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%'e examine spontaneously broken E-component A,$4 theory at finite temperature on a static manifold whose
equal-time hypersurfaces are homogeneous but may be topologically nontrivial. The alterations in the infrared
structure of the field theory caused by the nontrivial topology can induce a transition from the ordered to the
disordered phase, even at zero temperature. Results derived include a general expression for the zera-temperature
one-loop effective potential on a topologically trivial homogeneous curved manifold and a calculation of the free
energy of the self-interacting scalar field at finite temperature on a static universe whose spatial section is S /I,
where I is a discrete group.

I. INTRODUCTION

The past few years have wit~essed steady prog-
ress in quantum field theory in curved spacetime
(for a review see the forthcoming book by Birrell
and Davies'). A particularly important develop-
ment, recently achieved by two groups, ' ' has
been the successful transcription from Minkowski
space to a general curved spacetime, of the usual
perturbative techniques for simple interacting
field theories, and the proof that (in the pertur-
bative sense) such theories remain renormalizable
in their curved-space setting (see Ref. 7 for a
concise review).

Discussions of the cosmological development of
grand unified theories and their associated hier-
archy of broken symmetries, ' however, base their
predictions and numerical estimates on model. s
of the field-theoretic phase transition which,
though well explored, ' "are only valid in Min-
kowski space. With a sufficiently sophisticated
curved-space interacting-field-theory formalism
at hand, now appears to be the time to employ it
in removing this inconsistency and simultaneously
upgrading the confidence to be placed in such dis-
cussions. Developments in this direction in any
case are imperative if one is to seriously face up
to the back-reaction problem"' "for grand unified
theories in the early universe.

A first tentative step required of such a pro-
gram is an analysis of the criteria which govern
the onset of a phase transition in a field theory
with a spontaneously broken symmetry propagat-
ing in a curved spacetime. Since phase transi-
tions are associated with large correlation
lengths and alterations in the infrared structure
of the field theory, and hence will be presumably
rather insensitive to changes in local objects
such as the Riemann tensor, one would not expect
such an investigation to be particularly illumi-
nating. If, however, the manifold possesses
some global features such as a compact section,

as in the k=1 Robertson-Walker (RW) models,
or a nontrivial topology, the consequent alteration
in the infrared structure of the field theory may

' influence the possible occurrence of a phase
transition. We are t;hereby lured to an investiga-
tion of topological effects on symmetry restora-
tion in its own right.

With some foresight, therefore, we might wish
to pay particular attention to a rather more ex-
otic class of cosmologies than the standard RW
models. In fact, as Ellis" has pointed out, the
usual arguments'4 which suggest the observed
universe is RW type, or nearly so, are purely
local, and allow one the freedom to consider a
wide class of t = constant hypersurfaces which are
only locally isometric to R'(k = 0), S'(k = 1), or
Jf'(k = —1). Such hypersurfaces are the Clifford-
Klein (CK) space forms, "which we denote by
M, =M, /I', where M, =R', S', or H' is the cover-
ing manifold and I" is a discrete group of isome-
trics of M, which acts freely and without fixed
points. The corresponding spacetimes we label
CKRW, 1"=1, the identity, specifying the usual
BW models. In considering these cosmologies,
which are of some interest within classical gen-
eral relativity, "we take the attitude that since
such exotic topologies can influence the occur-
rence of a phase transition, it may well be pos-
sible to discount some on grounds of incompati-
bility with present views on the hierarchical cos-
mological evolution of broken symmetries in
grand unified theories. '

Quite apart from the cosmological setting has
been the considerable recent interest in field
theory on topologically nontrivial spacetimes. " "
References 20-25 are of particular relevance to
the present paper since these are concerned with
interacting fields. In fact Ford and Yoshimura"
found that nontrivial topological features can in-
fluence the mass renormalization in simple rnass-
less XQ' theory, and the topological effects on
symmetry restoration considered here are mani-
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II. SPONTANEOUSLY BROKEN XP THEORY
IN CURVED SPACETIME

The model under investigation, that of an O(N)-
invariant scalar field, P'(x), with a quartic self-
interaction, is described by the Lagrangian den-
sity

8 = ——,'(P (Cl+ gs R+ms')p' —-a p',

(e')' -(q'y=-, )'
The equations

(2.1)

Z[Z ]= exp(f W [J ] )

= pgexpi d'x 'x ix P

(2.2a)

. r[([=))[z[-f&"*P(~)&(~).
g geff g (2.2b)

gv[z]
Qg (x) 6p( )

»[fJJ,(x)=- ~( )

(2.2c)

(2.2d)

specify the generating functional for connected
single-particle irreducible finite-temperature
Green's functions W[J'] and the finite-tempera-
ture effective action I'[(([)] (Refs. 26 and 27),
where we have adopted the notation

fested by the same mechanism. The simplest of
the cases treated here, that of zero-temperature
field theory on S'XB', has already been investiga-
ted by Denardo and Spallucci'4 who established the
existence of a critical length of the spatial period-
icity below which a spontaneously broken symmetry
becomes restored.

In the following section we set up some basic
formalism and calculate the zero-temperature ef-
fective potential to one-loop order for a spontan-
eously broken N-component scalar field in a
topologically trivial homogeneous curved mani-
fold. Section III considers the effect- of introducing
a finite temperature and nontrivial topological
features in the special cases of the static homo-
geneous CKRW universes with 0=0, +1, and as-
certains whether or not such global features can
induce a phase transition. Discussion and exten-
sions are to be found in Sec. 97.

j((x)= -$,(x)l,=.= ' =-
& y (x))', (2.4)

I', =0 for $, 40 . (2.6a)

(We shall throughout indicate by a bar the zero
temperature and trivial topology associated with
M. ) Our main concern in the present paper is to
determine whether global features such as a finite
temperature or a nontrivial topology can influence
the variational Eq. (2.2d) such that the only solu-
tion is the disordered one,

I' &=0 for /& =0 . (2.6b)

Expressed otherwise, we wish to investigate
whether alteration of the infrared structure of the
field theory can induce an ordered to disordered
phase transition.

To proceed we need a handle on 1. This object
generates the inverse propagator and proper ver-
tices of the renormalized theory in a manner an-
alogous to the generation of the bare quantities by
the classical action S, e.g. ,

~ i)G ~i (2.7a)

define the bare and complete two-point Green's
functions. " In terms of a loop expansion in the
bare propagator and vertices, ""

(x 3')= 5p( )5~ ( )
' =f &~{/ (x)Q (S)f)8

(2.5)

define the thermal expectation value of P& and

the complete two-point Green's function, where

Q; (x) =- Q,. (x) —Q,.(x) denotes the quantum fluctua-
tions. (([), plays the role of the order parameter:
when ([[),.(x) e 0 the system exists in an ordered
phase, the simple O(N) invariance of 2 is not an
invariance of the equilibrium state of the system,
and the symmetry is said to be spontaneously
broken.

We assume that the ordered phase exists at zero
temperature on a topologically trivial manifold
M, locally isometi. ic to M; in DeWitt's condensed
notation, "

&plOl p&-=Tr[e-'"O], p=-(nr)-', I' [ j]= S [j]-—' in Det G+ r', (2.8)
for any operator 0, Tr being a Fock-space trace,
and have presumed that the field propagates at
finite temperature f on a manifold M, of dimen-
sion 2u, which may be topologically nontrivial.
Then

where the functional determinant summarizes the
one-loop processes and I" represents higher
loops.

Substituting (2.1) in (2.7a) leads to
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P+

il
~ ()+( R+m '+~("'(x) + ". (,. (x)(~(x)}

lao
a

sVi =0 for (t)'o0,
8 (t)

(2.16a.)

x G» (x, x '
) = 6v 6(x, x' ), (2.9)

where 6(x, 'x') is the covariant 6 function. " In
general this equation has no simple solution. If,
however, we restrict M to be homogeneous, in
which case (QI),. is independent of x, a simple
matrix inversion gives"

G»(x, x')= "2~ G(x, «', t,R+M, ')

sv ch
4 0 for (I))'WO .

9
(2.16b)

sV( j) (2.17)

To ensure that field oscillations be bounded,
V(p) must become large and positive for large g',
therefore, if M is homogeneous,

where

(2.10)

indicates our criterion for symmetry restoration,
equality specifying the c'ritical values of the global
parameters at which the phase transition occurs. '
Since in practice V((t)) can only be calculated ap-
proximately one must check that the approxima-
tion is consistent with

M'=m '+~ (t)'
2

(2.11a)
ImV(0) =0, (2.18)

M '=m '+~ $' (2.11b)

and G(x, x'; t'~R+M') satisfies

(0+ (s R+M')G(x, x'; ps R+M') = 5(x, x') .
(2.12)

In this case the: effective potential V(g) —= —g,«(j)
is a more convenient function, in terms of which
(2.8) now becomes

V(j)= V,(j)+V, (j)+V'(j), (2.13)

6f'T - 'hf—[e-&&. ~ + (X —1)e-'". ']Z(x, x; ~)
2 p T

(2.14)

accounts for the one-loop effects. Here we have
adopted a spaeetime matrix notation, in which

(xl G(M') l
x') = G(x, x'; (s R+ M'), and have util-

ized the standard proper-time parameter integral
representation based on the Schrodinger equa-
'tion"

where Vp is the classical potential and

Vi(j)=
2 [(xl »G(M, ')I «)+(N —1)(x l »G(M. ')lx)]

+ V ~u9 ~R4++ r (2 4). i (2.19b)

which is required for stability of the disordered
phase. Only then can the approximate V(p) be used
in (2.17) to determine the critical global parame-
ters.

Before embarking on detailed calculations of
V(p) for particular cases we note that our altera-
tion of the global field theory structure has left
the local structure, and hence the ultraviolet
divergences, unchanged. The renormalization
progra, m for removal of these divergences at finite
temperature on M is therefore identical to that
applied at zero temperature on M. In the re-
mainder of this section we illustrate this program
by calculating the renormalized effective potential
to one-loop order.

Following Birrell' and Bunch et a/. ' ' we choose
dimensional regularization to handle the infinities
in (2.14) and adopt the 't Hooft mass-independent
renormalization scheme" whereby the bare and
renormalized parameters are related through

V=1 f =v

i

—(.ii)K(,";.) = ii(.)ii(,* )

(2.15)

for the (Iuantum-mechanical propagator K(x,x'; v).
The dependence of V((t)) on global features such as
a finite temperature or nontrivial topology is re-
lated, through (2.14), to the boundary conditions
we impose on (2.15)."

In terms of V((t)), which must be a function sole-
ly of p, E(ls. (2.6) are rewritten

v=x g=v

Z(~„;2~)=1++ g,;"'"„„.
v=x )=v

(2.19d)

g is the field renormalization constant and p, is
the unit of mass" required to keep the dimension-
ality of X„ fixed in 2~ dimensions. Given the well-
known asymptotic expansion" "for the solution
to (2.15) on M,
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Z(~, x; 7)

=(-42iv) ' '(42ii)' ' " Z ag(iv)' (v-0, ),
1=0

(2.20)
where the a, are the Schwinger-DeWitt coeffic-
ients, (2.13), (2.14), and (2.19) tluickiy result in
the expression, to one-loop order,

P((j) = —(ms'+ (RR)j2+ ' j' —
2(4 )

x gia Ih (I ~)[M 2( (d-i)
l =oi

is now introduced such that the total

-=S'„-V„(j) (2.24)

is finite as (d-2. (Note the appearance of p, to
keep the dimensions of coupling constants fixed. )
The renormalized constants in Z„obtained in this
way must be real" (in the limit (h) - 2), and, of
course, P independent. Hence

+(N-,l)M»" "]+h.l.p. (2.21)

for the effective potential, where h. I..p. abbrevi-
ates higher-loop processes, and

V„(j) -=V(j) -HeV„„(0), (2.25)

p4 2'
2= 2Mi~ -m)~ +

2
(2.22a)

~4 2'
M2~ =m~ + (2.22b)

Ssa = (162GR) 'R -AR+ n,RR'+ n2RR„„R""

+ Q38 Rpvo v' +

=-p, 2" '[(162GR) 'R-A +n,RR'

To renormalize (2.21) by the general prescrip-
tion of the Utiyama and DeWitt, "a bare gravita-
tional Lagrangian density

where Vn,„(0)denotes the (I)-independent divergent
piece to be removed from V(P).

For free fieldsw, here g = 0, Bunch" has ex-
amined (2.24) to one loop within the framework of
dimensional regularization. His work suggests
that we remove all terms involving four or less
derivatives of the metric, i.e.,

2

Vo, .(0) = — (,„ga, I"(I—(h))mR" "+h.l.p.24~j~, ,
(2.26)

+n2RR()yR + n3RR23 rR ] (2.23)
From Egs. (2.21), (2.25), and (2.26) a straightfor-
ward calculation then shows

(m„'+ E„R)~ +~
. ~

2 1)3-I M( -&) ln +(+ 1)M ( 2t)2ln 2R ~m 2(2-l) ln ImR
3222 (2 I)( & ( )R 42P2 2R 42l(2 R 4&~2 )

+ [aI (I)(3 I )a ][M ( 2l2)+ (N 1)M 2(2-3) Nm 2(2-l)]

+ g a, r () —h)[M, „'1 -h+()r —1)Mz"' ')]I+h ) p,
1=3

(2.27)

where the prime denotes d/d&h) (we allow for the possibility that a, carries an ~ dependence through $) and
the &u- 2 limit has been taken. In arriving at (2.27) the one-loop counterterms in (2.19) have been identi-
fied as

1 (N —1)
~11 ye&2

i +

1 & (N 1)
d»-16„2 6-&R) '+

(2.28a)

(2.28b)

3 (N -1)
(6~2 ~+

g
(2.28c)
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which agree with Birrell' and Bunch et al. ' ' in the N = 1 case.
No particular physical significance is attached to the R-subscripted quantities in (2.19). The 't Hooft

renormalization prescription is designed to handle the infinities which arise in perturbation theory with-
out worrying about finite pieces. This property is an added advantage in an arbitrarily curved manifold
since such finite pieces will not in general be constants' and so cannot be absorbed through additional
finite renormalizations. Qf course, in the restrictive class of homogeneous manifolds considered here
the finite pieces are guaranteed to be constant, but in the more general case they imply that particle
masses, for example, will be complicated functions of the spacetime geometry.

It is possible to reexpress (2.27) in terms of the physical mass and coupling constants defined as"'"'

m'+ gt = 2Re -~2 ((t))
ay

9 V
]]. = Re,~

(j)

(2.29a)

(2.29b)

there being no field renormalization to one loop."" Evaluation of (2.29) leads to

ms'=m' —,1+ y —1+in, + ~ &, 1(l —1)m " +0(Z'),
7l 3 47l'P,

(2.30a)

4 = ( + 32, 1+
~

——$
~

y+ ln, i- (' +0(z'),(N -1)
(6 & 4w]], '&

(2.30b)

As=A, —,1+ y+in, — a, I"(I)m " +0(&'),3~' (N -1) '
~m'~

7l 9 „4p,
(2.30c)

and hence (2.27) is rewritten

V, (y) =-,'(m'+ tIt) j'+ —,y'
t

I M ""ln '" +(N —1)~ '~ "ln
(2-1) [

4

Iat

+ E ~() —()(a, —
2

—)(m"' " (m"' "(M,„'+(N —))M ')+-,'(1 —()I "[M '+()( —l)M ']I(I+ 1)

.(-i) '
2R (2.31)

This equation generalizes the results of Refs. 9,
34, and 36 to the case of a topologically trivial
homogeneous curved manifold.

The appearance of )m'~ rather than m' is, of
course, associated with Re in (2.25). If m'( 0,
which in Minkowski space indicates symmetry
breaking in the tree approximation, we immedi-
ately see from either (2.31) or (2.27) that
ImV„(0) e 0 to one-loop order and hence the con-
figuration with Q

= 0 is unstable against decay.
In this respect our renormalization prqscription VR((t)) —= V((t[))-ReV,„(0) . (2.32)

I

differs slightly from that in Refs. 9 and 34 which
instead involve lnm' and therefore necessarily
imply both that ImVz(0) = 0 and that As is complex
if m'&0.

Finally we note, in accordance with our pre-
vious remarks, that the renormalization program
(2.23)—(2.25) is equally valid in the case of finite-
temperature field theory on M, leading to the re-
normalized effective potential
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III. SYMMETRY RESTORATION IN STATIC
HOMOGENOUS CLIFFORD-KLEIN

ROBERTSON-WALKER UNIVERSES

Having detailed how the renormalization pres-
cription operates at the one-loop level for field
theory at zero temperature on M, we can now

investigate what interesting physics arises when
global features, such as a finite temperature and
a nontrivial topology are introduced. 'The par-
ticular models we choose to study are the static
homogeneous CIA universes, described in the
introduction, which may locally be specified by
the line element"

ds =dt'- p(r) dr' —r'(de'+ sin'8 d(t) '), (3.1)

K(t, x; t, x', r)

K" t, x;t-im, x', T

&im' '
Q (-4rir) '~'exp

~

™
K,(x, x', &), (3.2)

where p(r) = (1 —kr'a ') ' for k =0, +1. The t =con-
stant hypersurfaces M, =M, /I' are locally iso-
metric to M™3where N3 labels the covering mani-
fold 8'(k=0), S'(k=1), or H'(k=-1) and I' is a
discrete group of isometrics of M„points on M3
equivalent under the action of I' being identified
to give the multiply connected hypersurface M3."

The restriction that M be static is necessary
in order that we have a globally valid Fock-space
construction and hence a concept. of thermal equi-
librium. " The effective potential is then just the
free energy density, "f((P) = V„(Q), whose mini-
mization is embodied in the variational equation
de((t))/dQ =0. The solution to (2.15) appropriate
at finite temperature can be written as an image
sum of zero-temperature solutions, " ' E",

topologically trivial manifold M locally isometric
to M. In the case k= 1 the covering manifold is
compact, a feature which K3 exhibits via a sum
over contributions from indirect geodesics which
lap S' an arbitrary number of times [see (3.34)j.
Retaining only the direct geodesic contribution
gives the quantum-mechanical propagator on a
manifold which is locally isometric to 83 but
devoid of global features: this we identify with
the M spatial section.

In all cases we can therefore write

K(t, x;t, x;r)= g P g K(t, x;t —imP, xyy;r),
year per"

(3.5}

where I" includes elements besides the identity
only in the case of k=1. The trivial represen-
tation, a(y) =1, has been chosen here since only
this is consistent with our assumption P= con-
stant. Incidentally, from theorem 2.7.5 of Wolf, "
when M, is homogenous every element of I' is a
Clifford translation of M, and hence (3.5) is x
independent.

A. k = 0 in the one-1oop approximation

From theorem 2.7.1 of Wolf" the onl. y homogeneous
M, hypersurfacesareM3=& ~xT~ ', where T~ ' is
the (p —1)-torus S' x S' x ~ ~ ~ x S' (p-1 factors) and

P takes integer values from I to 4 inclusive. The
corresponding finite- temperature quantum-mech-
anical propagator on M readily follows from (3.2)
and (3.4) with I'=Z x Z„x ~ ~ ~ xZ„(p —1 factors)
by inserting image coordinates" " in the standard
Minkowski-space propagator"

K(x,x;r) =( 4rir) 't'(-4rir)-

where

i — +a, -(R)z', (x,x';v) ii(r)5(xi .), ($.3)=, '~

~

xexp — t-t' '- x-x'

(3.5)

supplemented by the boundary conditions appro-
priate to the spatial section M„determines the
spatial quantum- mechanical propagator
K,(x, x', 7'). &, here is the Laplace-Beltrami op-
erator on the spatial section.

K3 may also be expressed as an image sum, "
(3.4)K,(x, x'; r) = Q a(y)K, (x, x'y; r),

year

of covering manifold propagators K„where the
group elements y are chosen to act on the right
and a(y) is a unitary one-dimensional represen-
tation of I'. In the cases k =0, -1 the covering
manifold is noncompact, and 8 xM3 serves as our

In terms of the P-dimensional 8 function defined
in the Appendix, it takes the concise form

K(x, xy T) = (-4ri&) (4rir) 8(()) ~ () ~((4rr), +}

(3.7)

where & =diag(4r'a, ', 4r'a, ', . . . , 4r'a~, ', P') is a
diagonal p &&p matrix and the a, are the tori radii.
Clearly A = returns us to zero-temperature
field theory in Minkowski space (M).

The one-loop effective potential follows from
(2.14) and (3.V). Continuing to 2e dimensions and
setting ¹1momentarily for convenience we find
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00

V, ((p; 2M; I)/ = 1)= — 8 '"1 '(-4«T) ' '(47rir)' ' "9(2)
I 3 I((47«r) ', A)

0

', «M-«"( 4«r) '/-(4«r) "1/=e I'I( 4vr A-')
2(detA)'/'

r(p/2- )
(4m) /' ",(.„„)

" (-1)"
+ Q J

(4««2)" '/' M, '"r(p/2+r- (d)z, l3I(p+2~-2~, A '),
0 rf (3.8)

where (A2) has been used in passing to (3.8), an expansion valid when M,' is small compared to a typical
element pf A. '. Adding N- 1 identical expressions m'ith M, ' replacing My making use of the properties
of the Epstein 4 function Z2I, I described in the Appendix, and renormalizing the theory according to (2.31)
and (2.32) there results in the limit (2)- 2, p e«/en:

v ( )=2-', m'j' r, O'+, IJM,„' (z —lr)M'J 22(l),—lh . —23,'(;J(P,A)

1 3-2/2

X
(2 p/2) J 1R + 2««

(4v)(2/ [M ' &/2'+ («222 1)M ' 2/ '][)/)(I) J/)(3 /2)]-p

M M
+M "'2 "ln '" +(Ih/ —1)M "'2 "ln4~' 2R 4 2

2 1-2r 2 2r 2/2--
+ Q (-1)2/', , [M,„'"+(N 1)M,„'"]z-,' I',

I
(p+2r —4, A ')

P Odd:

+
I g + p I

2'""'""[M '"+(&- )M-'"]r(p/2+~- », I:l(p+ ~-4 A-))I+h. lp.( 'J (—1)'
2 r=3 p/2 r=3 ~-

(3.9a)

I/J«((p)=2m (p + 4«Q + 2- [M,s +(I)/ —1)M z ] 2(/)(1) —in —2Z'lol(O, A)

+22«2 [M + (+ 1)M 2]
2(detA)'/2

4+ / -2P P. 2 2 M 2(2"t)/2) + ~ I M 2(2-y/2& + + 2-&+ -2r-P/2 ~ y+ ~ ] M 2r(-1)"
=0 r=3

x (p/2 r2) reer((p Z2r —4, A ')I rrh. l.p. (3.9b)

In particular for p =1, which describes finite-temperature field theory in Minkowski space, (3.9b) yields
the high-temperature expansion
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N

I m' I P'
+ 66, [M, +(N —1)M, 1 26())-ln, +2m'[M, „+(N—1)M „)——

mI64~2 j.R 2R

( 1)r62
+ g 2 '"w'~' '"I"(r—3/2)f(2r —3)tM, '"+(N —1)M, ~]P'." +h. l.p. ,

3 V ~

(3.10)

the first few terms of which Dolan and Jackiw' ob-
tained by a rather more arduous route.

Our intention is now to use (3.9) in (2.17) to
determine whether a phase transition occurs on
alteration of the parameters P, a„and, if so, the
values of the critical parameters. Here a failing
of the one-loop approximation becomes manifest;
if m'(0, ImV„(0) s 0 to one-loop order, whatever
the elements of A. This is apparent from (3.9}:
for p even, the lnM, ' terms are responsible, while
for P odd M,. ' & is the culprit.

Dolan and Jackiw also noticed this nonzero
imaginary part in the case of p =1 and circumvented
the difficulty by making the further approximation
that P be small, allowing the neglect of terms in
(3.10) of 0(P ') and higher. In this regime the
equality (2.17) yields the usual relation'"

B. The large-N approximation

The large-N approximation, ""familiar from
the realm of statistical mechanics, enables one
to sum the loop expansion for V((t)) to all orders,
retaining only the bubble graphs dominant for
large N in each order. A detailed account is given
in the elegant paper by Schnitzer4' and is .easily
generalized to the present context. of a homogenous
curved manifold. Paralleling the steps which lead
to Eq. (3.15) of Schnitzer one finds the unrenor-
malized equation in 2+ dimensions

8 V 8 V() iNX~ ~a -.
s',. aj, 6 6,N, (m '+( N+ 6'),

(3.13)

where

1 (N —1)
c 24

(3.11}
B,„(ms'+ (sR) =—G(x, x; ms'+ ps R) (3.14)

and G(x, x', ms'+ )sR} satisfies, in 2(o dimen-
sions )

for the critical temperature.
The symmetry of Z ~0~ (s,A) under permutations

of the A elements allows us to view the P = l ver-
sion of (3.9b) as describing zero-temperature
field theory in Minkowski space periodically iden-
tified in one direction (M, =R' x S') with period
2)[a. With (2.17) we then find that a symmetry
initially broken in the Minkowski space limit
(a=~) will, as a is reduced, become restored
at a critical value

Cl+ $s R +ms'
llN

'-$,„(m,'+[,R) G(x, x', m, '+&, R)

=5(x,x), (3.15)

together with the boundary conditions appropriate
to the finite-temperature" or nontrivial topolmm

ogy i7-xa Defining

(N-1)
96 2 2 (3.12)

a,„(m,'+ (,R) =G(x, x; m, '+ &,R),

(2.12) and (3.15) yield

(3.15)

where once again we have assumed a is small to
avoid troublesome imaginary parts. This result,
which demonstrates the influence of topology on
the occurence of a phase transition, has also
recently been obtained by Denardo and Spallucci. '4

Unfortunately, for pter one cannot use a similar
small-A. -type argument to discard the unwanted

imaginary part. The failing of the one-loop ap-
proximation in the vicinity of the phase transition.
is there to stay and another approximation scheme
for calculating V„((t)) is required.

II, ( m, 2~+, R)=a,„m,' h+, R

eB,„(ms'+ $,R-)

(3.17)

Renormalization of (3.13) is carried out most
easily when ImV(0) =0, i.e., the disordered phase
exists at zero temperature on M. %'e then intro-
duce renormalized mass and coupling constants
through"
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(m + )R)5(y=
8'T(e)
8$ (8$~ 8 =o

(3 .18a) &=X, 18
d—82„(ms'+ )sR+ z)

dz 8 -0

Combined with (3.13) these equations yield

(3.18b}

m2+ $R = ms'+ gs R —
6 B,„(m'+ +),

(3.19a)

8'P(y)
3 (8o 8)i+ 8~) 8;r + 8~~ 8)i)-

84;84/4, 84, o=o

(3.19b)

where, as usual, a bar indicates boundary con-
ditions appropriate to zero temperature and trivial
topology.

Equation (3.13) is now written in terms of these
renormalized parameters as

I zNX= P,. m'+ $R + —P' — Bs2„(m'+ $R; —,
' XQ'),

8$.
(3.20)

where

M",„(m +JR, —,
' XP')=X B,„(m '+ $ R+—,

'
A Q') —B,„(m + $ R) — P'

d
—B,„(~ + $ R+z)dz

(3.21)

Using (3.17) and (3.19), (3.21) may also be re-expressed entirely in terms of renormalized parameters
as

B,„(m'+ ~R+z), , B,'.(m'+ ]R; —,
' ~j').

dz

A 2

=B,.(j '+ ~R) —B,„(m'+ ~R) — —B,„(m2+ gR+z) ~, „(3.22)

where

2 2 2 R 2 1 2 (3.23)

To generalize to the case of m'&0 we continue (3.22) in m', being careful to take only the imaginary parts
of the barred quantities since we know from the unrenormalized equation (3.13) that B",„(p'+ )R) ,must be
pure imaginary for p, '~ 0. The following equation for B~„results (compare Ref. 42)

1 —Re B,„(m'+ (R+z), B",„(m'+ $R; —,
' &P')

=B,„(p,'+ gi!) —i ImB,„(m'+ +)- Im B,„(m + $R+z), , (3.24)
dz

We must now ascertain that (3.24) does indeed have a finite solution Bf„(m'+ $R; —,
'

AP ) in the limit
u- +„where for generality we allow the spacetime dimensionality 2m, to be an. arbitrary integer. For
odd dimensions no infinities arise, so we need only study the case of integer co, .

We first separate out the local from the global contributions in" ""
B(

' je+) =B,.(j"+ +)+B..(j '+ e). (3.25)

The ultraviolet divergences which appear as co-(d, then reside solely in the first term on the right-hand-
sjde: B,„(jJ. +JR) will generally have a finite limit as + —&e» although it may exhibit infrared divergences
for particular choices of p, '. (3.24} is then rewritten

(3.26)
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where

C,„(!/,', m')=—B2„(!/,'+ fR)+ Re
6

—B,„(m'+ $R+ z), , Bg (m'+ +; ~X&fP}

-ilmB, „(m'+ gt)-
6

Im —B2„(m'+ ++ s), ,ikey' d
dz

Using (2.20) and"

(3.27)

goo

B2„(m'+ tR)= f
~

d~e ''-SC(x x;r)
0

(3.28)

we find
1 I j.

1 o 1 1
him G„(g;m ) i(4m)=~ a, m ' ' ' '(p —m ) -y(& -l))' r!((uo —l —1 —r}! (u —(u

I, rn2l-
+ ~~ //

' o ' "ln +(m'-//, ')m""0 ' " I+(&u -I —1)l„' (~.-& - I)! 4v 4~

+ p a, l'(I+I - e )[p, '"o ' ~'+ (&+I —~ )(!/~ ~2)~2&~0-~-» ~2&~0-t-i&]
l

1~co0 i'

(3.29)

which is finite Provided ~, - 2, where the theory is renormalizable. By (3.26) the solution B" (m'
+ Ã'6 ~Q ) of (3 24) is then finite, Provided we do not encounter potential infrared divergences in

B~,(!/,'+ gR).
As (3.20) shows, however, a broken-symmetry state necessarily requires!/, '+ t'R =0 and hence invites

such divergences. If the system exists in the disordered phase then!/, '+JR~ 0 and infrared effects only
become important as one attempts to make the transition to t'he ordered phase. As Sec. IIIC will show,
the appearance of such divergences is an indication that the transition cannot be made and the system al-
ways exists in the disordered phase.

C. k=0 revisited

Generalizing (3.V) to the case of finite-temperature field theory on R'""~ && T~ ' and making use of (A2)
gives

B (p')=i f dr( 4')'!-'(4mir. )"'"e '" '&„,l, l[(4«) ' &]

I
$ (4')p/ a (II (det/t}-1/ 2 .

!/
2(4l-0/ 8» p(p/2 + 1 (g) + !/2r(4/2)& P/ &~-1-" (-1)"

.&~0

xl'(P/2-w+r+1)Xylol (p -2~+2m+2, & ') (3.30)

where A. = diag(4m'a, ', 4m'a, ', . . . , 4m'a~, ', p') is again a diagonal p &p matrix with the a, the tori radii.
Substituting this result in (3.24), six possible behaviors are identifiable in the limit &u- too:

(i) &u, = integer, I = 0:

80~2 co

B.".,( "l&e')=~«et') "'! '+ +g I
(-»"! (4~') ''2'. I:l(2~+' " '}

$"8 . , )

i(-1"o 4m -"o
+

&

IP'" "g(v)+Il(1)-ln -2z~~ ~(0A) +(m -p)m '

0 I

(3.31a)
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(ii) &4)a=integer, f =integer&0:

EP~„(m;~~X(t)') =i(detA) '~'(4w) ', p,
'" " g(l) —g(1)+2Z~~ p (0, zi ') —ln, (-1)'-' -i 0

(-1)"
+ +Q, 4"(4e*)'''l(r+1 —l)Z, )."~(2r+2 —21,d')j

w-4l 0

+iv-" g, 2-"-'p'"1"(p/2+f-~-l)Z, ~;~(p+2f-2~-2, ~). „''(-1)"
r=o

i (-1)"(4v)-" lm2l
+ e. ' " 2(te )rd(1) —le

4
—22r');~(O;d) +(m' —2 )m"

0 I

(iii). &so=integer, f =half integer:

(m'-'Xj') =i(detA) ' '(4m) '
p,
'" "I"(1—f)+ + g p, '"(4v')' " '(-1)" .

2'(lp 0 6 ~tr= r=co 0

(3.31b)

~r(~+1 —f)Z,
~ P (2~+ 2- 2f, &-')

+
&

(4e) "' 4 ' '" 4(te )+4(1)—le —2Zr') )(Od) +(m —2')m ' '*'j. (2 Ole)
0

(iv) &u, =half integer, l=0:
~m ao

Bs ( '~hj') =i(detA) ' '
p, '+Q (-1)'p, '"(47)') "'Z

~,'~(2m+2, & ')
r~0

(v) ru, = half integer, f =integer &0:
2 ~\

Z" (m;'-14 ) (Ide 24)'=~'(4e) '( e'"" 4(l)-4(l)+le, —22();) (Od ')
J

+Q, 4*'(4e')' 'Z(rr(-1)Z, )', ~(2rr2-2(, d')j
" (-1)" 2. Z 2~-2

r=E„'' (-1)"
+in "op, p, '"2 "'I'(P/2+1 r —1)Z~—

~ P (P+2l —2r —2, &) .
0 V t

(vi) &u, =half integer, f =half integer:

(3.31d)

(3.31e)

2

B2s (m;6X(p ) =i(detA) '~ (4v) '
p,

" '1(1-l)+p, p, '(4)T )' " '1 (r+1-l)z))
~ g (2r+2 —2l, z4 ')

t'~ 0 J
(3.31f)

where 2l =2(d0-p is the number of noncompact
dimensions, and we have assumed 2&0- 4 for the
theory to be renormalizable.

Now, as remarked in Sec. IIIB, an ordered
phase can only exist within the large-& approxi-
rnation if B2„(m'; ~6K(t)') has a finite solution for
p, '= 0. A study of Eqs. (3.31) shows this to be
possible only in the case &0=2, 21=3, when

(3.32)

B.'(m';l~~')
~ ...=-—(«b4) "'Z, (:~(-1,& ')

lm'
(4v)2

'

A well-behaved solution B2„(ma; 0) corresponding
to the disordered phase, where (P =0 and p, 2&02

can be found in all cases. As one attempts to (12P,')-'+(4v)-'m'=-(V~)-'O ', (3.33)

I

make the transition to the ordered phase by let-
ging p,

'- 0, however, one generally encounters
infrared divergences. These are most severe
when )=0, corresponding in the Euclidean regime
to a manifold which is compact without boundary,
and in all cases can only be removed by setting
det4= ~, i.e., by making noncompact one or more
of the compact dimensions.

The appearance of such divergences indicates
that, within the large-N approximation, the sys-
tem can only exist in the disordered phase. As
(3.32) shows, at finite temperature in Minkowski
space the ordered phase can exist until the temp-
erature rises above a critical value given by
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which agrees with (3.11) in the small-P, limit,
after which the effect of the (temperature depen-
dent) long-wavelength modes becomes dominant,
causing the transition to the disordered phase. If
we introduce a further periodicity, so that we are
considering finite-temperature field theory on
R XS, we come under category (ii) above, which
exhibits a logarithmic divergence as p - 0. We
interpret this as meaning that our alteration of
the long-wavelength structure has been so drama-
tic that for any finite values of the periodicity
parameters the contribution of the long-wave-
length modes is sufficient to restore the symme-
try. This interpretation may be extended to all the
cases treated in E(ls. (3.31) with the conclusion
that, within the large-N approximation, an ordered
phase cannot exist in four dimensions with two or
more periodicities, nor in less than four dimen-
sions with one or more periodicities.

It should be emphasized that the transition to the
disordered phase for any finite values of the

periodicity parameters is a simplification of taking
the large-+ limit. Had we retained terms of
0(N ~) we would expect to find the location of the
phase transition in terms of a specific set of
finite critical global par ameters.

D. k=1

By corollary 2.7.2 of Wolf" the only homogen-
eous M, hypersurfaces are (i) M, = S', (ii) M,
=S'/Z„(n & 2), (iii) M, = S'/D„* (n & 2), (iv) M,
=S /T*, (v) MS= S~/0*, (vi) Ms=S3/I~. The dis
crete subgroups are the cyclic group of order
n, Z„, the binary dihedral group of order 2n, D*,
the binary tetrahedral group, T~, the binary
octahedral group, 0*, and the binary icosahedral
group I~. Further information on these spaces
can be found in Hefs. 13', 15, and 19.

We begin with the case M, =S'. Then I"=1, the
identity, and for conformal coupling, $ =-,', the
spatial quantum-mechanical propagator is that
obtained by Dowker~~

P+ ~

Ks(x, x'; r) = (4vir) ' '[a sin(s/a)] ' P (s+2vna) exp —(s+27(na)'
4r

(s.s4)

where a is. the radius of S' and s(x, x'}-=a8 (x, x') is the geodesic distance on Ss between x and x'. In any of
the cases M, = S /F, the image sum (3.4} combined with (3.2) then yields for the coincidence limit of the
finite-temperature quantum-mechanical propagator

X(x,g;T) =( 4viT) '~'(4-miT) 'I' 1+a—I8( }It ((4m7) ',A} , Q csc8„8(2}If
~" OI((4vT) ', ~)a' ~,

(s.s5)

where 8„=8(Z, 1) is the angular separation on S' between the preimage r e I' and the identity element 1.
Here A=4m'a'diag(i, x') andx=P(2va) '.

It is now a straightforward matter to substitute (3.35) in (2.14) to obtain the effective potential in one-
loop order Renor. malization is carried out according to (2.32}, the spatial (luantum-mechanical propaga-
tor Z, (x, x'; v) which governs field theory on the hypersurface M„ locally isometric to S' but devoid of
global features, being conveniently obtained by retaining only the n = 0 direct geodesic term in (3.34).~'4~

Omitting the details of a calculation which parallels that leading to (3.9) and makes use of the functional
properties listed in the Appendix, we find, for zero temperature,

ve(p}=e (m'+ —
)
j*+

}
j'+, , —,', —21, eeee, z, (', &„}~(-1,1}

+ 2 ~ [M~ +(N l)Mme ] -s -2+ csc8}}
8 Z(I (}„i2eI(-32~'a'

4 1
')'+(N-1}(M '--;~')'-

9128m'

I nz'I
+&4 [M~ + (N-l)M~ ] 2$(l) -~ -in

4 +g csc8„Z,IO(}»,I(3, 1)

((O g eee

8
-(4w) '~~+ [Ms~+(N-I)M~ ]I'(r- ~)a~ 4 4&(2r-3)-2 csc8„8 Z&ID~ &2, I(2r-l, l)

m3

(S.Sea)

and, for finite temperature,
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v„(j)=—(I*+—) j'+, y'-. , 2—(az, $', $(4,x))-a 'l3 'g cue„ez

zeal'

„ta ~-tltoA ')
7&1

le

Z'~ ((0 A )-(4v ) g csee„, Z2(-g„y2 g~(2 A )

I
I

(M,„'--,'m')'+ (iV - I) (M~'--3 ~')'- -9- +
64

r[I-if~a'+ 8 -1)Mm')
].28m

P Im'l 8
~ 2y(1)+-,'-ln -2—(aZ,'~;~(O, A))+(4v') 'fi '~ 'g csc,

4 ea ~ 96

-(4v)-'g [M~ +(Z-1)M~ ] r(r 1)(4-v')'-"p-' —Z, ~, ~($ -2,A-'), " (-1)' 2r 2- ~ 0

Y~3 1

8
-2r(r)(4v')-"p 'a 'Q csc, Z, (', ,„p(2r, A ') . (3.36b)

These expressions contain previous results as special cases; e.g. , if m'=P =0, the first term in the
first square brackets in (3.36b) gives a compact form for the free energy density of a massless conformal
scalar gas in an. Einstein universe found by Dowker and Critchley, "the second term accounts for the cor-
rection due to possible multiple connectedness. " (3.36b) can, of course, be used to provide expressions
for various other thermodynamic quantities of interest, a pursuit which we leave to the reader.

Approximate results regarding the criteria for symmetry restoration can be obtained by substituting
(3.36b) in (2.17), equality holding in the small detA regime when

8 8
-(et +a )= 2 1+ a —Z'(

~

(O, A ) —(4w ) a csc „.Z2 ( ~ &2„~(2,A ')

gI

csc~

(W -1)1+ I, (~),
96m a (3.37)

e IF/ (0 )
e', (0, q)

= 6 csch'(nnx) —1,

e', (ey/2, q) ~e ~ q

( y )
co't + 4 ~ 1 ~ slnfje&

I

which show that

(3.38a)

(3.38b)

Ir (~) = 3 Q csc' ——1, (3.39)
y" 2

a result which can also be obtained on substituting

where q= e '" and we have made use of (A11) and

(A12) to express the result in terms of Jacobi
8 functions. ' By assumption the symmetry is
initially broken in the tree approximation on M
and so the left-hand side of (3.37) is positive. A

necessary condition, therefore, for restoration
through one-loop global quantum effects is
I, (~) &o.

A plot of Ir (x) is shown in Fig. 1 for I = 1,Z„Z,
If 1 & 1, Ir(x) remains positive in the large-x
(zero-temperature) limit. This follows from the
expansions '

l

(3.36a) in (2.17). Particular examples are (using
the e& values given in Ref. 19)

I, ( )=m'-2, (3.40a)

(3.40b)In~(~) = 38;
2

(3.37) and (3.39) lead one to conclude that at
zero-temperature one-loop global quantum effects
cannot restore a broken symmetry when the spa-
tial section 3f, is simply connected, but can for
sufficiently small a when I, is multiply connected.
At finite temperature the additional alteration of
the infrared structure serves in general to en-
hance the possibility of symmetry restoration.
This is apparent from Fig. 1: in the case I'=1,
the thermal fluctuations dominate if g&g*= 0.52,
resulting in 1,(~) & 0. Gibbons4~ has also examined
the simply connected k =1 case using the g-func-
tion method of regularization" 4': (3.37) gives the

exact evaluation of his g function.
We cannot place too much confidence in the above

conclusions, however, since strictly speaking
we ought not to neglect terms in (3.36b) of 0(waif ~)

and higher in passing to (3.37). One cannot allow
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(g)(4)3/ps(%, %')s(%,%')

20- x exp —s'(x, %'),
La

(3.41)

l5-

I0-

5-

0—
-I—

I I I I I

0.2 0.5 . 0.4 0.5 0.6 0.7

—Za

I
I I I

0.8 0.9 I,O x

which can be obtained by analytic continuation of
(3.34), there being no sum over indirect geodesics
since &' is noncompact. (3.2) then yields for the
coincidence limit of the finite-temperature quan-
tum-mechanical propagator on a static open uni-
verse,

&(x,x; ~) = (-4vf~) '/'(4-~fr) '~'e„-,~;(((4v~)-', Pq.

(3.42)

The program of substitution in (2.14} and renorm-
alization according to (2.32) may now be carried
out as before to yi.eld the renormalized one-loop
effective potential. It is not difficult to see that,
apart from the inclusion of an additional term
(R/12)Q' = —(a '/2)P in the tree approximation,
the result is identical to the p=1, 4=0 result
(3.10). In the high-temperature regime one there-
fore finds symmetry restoration when

PEG. 1. A plot of I&(x) for the multiply connected
k =1 static Clifford-Klein Robertson-Walker universes
with spatial sectionS /1 for I =1, S2, Z3.

m'a' to become too small without restoring the
symmetry at the tree level, 6 and so the justifica-
tion in using an expansion such as (3.36b) about
the massless conformally coupled result is at
best dubious. It is not difficult to see that one
ought, instead, to expand about the massless mini-
mally coupled result, but such an approach would
lead to much more difficult summations and to
the abandonment of a simple closed-form expres-
sion such as (3.3V}. We should therefore regard
(3.3V) as a first approximation which allows some
analytic insight into the workings of one-loop glo-
bal quantum effects. We postpone to the near
future improvement of this approximation and
refinement of its conclusions by studying the prob-
lem from the standpoint of the renormalization
group.

E. k=-1

This case is trivial since by theorem 2.7.1. of
Wolf" the only homogenous I, hypersurface local-
ly isometric to II' is in fact II' itself, thereby
prohibiting any exotic effects due to multiple con-
nectedness of the spatial section. The spatial
quantum-mechanical propagator for conf ormal
coupling on H' (fl = —6a ') is"

(~ -1)
24(gpss'- a-') . 3

1' (3.43)

Gibbons ' also treated the 0 = —1 case, but unfor-
tunately included a sum over imaginary indirect
geodesics in (3.41}. The correct propagator was
given in a,paper by Bunch. "

IV. DISCUSSION

The calculations of Sec. III demonstrate how
nontrivial topological features can inf Luence the
occurrence of a phase transition in a theory with
a broken-symmetry ground state. Spatial period-
icities act in a manner similar to the finite-tem-
perature periodicity in imaginary time (although
not always with the same sign, as we saw in the
case of S'). Increasing the number of periodicities
in flat space has a cumulative effect on the occur-
rence of a phase transition: Indeed within the
large-N approximation we found that only the dis-
ordered phase could exist in four dimensions with
two or more periodicities, or in less than four
dimensions with one or more periodicities, for
any finite values of the periodicity parameters.
A similar dependence of the existence of the order-
ed phase on the number of noncompact dimensions
is familiar from the realm of critical phenomena. '

The particular models investigated were chosen
for their calculational simplicity. The restriction
that P' be constant would need to be removed if
one wished to study symmetry restoration of
twisted scalar fieldsl in these models. This
would also be true if one had in mind an analysis
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on nonstatic manifolds or of symmetry restora-
tion near boundaries. (The effects of periodici-
ties are, after aLL„just an example of the Casimir
effect and so one might expect similar behavior
in, say, the standard configuration of spacetime
sandwiched between two parallel pLates. In fact
a preliminary analysis" shows that a field satis-
fying Neumann boundary conditions on a single
plane boundary undergoes symmetry restoration
at a critical length perpendicular to the boundary,
the symmetry remaining broken outside this criti-
cal length. The extension to curved boundaries,
a subject of some recent interest, ""is being
investigated. ) Brown and Duff" have considered
the nonconstant P'(x) case, and their work holds
hope for generalization to these and more-realistic
situations of interest. We also note that Banach"
has recently given a general approach to the ef.-
fective potential for twisted fields.

As stated in the Introduction, our interest in
symmetry restoration arises from a desire to
construct a comprehensive model describing gauge
theories coupled to Higgs fields in the early uni-
verse. Whether or not the topological investiga-
tions treated here wiLL be of any relevance in this
regime remains to be seen, but one might weLL

expect them to have some importance in the vicin-
ity of an initial singularity. If so, the gauge bos-
ons would propagate with an anisotropic mass
decided by the topology, in analogy to the Debye
screening in a plasma" (the short-range force
being equivalent to a temperature —and hence
periodicity —generated mass). This has the inter-
esting coroLLary that since such masses contri-
bute to the energy-momentum tensor, Einstein's
equations contain, via the Higgs mechanism, in-
formation about the global spacetime strgcture.
The back reaction may therefore promote dynami-
cal changes in the topology. An attack on gauge
fields in the early universe is presently underway.
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relation""

Z~~~~(s, A) =exp[-2 ignis](det/) '~'n

F(P/2- /2)
I'(s/2)

(A4)

and, if none of the g, are integral, is simply re-
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APPENDIX

We compile here some useful properties of the
multidimensionaL 8 functions and Epstein g func-
tions"" used extensively in Sec. III.

iv ah
(

(A5)

Z~~„-~(s,A) is an entire function of s provided
all @& are not integers. If all h, are integers then
it is analytic in g except for a simple pole at g=p

.of residue 2m~~'(detA) '~'[I'(p/2)] '. Z~(~~(-2m, A, )
= 0 for yg a positive integer. Using these proper-
ties and (A4) we further note Z~(~~(0, &) = 0 except
if all g, are integers, in which case Z~)P(O, A)
= —exp(- 2n'igh).

For particular p values g~ is sometimes expres-
sible in terms of more elementary functions.
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p=l: Z, l:l(s,A)=2A "g(s)
p=2:

(AS)

x=1:
x= 1

2 ~

X + ~

1.

Z, lol(s, A) = 2' 'w 'a ' g(s/2)p(s/2},

Z, lol(s, A) =2(1-2 ' '+2' ')w 'a 'g(s/2)p(s/2),

Z2lol(s, A) = 2~w ~ a ([2 +(1+2~ ')(1 -2 ~in)]g(s/2)p(s/2)

+[1 —2 ' 'P(s/2, 2/2)]' -[2 ' ' —2 ' 'P(s/2, 5/2)] j,

(AV}

(AS)

(A9)

where g(s) is the usual Riemann g function and for comparison with Sec. III we have in the p = 2 case set
A =4w'a'diag(l, x') with x= p(2wa) '. These and other lattice sums may be found in the recent papers of
Glasser" '0 who also details the properties of the functions P(s, &o)

-=P„",(-1)~(2k+ 1+&v)
' and P(s) -=P(s, 0).

(Unfortunately some numerical errors exist in Glasser's listing of these properties, "e.g. , the correct
value of p'(0) is Inr(-,') —ln[2r( —,')], as recently pointed out by Campbell and Ziff.") Following Glasser's
initial investigations, Zucker and Robertson '6' have achieved amazing success in the simplification of a
wide variety of'two-dimensional lattice sums. A severe restriction, of course, in using any of these two-
dimensional results is the loss of freedom to continuously alter z. Happily, however, we can retain this
freedom if we choose to evaluate Z, l', l(s,A) at a particular value of s.

Using the one-dimensional equivalent of (A2) (a Jacobi imaginary transformation4'),

00 00 oo oo 2

Z, l', l(s, A)=[r(s/2)l ' dtt''' g e ''*" '+(4wa'x't) 'i' g' g expl-4w'a'm't-
na= -- n=--

= 2&(s)(2wax) '+2w' 'x ' f(s —1)(2wa) '. r (s/2 —1/2)
r(s/2)

+2' 'w''a ' 'x'' g g m '(2wnmx ')' 'X (2wnmx ') +O(s —2)
m"- 1

= 2& ( s) (2wax) '+ 2w'i'x ' g(s - 1)(2wa) ' —(wxa') ' ln, r (s/2 —1/2)
r(s/2}

= (2wa'x) '[(s —2) '+y ——, ln(4w i'a'i'8~(0, q))]+ O(s —2),

P

n=1
(1-q ) +O(s —2)

(A10)

where the definition of the Jacobi elliptic function
is that of Ref. 45. Epstein" also arrived at (A10)
via a different route. Combining (A10) with (A4)
we readily obtain the exact result for arbitrary z

Z2lool(O, A ') = ——', ln[4w'a' '8', (O, q)] (Alla)

= ——' in[2 i'w' 'P '8'(0, q)], (Allb)

where q=g "" =e'" ' 8 q=g '"=g 8 ~, and the1 2

second equality above follows from the symmetry
properties of Z, l,'l(s, A). It can be checked that
these general formulas are consistent with (AV}-
(A9}. The logarithmic structure ensures that the
results of Sec. III are dimensionally correct.

To discuss the multiply connected 0 =1 CKR%
universes in Sec. III D we need the evaluation of

a more general two-dimensional g function,
ZJ.; l(2,A '). Fortunately this has already been
evaluated by Glasser, "although we find that the
coefficient of ln2 in his Eg. (20) ought to be divided
by 4. Doing so his work gives

Z, l ~0l (2,A ') = Sw'a' wg,
' —

&
ln2 -x ln, ,',0

',»i,

(A12a)x, 8,(wn, q)=Sw a wg, x -2 ln2-xln[
(0 )]|/3

(A12b)

where g =(g„g,) and n =g, +ix 'g„ K = g, +ixg,-
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