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Asymptotic series for wave functions and energy levels of doubly anharmonic oscillators
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Asymptotic series expansions for the wave functions and energy levels of the doubly anharmonic-oscillator system
of the ax'+ bx'+ cx type have been obtained. The asymptotic expansion for the wave function reduces to a.
sequence of exact solutions of the Schrodinger equation for special values of certain combinations of the coupling
constants. A %KB-type analysis for large values of n {the excitation quantum number) yields. an asymptotic
expression for the excited energy levels, valid for large values of the dominant coupling. Exact eigenvalues have been
computed numerically for a wide &ange of n and c, the dominant coupling. The accuracy of the asymptotic series for
the energy eigenvalues of excited states is examined by comparison with the exact eigenvalues obtained numerically
and is found to be satisfactory.

I. INTRODUCTION

The quantum mechanics of the anharmonic os-
cillator has been the subject of numerous investi-
gations. Apart from providing a simple model for
field theories with polynomial interactions, it is
a system with considerable intrinsic interest. As
a simple system which is not (yet) exactly soluble,
its study has led to the development of analytic
and approximation methods of wider applicability.
Thus while in quantum electrodynamics it has
only been conjectured that the perturbation series
is of an asymptotic nature, Simon rigorously
proved that the Rayleigh-Schrodinger perturbation
series for the energy eigenvalues of the anhar-
monic oscillator, while divergent for all values of
the major coupling X, is an asymptotic one in an
open domain around ~ =0. Again, while Bender
and Wu' showed how WKB techniques may be used
to study the analytic properties of the energy
eigenvalues in the complex X plane, Simon used
Hilbert-space methods to obtain this analytic
structure rigorously.

A wide variety of nonperturbative approximation
schemes have been used to study the. energy eigen-
values. Among these ax'e numerical analyses
using Pade approximants, truricated Hill deter-
minants in nonorthogonal basis, '5 and Bargmann
space representations. ' The numerical methods
are often tedious when applied to the region where
X or n (or both) is large; hence there have been
attempts to obtain approximate formulas for the
eigenvalues in this region. Classical periodic
solutions used in conjuction with the WKB method
yield approximate formulas for large ~.' " As-
ymptotic expressions for the energy eigenvalues
valid in the large (x,n) regime have been ob-
tained using modified WKB techniques. Sur-
prisingly, the expressions obtained are accurate
even for ri as small as 3 and a ) 2.

Anharmonic systems of greater complexity have

also been investigated recently. '2 Interacting
quartic oscillators of the type ~&x& + ~2x2 + xx& x2
have been studied by Hioe." Numerical algorithms
used for quartic oscillators have been extended to
this interacting system. While the rate of con-
vergence for the energy eigenvalues is distinctly
slower, the study reveals a level crossing pattern
of considerable complexity. Doubly anharmonic
systems of the type ax2 + bx4+ cx' have been
studied analytically. ' ~' The eigenvalue problem
can be reduced to the solution of a three-tery dif-
ference equation with contiguous terms. This al-
lows an analytic study of the Green's function of
the system in a manner not possible for Xx os-
cillators. Examined in this fashion, this system
has structural similarities with certain "confined"
two-particle systems. The Schrodinger equation
for a nonrelativistic two-particle system interact-
ing through a confinement potential with terms
depending on r' r, 1(r, and lir' (r being the mag-
nitude of the relative two-particle separation) can
be reduced to a similar three-term difference
equation. 0 Such is also the case for a.rotating
spherical oscillator whose energy levels and wave
functions in the asymptotic domain have been in-
vestigated. ' This suggests that the study of the
wave functions and energy levels of the doubly
anharmonic system may, apart from any intrinsic
interest, shed light on the behavior of other phys-
ical systems.

In this paper, we study analytically the wave
functions and excited energy levels of doubly an-
harmonic oscillators of the type ax + bx4+ex in
the asymptotic domain. In Sec. II, we -use a WKB-
type ansatz to examine the eigenvalue equation in
the large-x region. We are thus able to obtain the
leading oscillatory behavior of the wave function in
this region. Factoring out this behavior, we obtain
the asymptotic series for the wave function in this
domain and the recursion relation for the coeffi-
cients. From the solution of this recursion rela-
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tion, we can obtain a sequence of exact solutions
for special values of certain combinations of the
coupling constants. To examine the energy levels,
we use a modified WEB method originally devel-
oped by Titchmarsh ' for the study of a class of
eigenvalue problems. This has been applied to
the Xx4 case by Hioe, MacMillen, and Montroll. e 8

In Sec. III we show that in spite of the presence of
a subdominant coupling, the asymptotic series for
the energy eigenvalues of the excited states, valid
for large values of the dominant coupling, may be
obtained by the same methods. Further, the ser-
ies reduces to that for the ~x' oscillator in the
limit in which 5, the subdominant coupling, van-
ishes. In Sec. IV we examine the accuracy of this
asymptotic series by computing numerically the
exact eigenvalues corresponding to the excited
states of the oscillator and comparing them with
the result obtained by using the first four terms
of the asymptotic series. We compute the exact
eigenvalues for a wide range of values of the ex-
citation number n {1& n & 100) and the major cou-
pling c (1 & c & 100) using the method of truncated
Hill determinants modified by the use of scaled
basis functions. In general, the accuracy of the
series increases with the magnitude of both c and
n. We also examine the situation which obtains
for negative values of the subdominant coupling b.
We find the accuracy of the series comparable to
the earlier case (b ) 0) provided c )

i
b i; in both

cases (b «0) the accuracy of the series is com-
parable to that for the simpler ~x6 oscillator
(b=0).

II. THE %AVE FUNCTION IN THE ASYMPTOTIC
DOMAIN: EXACT SOLUTIONS

We write the Schrodinger equation for the doubly
anharmonic oscillator in the form

-d2

dx
+ (ax + bx + cx E)$ =0—

(in units @=2m =1). The couplings a, b, c are
real; a and c & 0. The construction of the wave
function for x-~ starts with the identification that
x=~ is an irregular singular point of the equation.
It is not, therefore, possible to construct a con-
vergent expansion for the wave function in this
region; at best an asymptotic series can be ob-
tained. For this purpose we must isolate the most
rapidly oscillating part of the wave function as
x-~, i.e. , the "controlling factor. " The equation
being linear and of second order, this factor may
be expected to be an exponential. Thus we sub-
stitute

q(x) =e

and obtain for S(x) the asymptotic equation

S "+(S')' -cx'.
Usually around an irregular singular point

S "«(S')',
so that we get the approximate first-order equa-
tion valid around x=~:

(S')'-cx'

giving

S(x)- + —,'v cx4, (5)

which ensures (4). For obvious reasons we choose
the negative sign in (5). To ensure that (5) is the
controlling factor of the exact solution we must
check that the ansatz

S(x) = ——,'Wcx +d(x),

d(x) «-,'v cx4, x-~
(5)

(7)

l.e, )

-b
x ~

x~ o.
4v' c

This establishes that (5) is, indeed, the controlling
factor for the exact solution. Proceeding in this
fashion, i.e. , factoring out successively each
leading oscillatory behavior, we obtai:n the com-
plete leading behavior (i.e. , the first term of the
asymptotic series) of the wave function as

v cx~ bx2 (b' —12cv c —4ac)

Introducing

o=vc,
b

(10)

b -4ac2

4cWc

we obtain

j)(x)-x" "' exp ——x ——x iu(x)asx-(y3) /2 + 4

)
(12)

in the exact solution leads to an asymptotically
valid relation for d(x) which is less rapidly vary-
ing than (5). Substituting (6) in (2) and (1) leads to
the equation

d" —3v cx +(d') —2v cx d'-bx4-ax2+E =0. (8)

However, (7) ensures that

d «Svcx, (d ) «u cxd
so that asymptotically, we have

-b
x )
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To construct the full asymptotic series for w(x} we
write

w(x) = 1+i(x), g(x) -0 as x -~, (13)

Equation (16) suggests that w(x) is a power series
in inverse powers of x; indeed, if we use the
ansatz

i.e., we expect that w(x) will be a power series in
suitable inverse powers of x. Substitution of (12)
in (1) leads to the asymptotic relation

ev(x) = 1 — — x + e((x)4v' c

we get the asymptotic relation

(17)

2~x (14} (y -3)(y -5) 6' 5P
e((x) - — — — -—x

So. 4 4u u
(18)

so that

(15)

(16)

We therefore write

zv(x)=pa„x '", a, =l, a, =o.
n=o

Substitution in (12) and (1) leads to the difference
equation

4a(n+ 2)a„,g +[8 + 4P(n+ 1) +P(2 —y)]a„,~ +[2n(2n+ 1) —2(y —3)n + ~(y —3)(y —5)]a„=0

The solution of (20) in the form of an infinite continued fraction is well known:

-[2K(2K+1) —2(y -3}K+-'(y -3)(y —5)]
az 4 1

4c((K+ 2)[(2K + 2)(2K+ 3) —2(y —3)(K + 1) + -,'(y —3)(y —5)]
'

[E+4p(K'+ 2)+ p(2 —y)]

(20)

(21)

That such equations constitute the eigenvalue con-
dition has been observed'4; for our purposes, the
relation may be used to generate coefficients for
the wave function provided the eigenvalue F- has
been determined by numerical methods. In prac-
tice, we expect a few terms in the series to give
a good estimate of the wave function asymptotical-
ly.

From Eq. (21) we observe that for certain spe-
cial values of y, which is an expression involving
the harmonic and anharmonic potential strengths,
the infinite continued fraction terminates leading
to a finite series expansion for w(x). For, if y
satisfies the relation

2N(2N+ 1) -2(y —3)N+-,'(y -3)(y -5)=0,
l.e.&

I

4n(m + 2 }a,2 +[E + 4P (m N+ 1) ——P]a, &

+[2m(2m+1} —8Nm —2N(2N —l)]a =0, (23)

provides exact polynomial solutions for the even-
parity states of the doubly anharmonic system.
The energy eigenvalue E is obtained as a root of
an (N + 1) &&(N + 1) determinant. . A similar se-
quence of exact solutions for the odd-parity states
of the system are obtained when y takes the se-
quence of valuesy =4N+5, N =0, 1,2, . .. .

III. EXCITED ENERGY LEVELS: ASYMPTOTIC
SERIES IN THE MAJOR COUPLING

We write the Hamil. tonian for the system in the
form

y=4(N+1)+1, N=0, 1,2, . . .
the coefficient aN, &

vanishes for a~ t 0. Equation
(20} then ensures that subsequently all higher co-
efficients also vanish yielding the finite series

x(x) =
Q a„x '".

It is easily shown that for y =4N + 3, N
=0, 1,2, 3, ... , the sequence of the finite series
expansions given by

H(a, b, c) = —
2 +ax + bx +cx .

Under the scaling transformation

x=c '"y,
the Hamiltonian transforms as follows:

H(a, b, c)=c' H(c a, c ' 4b, l).
We are interested in the eigenvalues of this
Hamiltonian as c -. In this limit

H(a, b, c}-c' H(0, 0, 1) .

(24)

(25)

(26)

(27)

p(x)=x'"axp( ——,'ax' —-', px') Q a x '",

where the a 's now satisfy the recurrence relation

Since H(0, 0, 1) is asymptotically independent of c,
we may expect the energy levels of H(a, b, c}to
have the asymptotic form
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E„(a,b, c) ~ A„c'
C~ oo

(28) integrand of (35) to obtain

d tb"
+(~ ac-4/2 2 bc 2/4y4 yp)g 0

where

(29)

where A„may depend on n (the excitation quantum
number) and on a and b. The Schrodinger equation
for the energy eigenvalues transformed to the
variable y as given by (25) is

2/3 sp

[(z p p)+ p(
4 4)

«g
p

+ o(zp' —z')]'/'dz .
Introducing the variable u =z/zp, we have

1

n+-,' = —44„ /pz [(1—up)+ 2 (I —u4)
Q

(38)

p. =c'"E,(a, b, c) . (30) + z(1 —u2)]4 /2du (39)

The nth eigenvalue of this equation, in increasing
order of magnitude, is denoted as p. „.

Titchmarsh23 has studied the nature and distri-
bution of eigenvalues of the class of eigenvalue
problems characterized by the equation

d2$
2 +[p -q(x)]g =0, -~ & x & ~ .dx2 (31)

If q(x) -~ as x- +~, there is a purely point spec-
trum. For the distribution of eigenvalues, the
approximation of the eigenfunctions by Bessel
functions of order —,

' gives zero error formulas
for the number of eigenvalues not exceeding a
given number. In particular, for (31) with q(x)
having the given asymptotic behavior, he obtains
the formula

n+ —,'+ 0( —
/

=— [p —q(x)] ' dx,
(1 t 1 "n

~n& w

where x„', xn are roots of the equation

q(x) = 4L. .

(32)

Here yp is the real root closest to unity of the
polynomial equation

6 b
-3/4 -i /2

+ y + y =1.
Pn Pn Pn

(34)

We simplify (33) with the substitution z = p, „4/Py
to obtain

2/ 3 2fp

n+ —,= — (1-z —pz -oz } dz, (35)&n 6 4 2 1/2
7r z

p

where

= bc =ac p (36)

zp is the root closest to unity of the transform of
(34), i.e. , of

Applying (32} to (29), we have that for large n,

/ ( ' i/2 bc 3/4
Pn ac 2 c 4 yn+2= )I- 7 — y -

I dy ~

-yp & Pn . &4n Pn&

(33)

where

p aT= -2- ) K= 4
Zp

'

ZQ
(40)

2/3 4) ~ K K
n + ~ p z J +»J +»J ~~ J + ~ ~ ~

2 m" P&' 2' 2' 8

We now examine the nature of (39), insofar as its
dependence on p. „, the energy eigenvalue, and the
couplings a, b, c is concerned. Since p and 0 de-
pend on 44„and the couplings a, b, c through (36),
so does the root zp of Eq. (37). In (39) zp and the
parameters T and K therefore have a well-defined
dependence on p. „and the couplings a, b, and c.
We may therefore regard (39) as an implicit equa-
tion for p, „ in terms of the coupiings, the relation
being exact in the limit, of large n. Our task is to
solve this implicit relation to obtain p. „as a power
series in suitable inverse powers of c, the major
coupling.

We first expand the root zp of (37) in inverse
powers of c. Equation (37) can be rewritten as

zp =(1 —pzp —ozp )' (41)

From (28) and (30) we find that p.„-a constant as
c -~; thus from (36) p, o-0 in the same limit.
We may therefore expand the right-hand side of
(41) in powers of p and o and write

zp =[I —p(1 pzp —0'zp ) 4
0'(1 pzp ozp )

i 4 2 2/3 i 4
8

'n o (1 '

pzp ozp ) . Tp per(l pzp ozp )
5 2 . 4 2 2/3 5 4 2

p2(1 pz 4 oz 2)4/2'+. . .,] (42)

Substituting once more for zp from (41) in the
right-hand side of (42) we obtain zp as an expan-
sion in inverse powers of c'

O' P 0' O'P Pz1»~»~««««~+~+ ~ ~ ~

6 6 72 36 24
-2/3

b
-i /3

=1 — P"
C 1/2 P"

C 4-' ' '' (43)6 6

Since zp-1 for large c, we expand (39) as a power
series in 7 and z which, by virtue of (36) and (40),
is a series in inverse powers of c' . We first
obtain

z + pz +oz =1. (37)

Thus we may replace 1 by zpe+ pzp + vzp in the (44)
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Here the J, 's are definite integrals related to the
elliptic integ rais

1

J, -=. (1-u')'"du,
0

(1-u )
/ (1-u4)du,

-0

(1-u )
/ (1 —u )du,

0

1

J4 =— it (1-u )
/ (1-u ) du,

d0

and we have retained terms which contribute to
the energy eigenvalue to O(c '). Each of these
integrals is finite and may be evaluated by ele-
mentary means using the integral representation
for the beta function

i
B(p, v)= (1-x)' 'x" 'dx, Rep. & 0, Rev&0

and its analytic continuation to Re@ & 0. We obtain

Ww r(&~) Wvr(~4) —3X2'"r'(~)
1 6 r(4) & 2 6r(g)

, v~r(-'„) (45)
4 I'( -)

J4= 2 [2v 1tI'(1) —3X2 /4r (4)].1

g& 1 = p(1+ -a+ -p+ ' ''),
z~ g=a(1+ -c+

&
p+ "'),

3

zo v =o (1+-o+ " '),
3

(47)

which on substitution in (46) leads to the result
3/2

I+all--~ l+ p 1--~3J~ 3J
4Ji) 4J,

22 5J 3 J 15J32+O'~~~ M+~M+~+ ~ ~ ~

3 4 Ji 16 Ji 32 Ji2

(48)

Using (36) we get the implicit equation giving 41„
in terms of known integrals and inverse powers
of c'

Inverting (39) and exp'anding the result in powers
of & and &, we have

(~ 3/2

p.= (n+ 2)"'l
2

-7~ ——~~+—~2~+ ~ ~ ~
3 J 3 J 3 J
4 Ji 4 J, 16 J

(46)

Using (43) and (40) we have

a2c ' 2 5~J 3~J
~4/3 3 4 Ji 16 Ji 32 J2

p, „as a powers series in c ' ' is obtained by successive iteration of this equation. Thus if p, „'" is the
asymptotic expression for p, „at the (i+ 1)th iteration,

1/ )3/2 ac-1/2 3 J.
p"'=(n+-,')'"~- ~ J '" 1+ 1---1 l+ ~ ~ ~

n & lP l 1 [ p&
4 1)]2 /3 -4 J

(49)

E„(a,b, c)=c (A +B„c ' +C„c '

+D c + ")
where

A „=4(n + —,)4/2 r (s)

(50)

the series being terminated at the (i+ 1)th term,
with p„'o'=(n+ ~)~/2(~1/) / J1 ~/2. The structure of'
the implicit equation (49) ensures that the coeffi-
cient of a given power of c is uniquely deter-
mined by a finite number of iterations, subsequent
iterations leaving coefficients of lower powers
undisturbed. We thus obtain the asymptotic series
for p, „which, in conjunction with (30), yields

B„=a(n+ g)
r'(-')

3

r4(2)
C„=6b(n+ g) 4, ',r &ra', 1/, 1 r'(-', ) I'(-,')

n 4
(n ~) 6 r3/2(&) r5/2(&)

(51)

We expect that in the large (c,n) domain a few
terms in the series will give accurate values for
E„. For sufficiently large c the eigenvalues are
determined by c alone, since A. „ is independent of
the couplings a and b; also the series (50) reduces
to that for the Xx oscillator for b =0. We note
that in obtaining the series, the only assumption
that has been made about the analytic structure of
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E „(a,b, c) as c -~ is that p.„-a constant as c -~
(which follows from the scaling argument). The
series results from the expansion of a convergent
integral in terms of certain parameters on which
it depends. Thus, while the analytic structure of
the energy eigenvalues of the system in the major
coupling is not known, the validity of the series
does not depend on this knowledge. However, a
proof that this series is truly asymptotic depends
on our understanding of the dependence on the
couplings of the corrections to the Titchmarsh ex-
pression. In the absence of such a proof, numeri-
cal calculations have been used to test the accu-
racy of the series.

IV. NUMERICAL ANALYSIS: ACCURACY OF THE
ASYMPTOTIC SERIES

The accuracy of the asymptotic series (50) for
the energy eigenvalues remains to be established.
Since no analytic solution of the energy-eigenvalue
problem exists, we examine the question numeri-
cally. However, numerical solutions for the ener-
gy eigenvalues corresponding to the excited states
of doubly anharmonic oscillators are not available
in the literature; we are, therefore, forced to
compute (numerically) the exact eigenvalues and

compare them with the result of the asymptotic
series (50).

TABLE I. Eigenvalues of the ax + bx +cx oscillator
compared with the result of the four-term asymptotic
series. In these tables n is the excitation number of the
level, &E is the exact eigenvalue, ~& is the result ob-
tained from the four-term asymptotic series, and 6E is
the relative error defined as (5E=—p E- ~~)/&E. We take
a= b= c= 1.

To compute the exact energy eigenvalues we

employ the method based on the use of the trun-
cated Hill determinant, modified by the use of
scaled basis functions. ' The truncated Hill deter-
minant has been used earlier with considerable
success in studying the energy levels of anharmon-
ic oscillators of the ~x type. Using for the wave
function of the nth energy level the ansatz

2-i (n, cjx &2m+ u

m=0
(52)

TABLE II. Same as Table I but with a= b=1, c=5.

where z(n, c) is a scaling parameter. to be (subse-
quently) chosen and v=0 (v=1) for states of even
(odd) parity, we obtain for the a 's a 5-contiguous-
term difference equation. The consistency condi-
tion for the existence of a nontrivial set of a 's is
the vanishing of the Hill determinant. %e truncate
this determinant at a finite order; the resulting
consistency equation is a polynomial in 8, the en-
ergy eigenvalue, with coefficients which are func-
tions of the couplings a, b, and c. Choosing suit-
able values of these couplings we look for the roots
of this polynomial numerically. The recursion
relation between successive truncations of the Hill
determinant enables us to locate the root of suc-
cessively higher-order polynomials'. the stability
of the root as one passes to polynomials of higher
order is taken to establish the location of the true
eigenvalues as roots of the Hill determinant.

The choice of the sealing parameter X(n, c) is
determined as follows. %e wish to choose p in a
way such that the first n members of the basis
functions, viz. , a e " x2 (m=0, 1, . . . , n), have

1
2
3
4
5
6
7
8
9

10
20
30
40
50
60
70
80
90

100

5.656
11.107
17.637
25.068
33.293
42.236
51.841
62.062
72.861
84.209

223.295
400.371
608.349
843.079

1101.739
1382.253
1683.005
2002.692
2340.237

5.637
11.165
17.739
25.203
33.455
42.421
52.047
62.286
73.103
84.466

223.673
400.836
608.886
843.678

1102.395
1382.959
1683.758
2003.490
2341.076

0.336 x10
0.522 x10
0.578 x10

-0.538 x10
-0.486 x 10

0.438 x10
0.397 x10

-0.361 x10
-p.332 x1p

0.3P5 x10
-0.169 x 10
-0.116 x10
-0.882 x 10
-0.710 x10
-0.595 x10

0.510 x10
-0.447 x10
-0.398 x10

0.358 x10

1
2
3
4
5
6
7
8
9

10
20
3Q

40
50
60
70
80
90

100

7.279
14.731
23.837
34.303

- 45.965
58.709
72.447
87.111

102.644
118.999
320.960
57$.833
884.971

1230.147
1611.134
2024.818
2468.780
2941.071
3440.074

7.038
14.577
23.714
34.201
45.879
58.636
72.384
87.056

102.596
118.958
320.958
579.853
885.007

1230.196
1611.194
2024.888
2468.858
2941.156
3440.167

0.331 x10
0.].04 x1p
0.513 x10 2

0.295 x10
0.186 x10
0.124 x 10
0.870 x10
0.628 x10
0.462 x10
0.346 x10
0.478 x10
0.357 x10
0.415 x10

-0.401 x10
p.373 x lp

-0.343 x10
-0.315 x 10
-0.290 xlp
-0.268 x10
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TABLE III. Same as Table I but with a= b= 1, c= 10. TABLE V. Same as Table I but with a= b=1, c= 50.

1
2
3

5
6
7
8
9

10
20
30
40
50
60
70
80
90

100

8.346
17.046
27.726
40.027
53.754
68.769
84.969

102.271
120.608
139.924
378.794
685.381

1047.005
1456.256
1908.102
2398.838
2925.586
3486.027
4078.239

8.039
16.843
27.556
39.879
53.623
68.651
84.861

102.172
120.516
139.839
378.745
685.350

1046.98'7

1456.246
1908.100
2398.842
2925.595
3486.041
4078.257

0.368
0.119
0.614
0.368
0.243
0.171
0.126
0.965
0.759
0.609
0.129
0.446
0.176
0.649
0.116

-0.160
-0.310
-0.392
-0.437

x10~
x10 ~

x10+
x10+
x10
x1Q 2

x10
x ].0
x1Q
x1Q
x10
x1p4
x10~
x].0-5

x].0~
x].0~
x1p-'
x1p-'
x10-'

1
2
3

.5
6
7

9
10
20
30
40
50
60
70
80
90

100

11.913
24.651
40.374
58.528
78.821

101.046
125.046
150.697
177.899
206.567
561.672

1018.112
1556.893
2166.916
2840.653
3572.558
4358.324
5194.481
6078.155

11.438
24.332
40.100
58.286
78.603

100.845
124.859
150.522
177.734
206.410
561.562

1018.023
1556-.817
2166.849
2840.592
3572.502
4358.273
5194.434
6p78.111

p.399 x10
0.129 x 10 ~

0.679 x10
0.413 x 3.0~
0.277 x 10
p.198 x 10
0.149 x 1Q

p.116 x10+
0.928 x10~
0.759 x 10+
0.196 x10
0.875 x 10+
0.489 x 10+
0.310 x10
0,213 x10
0.154 x 10
0.116 x 10
p.911 x 10
p.727 x1p

appreciable values in the region of oscillation of
the actual nth eigenfunction. The WEB estimate
of this region of oscillation is n' c ' . This is
therefore set equal to the width of the nth basis
function, i.e. , n' x ' . Thus one obtains

X(n, c) = ~ +An c' (53)

A is a constant empirically chosen as 1.5. Equa-
tion (52) used in conjunction with (53) in (1) yields
the difference equation

Z(n c) -n' 'c'~4 a, &+P a +q a &+r a &+s a 3
—0,

For the pure harmonic case, ~ =-,'. %e therefore
use the following scaling formula for X: with

TABLE IV. Same as Table I but with a= b= 1, c= 20. TABLE VI. Same as Table I but with a= b= 1, c= 100.

1
2
3

8
9

10
20
30
40
50
60
70
80
90

100

9.679
19.904
32.493
47.014
63.233
80.987

100.150
120.626
142.334
165.207
448.326
812.006

1241.153
1726.948
2263.406
2846.118
3471.660
4137.273
4840.673

9.304
19.653
32.280
46.826
63.065
80.833

100.008
120.493
142.209
165.089
448.247
811.945

1241.104
1726.907
2263.371
2846.088
3471.635

. 4137.252
4840.654

0.387 x10
0.126 x10
0.657 x10
0.398 x10
0.266 x10
0.189 x 10
p.142 x 1p-'
0.109 x10
0.874 x 10
0.712 x 10
0.].76 x1Q
0.745 x10
0.395 x 10
0.236 x 10
0.153 x10
0.104 x10
0.728 x1Q
0.528 x 10
Q.381 x1Q

1
2
3

5
6
7
8
9

10
20
30
40
50
60
70
80
90

100

14.023
29.109
47.749
69.283
93.364

119.743
148.234
178.689
210.989
245.033
666.871

1209.237
1849.536
2574.563
3375.364
4245.344
5179.378
6173.341
7223.813

13.457
28.729
47.421
68,994
93.102

119.502
148.010
178.479

- 210.790
244.844
666.736

1209.128
1849.441
2574.479
3375.288
4245.273
5179.313
6173.280
7223.755

0.403 x10
0.130 x10~
0.686 x 10+
0.418 x10
0.280 x10
0.201 x10+
0.151 x10
0.117 x1Q
0.942 x 10
0.771 x10+
0.201 x 10
0.906 x 10~
0.511 x10~
0.327 x10
0.227 x 10+
0.166 x 1.0+
0.126 x 10
0.999 x10~
0.806 x10



2882 K. DATTA AND ANITA RAMPAL

TABLE VII. Same as Table Ibut with a=1, b=-1,
c= 10 {b2(3ac).

TABLE IX. Same as Table Ibut with a=0.1, b=-2,
c= 10 {b =4ac).

2
4
6
8

10

16.221
38.533
66.604
99.435

136.417

16.004
38.370
66.471
99.321

136.317

0.13 x10
p.42 x 1Q

0.20 x10
0.11 x10
0.73 x10

2

6
8

10

15.315
37.134
64.742
97.128

133.677

15.133
37.009
64.651
97.061

133.628

p.12 x10
0.34 x10
p.14 x 10
0.69 x10
0.37 x10

E -2&(4m+2v+1)
(2m+2+v)(2m+1+v) '

4X -a
(2m+2+v)(2m+1+v) '

-b
(2m+2+v)(2m+1+v) '

-c
(2m+2+v)(2m+1+v) '

(55}

The eigenvalues are now roots of the Hill deter-
minant

po 1 0 0 0 0 0

qi Pi 1 0 0 0 0

q2 P2 1 0 0 0

BEE j= ss r3 q3 P3 1 0 0

0 s4 r4 q4 P4 1 0
(56)

If n stands for the m xm approximant to (56), the
& 's satisfy the recursion relation

6„,, -p„D„+q„h, r~, -+s 6,=0 (n, =1) .
(57}

We use (57) to generate higher-order approximants
to the Hill determinant. The limit (if any) of the
sequence of roots of L as m -~ is the required
eigenvalue. In actual practice, the zeros of n, „(E),

which is an mth-order polynomial in E, stabilize
for large m. For n = 100 and c = 100 (a = 1, b = 1}
it is possible to obtain a root stable to one part in
10' with m =250.

The results of the calculations are given in
Tables I-X. The asymptotic series is truncated
at the 4th term, i.e. , as given in (50). For b & 0,
the accuracy of the four-term series increases,
in general, with the magnitude of the major cou-
pling (c) and with the excitation number of the level
being compared. An accuracy of 1 part in one
million is achieved for c =10, a=b=l at the 60th
excited state.

We have also examined the accuracy of the
series for b(0. Where for b) 0 the potential
function V(x}=ax + bx4+cx (a, c & 0) has no ex-
trema, for b & 0 the potential function has maxima
and minima depending on the relative magnitudes
of b and ac. Thus, for b (3ac no. extrema ap-
pear; a point of inflection appears at b = 3ac; for
3ac & b & 4ac two positive minima (and maxima)
located symmetrically about x=0 are to be seen.
Finally, the minima are tangent to the V(x) =0
for b =4ac and are negative for b ) 4ac. We find
(Tables VII-IX} the accuracy of the series in these
cases to be comparable to those for b& 0; how-
ever, for large and negative b (b & 0:b & 4ac) the
constraint

~

b i/c «1 is violated and we do not ex-
pect the series to be accurate for the low-lying
levels. We have consequently not used the asymp-
totic series to estimate the eigenvalues when b is
negative and large in magnitude.

For b =0 the asymptotic series expansion re-
duces to that for a xx oscillator and the accuracy
remains comparable to that in the situations when

TABLE VIII. Same as Table I but with a=p.3, b=-3,
c= 10 {b2=3ac). TABLE X. Same as Table I but with a= 1, b= 0, c= 1.

10

14.962
36.470
63.760
95.825

132.053

14.815
36.389
63.723
95.820

132.073

0.98 x10
0.22 x10
0.57 x10
0.52 x10

-0.15 x 10

2
4
6
8

10

9.966
22.910
39.059
57.845
78.958

9.839
22.816
38.974
57.778
78.897

0.13 x 10~
0.41 x 10-2

0.2O x 1O-2

0.12 x 10-2

0.76 x 10
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5 eO, as is to be seen in Table X.
We therefore conclude that the asymptotic series

(50), truncated after a few (-5) terms, gives the
energy levels of the doubly anharmonic oscillator
with considerable accuracy for all states except
the ground state. Indeed, for any "exact" numer-
ical evaluation, the asymptotic series provides
an excellent starting point.
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