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I formulate a successive over-relaxation (SOR) procedure for the Monte Carlo evaluation of the Euclidean partition
function for multiquadratic actions (such as the Yang-Mills action with canonical gauge fixing). A convergence
analysis for the quadratic-action (Abelian) case shows that as thermalization proceeds the mean nodal fields relax
according to the difference equation arising from the standard SOR analysis of the associated classical Euclidean
field equation. Hence, SOR should accelerate the thermalization process, just as it accelerates convergence in the
numerical solution of second-order elliptic differential equations.

As has been much emphasized,'the Euclidean par-
tition function is a fundamental tool for studying quan-
tum field theories. For the case of a boson field
theory? containing spin-0 scalar and spin-1gauge
fields, denoted collectively by ¢, the partition func-
tionat inverse temperature g is given by the func-
tional integral®

zZ= fzw‘ fo’[d¢] exp(-$)

®y

(:}
s=fdt fdﬂx.eE.
(0]

In Eq. (1) £ is the Euclidean action density,
including source terms, and the path integral ex-
tends over periodic paths, with ¢(0)=¢(B) = ¢,.

I will restrict my attention in the following dis-
cussion to the case where £ ; is a multiquadratic
form (that is, it is at most quadratic in each
individual field component), and will assume that
the Euclidean action S is bounded from below.
This restriction excludes interacting spin-0 fields
from consideration (renormalizability for scalars
requires a ¢* term in the action), but allows ¢

to contain any number of non-Abelian spin-1
gauge fields, since the outer-product form of the
gauge-field self-interaction is easily seen to imply
a multiquadratic action.* Of course, when gauge
fields are present, the partition function as

~ written in Eq. (1) is formally infinite, as a result
of integrations over gauge transformations which
leave the action invariant. In reducing Eq. (1) to
a discrete form for Monte Carlo evaluation, there
are two natural strategies for dealing with the
gauge infinities. The first, introduced by Wilson®
and extensively studied” over the past few years,
“consists of using a discrete procedure in such a
way that an exact, but compact gauge-invariance
group remains, which can then be safely included
in the Monte Carlo integration.” While this ap-
proach has many interesting features, it suffers

(1)
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from the drawbacks that (1) it is expressed in
terms of unitary-matrix link variables, and has
no natural discrete analogs of the gauge potentials
and gauge fields, and (2) the multiquadratic form
of the action is lost. A second natural strategy,
which I will pursue in this paper, is to use the
Faddeev-Popov method! to break the gauge in-
variance. In particular, if one chooses the canon-
ical gauge fixing®

1= i .
b'=0in Rt = <xy,...,x,<%,

»2=01in Ry: x,=0,~0<x,,x,,x,<%,
(2)

320 i e o= =0,
b*=0in R,: x,=x,=0,~0<x,,x,<,

4 = 3 . = = = -—
b*=0in R: xl—xz—xs—-.O, 0 < K, <00

for each gauge potential b* in ¢, the gauge de-
generacy is completely broken, with a Faddeev-
Popov determinant which is constant. The func-
tional integral can then be made discrete by
taking the nodal values of the gauge potentials as
the variables, and applying the standard replace-
ment® of derivatives by finite differences to the
action S. Denoting the set of node variables which
are integrated over by {¢}={¢(;), i=1,...,N},
this procedure yields a multiple integral of the
form

Z=[fI f:dmi):le's”“’“, (3)

=1 Y-

with S a multiquadratic form which is bounded
from below. Thus, for any node variable d(k), S
can be decomposed as

S[{¢}e BRI |=A (k)= C,J2+B,, A,>0 (4)

with A,, B,, and C, functions of the subset of
node variables {p},={p @), i=1,...,k -1,
B+1,...,N}.

Since in typical applications the dimensionality
N of the multiple integral is very large, the
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numerical estimation of Eq. (3) requires use of
the Monte Carlo method.”!° Starting from any
initial configuration {¢>0}, one generates a se-
quence of successive configurations, or Markov
Chain’ {¢ 1}3 {¢2}7 ey {¢ M}’ e by repeated ap-
plication of a transition probability W{{¢}~{¢'}.
The transition probability W is chosen so that in
the limit as M becomes infinite, the configura-
“tions in the chain are distributed according to the
equilibrium probability density P,[{p}],

P, [{p}]=e-Stion, ®)

Sufficient conditions!! on W to guarantee an asymp-
totic equilibrium probability distribution are the
normalization condition

[IfIl f d¢(z')'] Wi{p}~{p'H=1 for all {¢}, (6a)

the ergodicity condition

P He)1>0, P [{p'}>0=W[{p}~{p'} >0,  (6b)
and the detailed-balance condition

P [ie}IWl{p}~{o H=P o' NWle'}~{o}.  (6c)

In numerical work it is generally most convenient
to change only a single node variable at a time.
When specialized to this case, the form of W, for
a step in which the node variable ¢ () is changed,
is

W=wl{ph;o &)= ®)], (7)

with w required to be ergodic and to satisfy the
normalization and detailed-balance conditions

[ a0 erativhso w1~ o @r1=1, (6a)
P {0} ¢ B)w{o}es 0 &)~ ¢ (&) ]
=P [{p}, 0 &Y Jwl[{p}s 0 &) ~ ¢ )] . (8b)

As is well known, the conditions of Eq. (8) do not
fix w uniquely. The choice used in most Monte
Carlo studies of gauge theories, motivated by the
intuitive idea” of successively thermalizing the
individual node variables, is

wl{}e; & B) =~ & &) 1=N[{p},] e SHolp o1

- ©)
N[{Ct'}k]: [ do (B) e=Sto) R o)) ,

which makes the distribution of new values ¢ (2)’
completely independent of the old value ¢ (k) being
replaced. For a multiquadratic action, where the
dependence of S on ¢ () is known explicitly from
Eq. (4), the transition probability of Eq. (9) be-
comes

wi{gles ¢ )= ¢ (k) 1= AV 2B @r-cal® . (1)

This evidently corresponds to choosing a Gaussian
distribution of the new kth-node value around a
central value C,, where C, is the value of ¢ (%)
which minimizes S[{p},, ¢ *)].

As motivation for the generalization of Eq. (10)
which I am about to discuss, let us briefly consi-
der the problem of minimizing the discrete action
functional S[{¢}]. This can also be accomplished
by an iterative procedure, the simplest form of
which consists of starting from an initial con-
figuration {p o}, and then successively replacing
each node value ¢ (¢), k=1,...,N by the value
C,[{¢},] which minimizes S. Since S is nonin-
creasing under this relaxation procedure, in the
limit of an infinite number of steps the minimum
of S (assuming it exists and is unique'?) will be
attained. However, it is well known?® that the
procedure just outlined is not the optimal point-
iterative algorithm for minimizing S; much more
rapid convergence to the minimum can be ob-
tained by using the successive over-relaxation
(SOR) method in which ¢ (2)" is given by

¢ (k) =wC,+ (1 =w)p &)
=C,+(1-w)¢p®)-C,], (11)

with w a parameter called the relaxation param-
eter. Convergence is guaranteed provided that S
remains nonincreasing at each step of the itera-
tion, which requires

- 0<S[{p}, & @)= S[{p}, ¢ )]
=Afo &) =¢ &) [ &) +¢ (&) -2C,]
=A,p®) ¢ kY T? (i—— 1) , (12)

giving the restriction
0<w<2. (13)

When w=1, Eq. (11) reduces to ¢ ) =C,, corres-
ponding to the simple minimization procedure in
which the new value ¢ (¢) is independent of the .
old value ¢ (2). When w#1, the new value ¢ (k)

‘clearly retains a memory of the old value ¢ (%).

In practice, optimum convergence is obtained by
doing several iterations with w =1, and then doing -
many iterations with a value w=w,, close to 2,
adjusted to maximize the rate of final approach of
S to its minimum.

Let us now return to the problem of evaluating
the partition function of Eq. (3), and ask whether
there is a parametrized, over-relaxation gen-
eralization of the Gaussian transition probability
of Eq. (10). A simple investigation shows that
such a generalization does exist, and is given by
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— 1/2 :
aliohis 0= 00 1= (2220 e - [l iot0 -0, - - o), (142)

which can be rewritten as

wl{pe; & &)~ ¢(k)’ ]= WA, cosh?0)™Y 2 exp{-A,[coshb (¢ (2) —C,)+sinh6(p (k) - C,)]?}, w —1=tanhb. (14b)

To verify Eq. (14), we note that it obviously satisfies the normalization condition of Eq. (8a), while since
AJo ) =C,)%+A,[cosho(p(R) ~C,)+sinhé (¢ (&) — C,))?
=A, cosh®{[¢ (&) - C, ]2+ [¢ &)’ = C,]%} + 24, coshé sinh8[¢ (&) - C,][¢ (&) - C,]
=A,[p(R)" - C,]2+A,[coshé(ep (k) - C,)+ sinh9(¢ (Y -CI2, | (15)

it also satisfies the detailed balance condition of Eq. (8b). Hence, the transition probability of Eq. (14)
provides an SOR method for the Monte Carlo evaluation of the Euclidean partition function for multi-
quadratic actions.

To determine whether SOR accelerates the thermalization process, let us analyze in detail the case
where the action S is a quadratic (as opposed to a multiquadratic) form, corresponding to an Abelian
gauge theory with external sources. Let ¢ (2)" denote the value of the kth-node variable after M complete
iterations, let

ol ={o @, ...;0 =", 0+ 1", ... ¢ (V)
denote the set of node variables which are passive when the kth-node variable is being altered during the

Mth-iteration sweep, and let P[{¢}; N(M —1)+% — 1] be the joint probability distribution of the node vari-
ables after N(M ~1)+k —1 individual node replacements. Then we evidently have

PUGH, 0 NOL = 1)+ 1= [ ) Hullo}; 601~ 6V PUOK, 915N M =14 k=11, (16)

which tells us how the joint probability distribution evolves from step to step. Integrating Eq. (16) with -
respect to ¢(k)¥, and using the normalization condition of Eq. (8a), we learn that

f dp(R)"PHoY, 6(k)";N(M = 1)+ k]= f dp ()" PN, oI NM -+ ~1], (17)
which means that the joint probability distribution for the subset of node variables {qﬁ}k [with ¢(%) integrat-

ed out] is unchanged during_the iterative step in which ¢ (k) is altered. This in turn implies that the mean
value of any node variable ¢(), defined by

o= IT [ as)] [~ asmrowpliok... 1, | (18)

ith Y-

changes only during an iteration step in which ¢(%) is altered, and so is uniquely specified by the notation
(), which gives its value after M complete iterations. To study the evolution of the mean values, we
- multiply Eq. (16) by ¢(2)¥ and integrate, giving

(R = [n f: d¢(i)"] f: dqb(k)"’qb(k}”[‘lzi1 f: d¢(i)”"]P‘[{¢}f, SR NM =1)+E]
- ({1 [ aowr] {1 [ avur]
X f: doR) {[¢p(R) - wC\ = (1 = W)P(RI] )+ [WC,+ (1 = )R], }

xwl{oh; Ry~ o PO}, p(RM1,N(M -1)+ E-1]. (19)

Comparing with Eq. (14a), we see that the contribution of the term labeled [ ], vanishes, while using
Eq. (8a) the contribution of the term labeled [ ],, simplifies to give '
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(k)M = [H f: d¢(i)"] [fI d¢(i)“'1][wc,[{¢}g‘]+ (1=w)pR¥]|P{o}, pMHNM = 1)+ E-1]. (20)

Up to this point the analysis is completely general,
and applies to multiquadratic as well as quadratic
actions. Specializing now to the case of quadratic
actions, for which C, is a linear functional of its'
arguments, Eq. (20) becomes

S(R) = wC, {o} ]+ (1 - w)p(RY*,

{OH={o)¥,... o0k =1 G+ 1)1 ... BWNH¥I},

(21)

Thus, under SOR thermalization for a quadratic
action, the mean nodal values evolve according
to Eq. (21), which is just the difference equation
encountered in the SOR minimization of the action
S. Since SOR is known to accelerate the minimi-
zation process, Eq. (21) implies that it will ac-
celerate convergence of the thermalization pro-
cess as well. Although the precise statement of
Eq. (21) can be made only for quadratic actions,
the general conclusion reached here, that SOR ac-
celerates thermalization, is very likely to carry
over to the general multiquadratic case as well,
much as SOR accelerates the minimization®* of
multiquadratic as well as quadratic actions.

As compared with the conventional®” lattice
gauge theory approach, the strategy for evaluating
the partition function outlined above may have
several advantages. First, since the potentials
remain as the variables, there are natural discrete

I

analogs of the gauge potentials and gauge fields,
which should permit the study of such questions®?
as the behavior of the effective action for weak
fields. Second, since the mean node variables for
the Abelian theory thermalize according to the
SOR equation encountered in minimizing the dis-
crete action S, and since this equation is just the
conventional® discrete version of the classical
Euclidean field equation derived from the con-
tinuum S, the Abelian theory will never give a
confining potential for static sources. Thus, if
confinement is found in the non-Abelian case, it
should not be as an artifact of the discrete pro-
cedure. Finally, the SOR method outlined above
may well be computationally faster than the lattice
gauge theory method, both because of the possi-
bility of acceleration of the thermalization pro-
cess, and because the Gaussian distribution of
Eq. (14a) can be obtained from an array of pre-
stored, normally distributed random numbers by
the calculation of a single square root and a rel-
atively small number of arithmetic operations.
Detailed numerical experiments will, of course,
be needed to see if these conjectured gains are
realized in practice.
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