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The gauge invariance of the Lagrangian in the nonsymmetric extension of general relativity is investigated. The
skew parts of the nonsymmetric Hermitian g,,, in the weak-field approximation, act as gauge potentials that
correspond to the exchange of massless scalar mesons between one-dimensionally exténded objects (strings) in space-
time. For open strings a massive vector particle, associated with the torsion, is also exchanged between the end

points of the strings.

I. INTRODUCTION

In the following we shall present a new Lagran-
gian density with one-dimensionally extended
sources, based on the nonsymmetric, Hermitian
extension of general relativity. The present
theory contains the earlier published versions® 2
as special cases of a more general framework.
In the weak-field approximation, we investigate
the gauge structure of the Lagrangian density
and we find that g;,,, is an antisymmetric poten-
tial with loop (string) sources. Such fields have
been considered in the literature in connection
with theories of gravitation® and string models*-¢
and also in supergravity.”®

II. THE LAGRANGIAN

We shall begin with a derivation of the Lagran-
gian including sources. The resulting Lagrangian
and field equations will differ from previous de-
rivations® 2 in certain important respects. The
basic notation will be the same as in Refs. 1 and
2.

We raise and lower indices by using the relation

8480 =8"8,s=05 - (2.1)
A nonsymmetric affine connection W}, is related
to a (Hermitian) connection I'}, by the equation

WA, =T}, -282W,, (2.2)

where W,=3(WJ - W5,)=W¢, . is a (pure imaginary)
vector field. From (2.2) we have

T, =I¢,=0. (2.3)

A Hermitian contracted curvature tensor can be
formed,

R, ,(W)=W}, ; - %(Wgﬂ,v"' Wsﬂ.u)
-WE Wes+ WﬁBW,‘f, . (2.4)

By substituting (2.2) into (2.4), we get

Ru-v(W) =Ruv(r)+%w[u,vl ’ (2'5)

where .
W[u_v]=%(Wu_u" Wv,u.)
and
Ruv(r) = F;Bw,B - %(F(Bua),v"' r(?q;),u,)
~Te s+ Thap Tl (2.6)

is a Hermitian tensor.
We shall use geometrical units in which G=c¢
=1, Our Lagrangian density is given by

S:g“"Ruv(W)+§%g“(WAVa+ W,V,)
-%‘QEW]HW‘:J.""L». ’ (2.7)

where we have used the notation %,,=vV-gX,,.
Moreover, L, is the Lagrangiar density for the
matter sources,

T (2.8)

agu,u wy I .
where ¢, is a nonsymmetric (Hermitian) general-
ized energy-momentum tensor. V, is a (pure
imaginary) vector field and H, ,; is defined by

Hepp1=Vosu =V

Vi by
=V, u=Vis (2.9)

where we have used the Einstein + and - notation
for covariant differentiation with respect to I'},.!
We also define H'*¥] =g g H o1 =—H"1 In
our units g is a dimensionless constant and e
is a constant with the dimensions of a length.

We can now use the Palatini method, varying
g, W, and V as independent field variables (such
that 6g, 6W, and 6V vanish at the boundaries
of integration). The W variation gives

"2 4 v wp v uwy P 2R/V (] ~
g*Y ot Wi,+8 We =18 Wm+§50g”"W[am

+%(9 vely S4—g oY §¥)=0, (2.10)

Contracting over v and o and antisymmetrizing

2870 © 1981 The American Physical Society



23 GAUGE INVARIANCE AND STRING INTERACTIONS IN A... 2871

gives the equation

g[uv]“’:_fg (ua)Va. (2-11)
The variation with respect to g"” gives
GMV(W) =2T,,-B,,, (2.12)

where G, (W) is the generalized Einstein tensor
G, (W)=R, (W) -3g, R(W) (2.13)

with R, , =g, .8, R** and R=g“'R,,. Moreover,
we have

Buv=% [Wu V,+W,V, - éguvgaB(WaVB"— WBV“)]
+ %Euv ’ (2'14)

where B, , is a Hermitian tensor and

Euv=_ga8_H[vB]H[u a]+%guvH[qB]H[aBj . (2.15)
The variation with respect to V* gives
6‘“”‘,=—§§g‘“’wa. (2.16)

If we introduce another Hermitian connection
Al by the equation
AL, =T, +DL,(V), (2.17)
where D}, is defined by
gPVDz 0+gMDD‘;V

%’g (oo )Va(gu.ogpv _gu.ogov"'guugtap}) ) (2'18)

then (2.10) can be written as a metrically compat-
ible set of equations

gu;v-|oEguv,u"gpquu_gu.pA%v":o ’ (2'19)

where we have used (2.1) and (2.2). It can be
shown that

V=glo=V=g,0 - V-2MGm =0 (2.20)
and

ghurl =g “mn, (2.21)
where A=A, ,,. For a vector B* we have

B 4=B" +B°A{,+B°A,. (2.22)

Multiplying (2.22) by V—g and using (2.20), we
obtain by contracting (2.22) over p and o
B, =B, +B°N, . (2.23)

If we choose B* to be a real vector and take into
account the pure imaginary property of A,, we get

e

Re(8*,,)=8" , . (2.24)

The variational principle yields the four general-

ized Bianchi identities

[8°¥G,,(T)+8°G,,(1)] o+£*” ,6,,(T)=0.

(2.25)
We also have the two additional identities '
g[u.v]'”.u =%(g (uot)Vm)‘uL =0 (2.26)
and
2 X
o, =—§§(g “OW,) ,=0. (2.27)

We can write (2.7) as

=g uv(rgsrzv - I\zvr‘z“)) _ %<g[uu]‘ ) _gg (X )Va> Wu
—3OUMH G, —20"0T, 0%, (2.28)
where 1* , is a total divergence. We see that
W, acts as a Lagrange multiplier that guarantees
the four constraint equations (2.11).
We observe from (2.11) and (2.21) that

(2.29)

. Thus the vector field V, is proportional to the vec-

tor torsion field associated with the A connection.
In the present theory the torsion is a propagating
field. ’

When V, and T, vanish, the field equations
reduce to® ’

Buv, o~ 8oLl o= 84,15, =0, (2.30)
gtevl =0, (2.31)
" R.,(D)=2W, ,,. (2.32)
III. WEAK-FIELD APPROXIMATION
In the weak-fiéld approximation we have
Euv=Tuv* Ay (3.1)

where |%,,| < 1 and 7,, is the Minkowski metric
tensor. We shall choose for convenience x* =ix°
so that 9, ,=-6,,. The first-order solution for
T},, obtained from (2.17)-(2.19), is given by

r:v:"%(hxv.u +hu)g v hvu,x)
—g’gg(%Vu -5,7,). (3.2)
We shall use the definition g"V=g*%g%"g,, so
that p1*¥1= —n# *nB% 5 . =h(,,,." The Lagrangian
to second order is given by

L®=L,p+L,+TD, (3.3)

where Lgy is the second-order weak-field Lagran-
gian of general relativity with 2 =h_:
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Lgr =‘%h(uv)Dh(uv)+%h(u ), oh(uv),v
+%hu(hma).a—él‘h"u)"'zh(uv)T(uW . (3.4)

Moreover, L, is the part of the second-order
Lagrangian pertaining to the skew field %;,,; and
the torsion field V:

=1 1
Ls= —4h[uv]Dh(u.v]+ 2hy, al, crh[u.v]. v

2g 2g
_%h[uv], Wy ~3e h[u. SUP Y173, WV,

g2
) +3_e_2-Vu Vi- éHtmv:IH[:AWZI-+ 2hiunyTruvt s

(3.5)

and TD denotes a total divergence. The particle
spectrum of the skew contribution has been anal-
yzed previously'' and found to be free of ghosts
for the (complex) Hermitian theory but not for
the real nonsymmetric theory. The additional
new term 3H, H.,,, in (3.5) will not generate
ghosts in the physical particle spectrum, since
it has the form of a Maxwell field contribution
to the Lagrangian. Thus the Hermitian version
of the theory possesses a unitary S matrix.

IV. GAUGE INVARIANCES OF THE LAGRANGIAN

Let us consider the situation when V, =T,
=0. We shall fix the auxiliary vector field W,
by the condition'?

Wu:::% h[uv],v' (4'1)
Then (3.5) becomes
Ls=—%h[uvlgh[uﬂ- %h[u o, Muviw e (4.2)

The equations of motion that follow from (4.2)
are

Dh[uv1+h[uxq,x,u +h[xu;,v,x=0 . (4.3)

We observe that (4.2) is invariant under the Abe-
lian gauge transformation

h —'h[uu]+xu,u_)‘ ‘ (4.4)

uvl v,u *

The sources of &, ,, are closed strings.*”® The
gauge transformation (4.4) is related to an infini-
tesimal displacement forming a loop $A, dx, by
Stokes’s theorem. Thus the 7, ,, act as gauge’
potentials and the gauge-invariant fields derived
from the potentials are

Fuv).=h'[u,v].l+h[v1],u +h[xu l,v* (4 ‘5)

The Lagrangian L can now be written in the mani-
festly gauge-invariant form

LszxLzFuu)\Fuu)\' (4.6)

The equations of motion
wru=0 (4.7)

are equivalent to Eqs. (4.3). Let us impose the
four gauge conditions

h[uu].v=0 (4-8)

F

which follow in the first-order from (2.11) when
V,=0. Then the equations of motion become

O,y = 0. 4.9

1t is well known®™® that #;,,, and F,,, represent
a scalar one degree of freedom. The coupling
between two strings in the theory corresponds to
the exchange of a scalar massless meson. If we
define the dual field

*Fu=é€uquFaﬂv= euaﬂyh[asl.v ’ ) (4'10)
then the equations of motion (4.7) or, alternatively,

*Foo=0 (4.11)

by 1

imply that F, =¢ , and the equations of motion re-
duce to the massless scalar wave equation

O¢=0. (4.12)

The quantization of the free-field Lagrangian
has been considered by Kalb and Ramond* and by
Townsend.” The renormalizability of one-loop
diagrams for second-rank skew symmetric po-
tentials coupled to pure Einstein gravity has been
investigated by Sezgin and van Nieuwenhuizen.?

V. COUPLINGS BETWEEN CLOSED
AND OPEN STRINGS

In the case of closed strings the torsion vector
V, is zero, while T, , remains nonzero in the
presence of matter. We can write the explicit de-
pendence of 7;,,; on the world sheet of string a
as*

Ty = 2ig [ do,,Glx =x,), 5.1)
where
doauu = dTadgaoauv (5 .2)
with
% By, ¥Xyu 8%, 5.3
Tou= o7, 88, 0F, BT, e

Moreover, G(x) is the retarded Green’s funci:ion

GR(x _xa)= _%9(x° —xao('T, g))

X 8(lx —x,(7, O . (5.4)

We treat the string as a one-dimensionally ex-
tended object which traces out a world sheet in
spacetime, x,(7,, ,), where 7, and £, are the in-
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variant parameters needed to describe the world
sheet. .
It follows from (3.5) and (4.1) that

g = 4Tt w1 - (5.5)
For closed strings we have

Py, =0 (5.6)
and, according to (5.1) and (5.5),

Torun1 =318, f A04,, 0%y =x4(7,£)). (5.7)

alpv]

Moreover Ty, ,; is conserved:

T

aluvlyy =

The second-order Lagrangian'in the W, gauge
(4.1) is now

Ls=-1l§F“mFu,,,‘+2h[u,,]T[u,,], (5.9)

which is explictly invariant under the gauge trans-
formation (4.4) in view of (5.8).

For open strings the situation is different, since
now the torsion V, is nonvanishing. We choose
V, to be given by

T 73
Vu(y)=2ieaf def d£D,, G*(y-x,), (5.10)
Ti [¢]
where G* is the Green’s function for open strings.
The operator D,, for the ath string is

_Gx, ® dx, ®

T dE, 8T, dT,0&,

(5.11)

This operator has the property that

D4 f®)= 0oy flka) - (5.12)
Integration by parts in (5.10) gives
* ¢
Vatn)=2ie, [ " ar (%21, 6164y -n(r,00)]
T3 Ta

1]
(5.13)
Then from (5.1) we have, replacing G by G*,

* ¢
h[uV],vz—Ziguf de dﬁDauG*(y—xa(‘r,é))
L 0

- 2ig, [ " ar[ %2, 06 y- 5, (r, 0]

(5.14)
or, using (5.13),

h[uv]'vz—%vu‘ (5.15)
a

The solution of (5.5) for nonzero V, is such that
(5.15) holds. This is consistent with the first-
order result for (2.11). By the antisymmetry of
hi,yy We see that

V,,.=0. ' (5.16)

0. | (5.8).

The torsionfield V, is generated by the end points
of string a, each contributing an opposite
“charge”. .

Let us now impose the gauge-fixing condition:

W, = %(hm],, - %—V,J —60 Ty, (5.17)

The open string “current” T, ,; is given by

. e .
T[uv] = %tgufdaauvéq(y —xa(T’ g))"’ EE Jtv,uios

(5.18)
where the first term in (5.18) is for closed
strings only and j,(x) is given by

L o [dxu(T, ¢
Ju =7'eaf dT['—‘iﬂgT_g) 64(3) =%4(7, 5))] .
Ti 0

(5.19)

From (5.18) we have
e .
T[uv],v__aED]u,’ » (520)

since j,,, =0. The gauge-fixing condition (5.17)

' gives!?

L=F ,F EéLZV |4 \4 V
sT128 o uvx+3e2 wu TV e, 1Y (s,

+ 2h[uV1(T[uVJ - ZD-IT[uchr,v)
4g . ,
+7gm TiuonoVu - (5.21)
By substituting (5.18) and (5.20) into (5.21) we ob-
tain :

2

g
Ls:éFumFum"'g e_zvuVu Vi, iVium

+2h[uv]Tc['u.v] =3uVus (5.22)

where T¢,,, refers to the closed-string contribu-
tion of T, in (5.18) and T¢, ,,,,=0.

The Lagrangian (5.22) is manifestly gauge in-
variant under the gauge transformation (4.4). In
Ref. 12 it was proved that the gauge -fixing condi-
tion (5.17) for the auxiliary field W, is a solution
of the equations of motion. Kalb and Ramond*
render their open-string Lagrangian invariant
under (4.4) by adding compensating fields, leading
to a massive pseudovector exchange between the
ends of the string. We have chosen to generalize
the open-string source T, ,; by Eq. (5.18), so that
the current

Jtw1= Tund =07 Tuotivyo = Trrodo0u) (5.23)

satisfies explicitly ji,,,,,=0.
The scale of the physical string constant g7,
which has the dimensions of a mass, will be fixed
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by g'=M,g=7Z”2g, where M, is the Planck mass.
From (5.22) we obtain the equations of motion of
the v, field:

@+ MZ)V“ =, (5.24)
where u is the inverse Compton wavelength
_m_ 4 1/2g
u—h_—(3> e ‘ (5.25)

Here m is the mass of the V, field. This result
is consistent with (5.13) provided that G*(x) is the
Green’s function '

GHix)= =50 00 =007 Thr (), (5.26)
where J,(x) is the Bessel function of order 1.
Thus, G*(x) obeys

@+ #AGH(x) =8 (). (5.27)
By solving for V, in (5.24) we get
V=% u?)%, . (5.28)

Let us set S,=1/e j,, where S, is a conserved
fermion-number current density, associated with
the point sources on the ends of the string. Then
in view of (5.15) we obtain in the low-energy limit
q*~0:

§V4~-§s4~a254, (5.29)
where a is a fundamental length predicted to be
1/4 1/2
a=YE . (ﬁ) (5’5> . (5.30)
I 4 m,

In the low-energy limit, the Lagrangian L goes
over into the classical version considered in

Ref. 2 with the additional contribution —(e2/g?)

X a*Sy, 1Sty »1- The terms such as V,* now behave
as contact interaction terms V,*~S,%. A three-
string configuration could in the limit of infinitely

short strings produce a point-like source with non-
zero fermion number.

V1. CONCLUDING REMARKS

We have found that the second-order Lagrangian

_ of the nonsymmetric extension of general rela-

tivity has two fundamental gauge invariances. One
is the gauge invariance of spacetime under the
transformation

h(uv)"h(uu)"'gu.u"' gu,u . ' (6.1)

The other gauge invariance manifests itself under
the gauge transformation (4.4) when the gauge of
the auxiliary vector field W, is fixed. The helicity
content of the meson exchanges between strings,
including gravitation, is (2,1,0).

We are now able to understand more clearly
why Einstein’s interpretation®® of g;,,; as Max-
well’s electromagnetic field was incorrect and
led to the apparent lack of success of his nonsym-
metric extensions of general relativity. The
gauge-invariance properties and the single physical
degree of freedom of g;,,, cannot describe the
Maxwell field F,,. The rigorous Lagrangian des-
cribes a gauge theory of strings including grav-
ity. It is interesting that'the Lagrangian L -
displays the same states as the dual reso-
nance models.* On the other hand, it could pos-
sibly describe the confinement picture of quarks.®
A supersymmetric extension in superspace of the
nonsymmetric theory has been formulated by the
author,'*1°
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