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Gauge invariance and string interactions in a generalized theory of gravitation
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The gauge invariance of the Lagrangian in the nonsymmetric extension of general relativity is investigated. The
skew parts of the nonsymmetric Hermitian g„„, in the weak-field approximation, act as gauge potentials that

correspond to the exchange of massless scalar mesons between one-dimensionally extended objects (strings) in space-
time. For open strings a massive vector particle, associated with the torsion, is also exchanged between the end

points of the strings.

I. INTRODUCTION

In the following we shall present a new Lagran-
gian density with one-dimensiorially extended
sources, based on the nonsymmetric, Hermitian
extension of general relativity. The present
theory contains the earlier published versions"
as special cases of a more general framework.
In the weak-field approximation, we investigate
the gauge structure of the Lagrangian density
and we find that g„„&is an antisymmetric poten-
tial with loop (string) sources. Such fields have
been considered in the literature in connection
with theories of gravitation' and string models
and also in supergravity. '

II. THE LAGRANGIAN

We shall begin with a derivation of the Lagran-
gian including sources. The resulting Lagrangian
and field equations will differ from previous de-
rivations" in certain important respects. The
basic notation will be the same as in Refs. 1 'and

2.
We raise and lower indices by using the relation

(2.l)

where

w, „,„)--,'(w. , w

—,
' C""&a,„„,+ I... (2.7)

where we have used the notation g„„=g-gX„,.
Moreover, I- is the Lagrangiar" density for the
matter sources,

al.
g+pv 2~vv P (2.8)

where g,„ is a nonsymmetric (Hermitian) general
ized energy-momentum tensor. V, is a (pure
imaginary) vector field and If&, „& is defined by

(2.6)ov ~B (fzg) vv

is a Hermitian tensor.
We shall use geometrical units in which G =c

=1. Our Lagrangian density is given by

l& =g""R„„(W)+—g' (W, V, + W, V, )

A nonsymmetric affine connection W,"„is related
to a (Hermitian) connection I","„by the equation

pre I x 2gx gr (2.2)

(2 4)

Hy substituting (2.2) into (2.4), we get

where W„—= ~(W„',—W' ) = Wf„,&
is a (pure imaginary)

vector field. From (2.2) we have

(2 2)

A Hermitian contracted curvature tensor can be
formed,

(2.9)

where we have used the Einstein+ and —notation
for covariant differentiation with respect to I",„.'
We also define ~[wv] &P e&vt@ =-0~v~ In
our units g is a dimensionless constant and e
is a constant with the dimensions of a length.

We can now use the Palatini method, varying
g, W, and V as independent field variables (such
that 6g, 68', and 5V vanish at the boundaries
of integration). The W variation gives

g
'" + g '"8" + g "W" g '"W' + -'5" g"lPgo . po frp fop 3 ty &pe 3

+—(g 0' &v g g&" &v v")=o-(2.lo)I a e a

lt..(w) =ft.„(r)+-,'w,„„„ (2.5) Contracting over v and a and antisymmetrizing
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gives the equation

~t:gv) g~ &o)y
~" e

The variation with respect to g"" gives

(2.11)

ized Bianchi identities

[e "G,„(r)+g" G„,(r)] .+g'",N„„(r)-=o.

(2.25)

(2.12)G „(W)=,2T„„-B„,
where G„„(W) is the generalized Einstein tensor

We also have the two additional identities

(2.26)

G, „(W)=R,„(W)—2g, g(w) (2.13)

with R„„=g, g~g~ and R =g ""R,„. Moreover,
we have

g(( v) g(9 (( n)W ) 0
2

~ "' Se (2.2V)

B.„=—[w.y„+w„v„-,' g.~~ (( w.v, +w,v.)]3e

(2.14)

We can write (2.V) as

&=g'"(r r( r r(' )--2~ g"") gg ")v ~w

(2.28)

where B „ is a Hermitian tensor and

t:var- r. ~ oi ~g~ v t OS] ~

The variation with respect to V gives

(2.15}
where Q is a total divergence. We see that
8', acts as a Lagzange multipliez that guarantees
the four constraint equations (2.11).

We observe from (2.11) and (2.21) that

y(eve ~ (u at )gr2g
3e (2.16) e

V =-A (2.29)

If we introduce another Hermitian connection
A"„by the equation

(2.17)

where D~~„ is defined by

g,P:.+g..D:„

Thus the vector field V„ is proportional to the vec-
tor torsion field associated with the A connection.
In the present theory the torsion is a propagating
field.

When V, and T,„vanish, the field equations
reduce to9

3,g"-"~.-(g..g,. g.,g..-+g.&(...), (2.»)
then (2.10) can be written as a metrically compat-
ible set of equations

&&&v&

R.„(r}= 2w, „.,

(2.3o)

(2.31)

(2.32)

+g+v ]a @uv e pv y e &y p ev (2.19)

where we have used (2.1) and (2.2). It can be
shown that

f-g) =g-g -v'-gA( ) =0 (2.20)

g Ep v)
g (tv)p

, v vt

where h.„=—At„ &. For a vector B we have

(2.21)

(2.22)

Multiplying (2.22) by )t gand using (2-.20), we
obtain by contracting (2.22) over p and o

(2.23)

If we choose B' to be a real vector and take into
account the pure imaginary property of A„, we get

III. WEAK-FIELD APPROXIMATION

In the weak-field approximation we have

g~. =~~v+&~. y (3.1)

where t h» (
«1 and q„„is the Minkowski metric

tensor. We shall choose for convenience x'=ix'
so that q, „=-6,„. The first-order solution for
r"„, obtained from (2.1V}-(2.19}, is given by"

(3.2)

We shall use the definition g~" =g' g~"g~ so
that jg~~ "~ = —g" ~g~"Jg&8

&
=jg&„„&.

' The Lagrangian
to second order is given by

Lmi=LG-@+2 +TD, (3&)
Re(8', „)=8 „. (2.24}

The variational principle yields the four general-
where Lo„ is the second-order weak-field Lagran-
gian of general relativity with h =h
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GR 4 (gv) (p, v) ~ (u fy), e (0v), v

+ 2h (h(„L 2h—)+ 2h(q„)T(q„) ~ (s.4)

Moreover, I, is the part of the second-order
Lagrangian pertaining to the skew field AI&„„& and
the torsion field V„:

1 1
s 4 Evvl Lvvl 2 Lvsl, v Lu, vl v

2g 2g
f „)„W ——hf „)Vf „)-—WV

The equations of motion

(4.7)Qv)(e 0

are equivalent to Eqs. (4.3). Let us impose the
four gauge conditions

(4.8)

which follow in the first-order from (2.11)when

V =0. Then the equations of motion become

(4.9)

g 2

+3 sl'. 1'. - s&(vvtHr. "1' h&»& (»l'

(s.5)

It is well known' ' that jzf „& and I' „„represent
a scalar one degree of freedom. The coupling
between two strings in the theory corresponds to
the exchange of a scalar massless meson. If we
define the dual field

and TD denotes a total divergence. The particle
spectrum of the skew contribution has been anal-
yzed previously"' and found to be free of ghosts
for the (complex) Hermitian theory but not for
the real nonsymmetric theory. The additional
new term —,'&„„P,„1 in (3.5) will not generate
ghosts in the physical particle spectrum, since
it has the form of a Maxwell field contribution
to the Lagrangian. Thus the Hermitian version
of the theory possesses a unitary S matrix.

IV. GAUGE INVARIANCES OF THE LAGRANGIAN

Let us consider the situation when V =7.',„
=0. %e shall fix the auxiliary vector field TV,

by the condition"

L

foal V3

Then (3.5) becomes

(4.1)

Ls = , h(„vlClh(„-vl
———', h(v sl sh(v vl „. (4.2)

The equations of motion that follow from (4.2)
are

lg
6 may~ NBy yoby~fN03, y ~ (4.10)

/=0. (4.12)

The quantization of the free-field Lagrangian
has been considered by Kalb and Ramond' and by
Townsend, ' The renormalizability of one-loop
diagrams for second-rank skew symmetric po-
tentials coupled to pure Einstein gravity has been
investigated by Sezgin and van Nieuwenhuizen. '

V, COUPLINGS BETWEEN CLOSED
AND OPEN STRINGS

In the case of closed strings the torsion vector
V is zero, while Tf „, remains nonzero in the
presence of matter. We can write the explicit de-
pendence of hf, „& on the world sheet of string a
as'

then the equations of motion (4.7) or, alternatively,

(4.11)

imply that E„=P „and the equations of motion re-
duce to the massless scalar wave equation

We observe that (4.2) is invariant under the Abe-
lian gauge transformation

~f gv] 2~gg C$0gp v+ X Xg

where

(5.1)

(4.4)kf~ ]+X~ ~ X, ~ ~

The sources of @„„)are closed strings. 4 ' The
gauge transformation (4.4) is related to an infini-
tesimal displacement forming a loop fA dx„by
Stokes's theorem. Thus the ~f, „,act as gauge
potentials and the gauge-invariant fields derived
from the potentials are

do„„=dr, d $,v„„
with

(5.2)

(5.s)

Moreover, G(x) is the retarded Green's function

1
G„(x -x,) = ——g(x, x„(r,$))-

tf vX fp vl X fvX)g f)tu 3v ' (4.5) (5.4)

1
g2 +~~i),&~V~ ~ (4.5)

The Lagrangian L, can now be written in the mani-
festly gauge-invariant form

We treat the string as a one-dimensionally ex-
tended object which traces out a world sheet in

spacetime, x,(r„$,), where r, and $, are the in-



GAUGE INVARIANCE AND STRING INTERACTIONS IN A. . . 2873

variant parameters needed to describe the world
sheet.

it follows from (3.5) and (4.1) that

(5.5)

The torsion field V„ is generated by the end points
of string a, each contributing an opposite
"charge".

Let us now impose the gauge-fixing condition:

For closed strings we have

and, according to (5.1) and (5.5),

(5.6)

=3 y

'The open string "current" Tc „& is given by

(5.17)

TaCi v&=2&g «ai v& 7 -&a Ty

Moreover T«»& is conserved:

Taco vI|v

(5.7)

(5.8)

TCpv] 2Zga d0'a1 v5 g -Xa T, + —
JCv f ) y2g vgP

(5.18)

where the first term in (5.18) is for closed
strings only and j~(x) is given by

'The second-order Lagrangian'in the W„gauge
(4.1) is now

(5.9)

dx„(v, $)j „=ie, d7' " ' 5'(y -x,(r, g))
Ti

dT g p

(5.19)
which is explictly invariant under the gauge trans-
formation (4.4) in view of (5.8).

For open strings the situation is different, since
now the torsion V~ is nonvanishing. We choose
V to be given by

V„(y)=2le dr d(D, „G+( y —x, ) i (5.10)
1'i 0

where Q* is the Green's function for open strings.
The operator D, for the ath string is

From (5.18) we have

(5.20)

since j„„=0. The gauge-fixing condition (5.17)
gives"

2

8 dx~ 8

d$, ev, dr, 8$,

This operator has the property that

D.„f(x)= o.„„e.„f(x.) .
Integration by parts in (5.10) gives

(5.11)

(5.12)

(5.21)

By substituting (5.18) and (5.20) into (5.21) we ob-
tain

I 2
1& ~v)t ~v~ 3 2 0 Q C~ev3 Cpivl

Zg

ea
(5.15)

The solution of (5.5) for nonzero V„ is such that
(5.15) holds. This is consistent with the first-
order result for (2.11). By the anti symmetry of
g&„„& we see that

(5.16)

dxi,V„(y)= 2ie, -dr ' (v, g)G*( y —x, (7., $))
idea ~0

(5.13)
Then from (5.1) we have, replacing G by G*,

~f ~f
h& „&,„=-2ig, dad)D„'G "(y —x, (&, $))

Ti 0

= 2ig, d7' " (7', $)G*(y-x,(7, $))
ri a p

(5.14)
or, using (5.13),

+ 2h ry, v~T c p, v) (5.22)

~fuvj TL'g&) + (Tfsvj u s Ttva], v, g) (5.23)

satisfies explicitly jc„„&„=0.
The scale of the physical string constant g',

which has the dimensions of a mass, will be fixed

where T'c„„& refers to the closed-string contribu-
tion of T&„„, in (5.18) and T'&„„& „=0.

The Lagrangian (5.22) is manifestly gauge in-
variant under the gauge transformation (4.4). In
Ref. 12 it was proved that the gauge-fixing condi-
tion (5.17) for the auxiliary field W„ is a solution
of the equations of motion. Kalb and Ramond'
render their open-string Lagrangian invariant
under (4.4) by adding compensating fields, leading
to a massive pseudovector exchange between the
ends of the string. We have chosen to generalize
the open-string source T&„„,by Eq. (5.18), so that
the current
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(5.25)

Here m is the mass of the V, field. This result
is consistent with (5.13) provided that G*(x) is the
Green's function

G*(x)=-2 5(x')-e(x')4, J,(I '), (5.26)

where J,(x) is the Bessel function of order 1.
Thus, G*(x) obeys

(5.27)

By solving for V„ in (5.24) we get

(5.28)

Let us set S„=1/ej, where S„ is a, conserved
fermion-number current. density, associated with
the point sources on the ends of the string. 'Then

in view of (5.15) we obtain in the low-energy limit
q2 Q»

-V -—S -a'S4 ~2 4 4y (5.29)

where a is a fundamental length predicted to be

(5.30)

by g' =~,g=S' 'g, where j/I~ is the planck mass.
From (5.22) we obtain the equations of motion of
the V„ field:

(5.24)

where p. is the inverse Compton wavelength

short strings produce a point-like source with non-
zero fermion number.

VI. CONCLUDING REMARKS

We have found that the second-order Lagrangian
of the nonsymmetric extension of general rela-
tivity has two fundamental gauge invariances. One
is the gauge invariance of spacetime under the
tr ans formati. on

(6.1)

The other gauge invariance manifests itself under
the gauge transformation (4.4) when the gauge of
the auxiliary vector field W~ is fixed. The helicity
content of the meson exchanges between strings,
including gravitation, is (2, 1,0).

Ne are now able to understand more clearly
why Einstein's interpretation ' of g&„„& as Max-
well's electromagnetic field was incorrect and
led to the apparent lack of success of his nonsym-
metric extensions of general relativity. The
gauge -invariance properties and the single physical
degree of freedom of g&„„& cannot describe the
Maxwell field E„„.The rigorous Lagrangian des-
cribes a gauge theory of strings including grav-
ity. It is interesting that the Lagrangian I., -
displays the same states as the dual reso-
nance models. ' On the other hand, it could pos-
sibly describe the confinement picture of quarks. '
A supersymmetric extension in superspace of the
norisymmetric theory has been formulated by the
author "'"

In the low-energy limit, the Lagrangian L, goes
over into the classical version considered in
Ref. 2 with the additional contribution -(e'/g')
xa $&„,&SI„,&. The terms such as V„' now behave
as contact interaction terms V, '-S„'. A three-
string configuration could in the limit of infinitely
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