also Appendix C and Ref. 30 below. )
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~Since I' is not gauge invariant, the gauge-fixing condi-

tions used in solving for c& must be chosen to be com-
patible with the gauge noninvariance of I'.

9The use of an effective action in this context was first
suggested by H. Pagels and E. Tomboulis, Nucl. Phys.
$143, 485 (1978).
In particular, c& is not to be used as Minkowski space
Cauchy data and time evolved, as was implied in Ref.
1. In canonical gauges, the physical interpretation of
c„ is that it is the expectation of b&, and is Minkowski
time independent. Also, in Ref. 1 I used the incorrect,
renormalization-group noninvariant formula for the
potential (see Ref. 5 above).

'S. L. Adler and T. Piran, in High Energy Physics—
1980, proceedings of the XXth International Conference,
Madison, Wiscorisin, edited by L. Durand and L. G.
Pondrom (AIP, New York, 1981), p. 958.
I. A. Batalin, S. G. Matinyan, and G. K. Savvidi, Yad.
Fiz. 26, 407 (1977) [Sov. J. Nucl. Phys. 26, 214 (1977));
G. K. Savvidy, Phys. Lett. 71B, 133 (1977); H. Pagels
and E. Tomboulis, Ref. 9. See J. Ambjorn and P, Ole-
sen, Nucl. Phys. B170, 60 (1980) for a discussion of
corrections to the local effective action approximation,
and extensive references. Many of these references
consider only constant color fields, which has tended
to obscure the fact that the gauge theory vacuum lead-
ing to the effective action of Eq. {23) is Lorentz in--
variant, with (0[ 5 "(0)= (0 ( E J

[ 0) = (0)B~(0) =0 in the
absence of sources. The vanishing of these expecta-
tions is reQected in the fact that the minimization of
I [cz] of Eq. (23) leads to a partially indeterminate
variational problem, solved by any random color-@ec-
tric and magnetic fields E~ and B~ satisfying E& ~ I~
+ B~ ~ BJ = g . When sources are added, the variational
problem of Eq. (22) is M.ly determinate only in the in-
terior of the "bag", where D & 0, but remains parti-
ally indeterminate (in the sense described above) in
the exterior region where D =0. As a result, one
cannot argue that there are nonvanishing gluon gauge
potential or gauge field vacuum expectations by con-
sidering the limit of the exterior solution as a weak
source is turned off; this line of reasoning applies only
when the variational problem in the presence of sources
is fully determinate in all of space.
G. 't Hooft, in Recent Progress in Lagrangian Eield
Theory and Applications, proceedings of the Marseilles
Colloquium, 1974, edited by C. P. Korthes-Altes et
al. (Centre de Physique Theorique, Marseilles, 1975).
To provef (u) ~ 1, let g =f- 1, p = 2t (u lnu ). A simple
calculation shows that g satisfies the differential equa-
tion

(Q -1)2', 0 fo
du u21nu'2

Integrating up from u =1 {where g =0), this implies
that P'is positive for u &1.

~SIn this ease, one cannot neglect the surface term (as
was done in the text) in the integration by parts leading
from Eq. (33) to Eq. (38) but rather, one must work
directly from Eq. (33). For the charge orientations of
Eq. (31b), simple estimates (see H. Pagels and
E. Tomboulis, Ref. 9) show that W has a positive in-

finite infrared divergence at equilibrium, correspond-
ing to a vanishing partition function Z. Hence, the
configuration with nonvani, shing color flux at infinity is
automatically excluded from the physical spectrum.
Note that when the correspondence with QCD is made
as in Appendix A, charge-conjugation symmetry or
permutation symmetry will select either the effective
charge orientations of Eq. (31a) or those of Eq. (31b),
but not both. In the qq problem, the averaged poten-
tials c&A are charge-conjugation odd, selecting Eq.
(31a). For the qq sector, the averaged potentials c &A

are symmetric under permutation of the sources, se-
lecting Eq. (31b), and giving a vanishing partition func-
tion contribution. This is the expected result for a
system which cannot be in a color singlet state.
A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and
V. F.Weisskopf, Phys. Rev. D 9, 3471 (1974).
If jeff attains its minimum at I' =0, and vanishes there
as F~, a simple estimate shows that the asymptotic
behavior of the potential is V mern field

This confines for e & 3, but gives a linear potential
only in the limit e ~. (See H. P, agels and E. Tom-
boulis, Ref. 9.)

~ I am assuming a standard canonical quantization, in
which only the constrained components of b&+ are ma-
trix valued Hence, the duferentials db PAg and d fbi
in Eq. (A2) are ordinary numbers. The assumption
of canonical quantizatian is consistent with the conclu-
sion reached at the end of the analysis, that the mean
matrix-valued potential c&A is Abelian apart from a
time-independent gauge transformation. This means
that co is nonzero, while c& contains only a single
spatial degree of freedom. The two spatial degrees of
freedom in b&~ which are orthogonal to c&A can then be
canonically quantized by the standard Dirac bracket
procedure. For example, taking the q and q to lie an
the z axis, the gauge transfarmation rotating the q
effective charge to be antiparallel to the q effective
charge can be chosen to depend on z only, giving co,
cA~ 0, but c„" =0. This matrix-'valued structure in
the potentials is compatible with axial-gauge quantiza-
tion.

~9The classical limit of the effective action can be read
off from Eq. (A2) by approximating 8 & by

e-sz~]. —g,
and so is given by the field-strength terms in Eq. (A4),
acted on by the quark color trace+9 tr tr-.
Color-charge-algebra solutions of this farm have been
discussed by I. Bender, D. Gromes, and H. J.Rothe,
Z. Phys. 5C, 151 (1980).

2~In the formulation of Ref. 1, there arose the issue of
how to fix the integration constants K&&& in the La-
grangian for the overlying algebra. The present analy-
sis corresponds to taking the K& s a11 equal, which
differs from the rule which I had originally postulated.
The effective Lagrangian analysis of the qq binding
problem has the following Feynman diagram interpre-
tation: Working in Coulomb gauge, the effective La-
grangian for the Coulomb gluons arises from Feynman
diagrams which may be characterized as a central
"blob, "containing one or more closed gluon loops,
from which n ~ 2 Coulomb gluons emerge. The effec-
tive Lagrangian contribution to qq binding is obtained
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by stringing such "blobs" between q and q lines,
attaching each emerging Coulomb gluon to either the q
or the q line. This procedure yields the usual re-
normalization-group improved one- Coulomb- gluon ex-
change graph, and its nonlinear generalizations, which
are responsible for the weak field-strength modifica-
tion in the effective action which leads to confinement.

3Previously in this paper, 'I have taken N& to be 0.
+G. 't Hooft, in The Whys of Subnuclear Physics, pro-

ceedings of the International School of Subnuclear
Physics, Erice, 1977, edited by A. Zichichi (Plenum,
New York, 1979), pp. 943-971. 't Hooft restricts his
discussion to the case of analytic running coupling
constant trans formations. Nonanalytic transforma-
tions similar to those of Eq. (88) have been recently
investigated. by Y. Frishman, R. Horsely, and
U. Wolff, Phys. Lett. (to be published) and Weizmann
Institute report (unpublished).

25N. N. Khuri and O. A. McBryan, Phys. Rev. D 20, 881
(1979).
Similar coupling-constant logarithms have been found
in three-dimensional @CD (which is related to the
behavior of the four-dimensional theory at high-
temperature phase transitions) by R. Jackiw and
S. Templeton, Phys. Rev. D 23, 2291 (1981), and in
chiral perturbation theory by H. Pagels, Phys. Rep.
16C, 219 (1975). In using the modified expansion to
evaluate Euclidean Green's functions, it may be im-
portant to keep the -ie in the Feynman denominators
even after continuation to the Euclidean section. This
gives a definite prescription for circling the spacelike
pole in o.z and chooses a definite branch of the space-
like cut in inc+. The rearranged power series will in
general contain imaginary contributions to the Euclid-
ean Green's functions in each order, but (under the
conventional assumption that the Euclidean Green's
functions in @CD are real) these will cancel when the
entire seri.es is summed. Hopefully, the rearranged
series will give real contributions to the Euclidean
Green's functions which converge fast enough to give
useful estimates (as, for example, is the case in the
Wilson-Fisher expansion in critical phenomena when
applied in 3 or 2 dimensions). Good convergence of the
rearranged series would be an indication that the infra-
red behavior of @CD is effectively controlled by a weak
coupling regime.
There appears to be a close analogy between trans-
formations of the radial coordinate in the theory of
Schwarzschild black holes in general relativity, and
transformations of the running coupling constant in
@CD, with the concept of maximal analytic extension
playing a key role in both cases. In boih theories the
natural coordinate (or coupling) in which one does cal-
culations does not give the maximal analytic exten-
sion. Moreover, the transformations which yieM the
maximal extension have very similar functional form:
Eq. (88) relating ez ~ to o. ~ closely resembles the

transformationr*=r+ 2Mln(r/2M —1~ which is used
to remove the coordinate singularity at the horizon in
black hoke physics.

28A second interesting analogy is the fact that the leading
logarithm effective action

I' ~ d 4xE2(x) 1n.E2(x)

has the same structure as the quantum-mechanical
entropy

S = —
Q& Tr plnp,

which has many special and useful formal properties
[see A. Wehrl, Rev. Mod. Phys. 50, 221 (1978)]. Per-
haps this analogy can be exploited to understand the
thermodynamic aspects of hadronic behavior. As a
simple application of the entropy analogy, suppose that
in the discussion of Appendix A we had applied the re-
normalization group improvement argument locally in
the q, q color space, thus obtaining

leff (f ) = 8 botrq trq [f ln(f /e K )]

y2 -$ (~A gIA J + fi A Jfi A I)

instead of Eqs. (A10) and (A11), which in terms off 2

read

Z, ff {E ) =&ho(trqtrq f ) ln (trqtrqf /ez ).
Since l,ff yields the same stress-energy tensor trace
anomaly as does Z,ff, it is also an acceptable form for
the effective action density. By some simple algebra,
we find

leff (f ) —&~ff (+ ) =8 bo(trqtrq f )trqtrq (p ln' p)s

p =f /(tr tr-f ), tr tr—p =1.
Since p is a color density matrix, we can use the posi-
tivity of the entropy to conclude that

l eft (f ) jeff (+ )

and so the uSe of l,ff would give at least as strong a
linear potential as is obtained with g,ff .

29The -discussion of Appendix C is readily generalized to
the QCD case by taking, (0~ ~ ~ ~

~ 0), to be an expecta-
tion with respect to the source spatial {but not color)
wave functions, and including the source color wave
functions in ( 0) . Following. Appendix A, the only
changes are then the replacement of arrows by octet
color indices, and the inclusion of a factor —trq tr q in the
inner products involving co appearing in Eqs. {C10)—
(C18).
In contrast to the mean field approach, the Wilson-,
loop formula evaluates (O~Hr~ 0) directly, without ap-
proximation, in terms of a Euclidean functional inte-
gral with imaginary sources. (See also the remarks in
Ref. 6 above. )


