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%e present evidence for the existence of a universal upper bound of magnitude 2mR /Sic to the entropy-to-energy
ratio S/E of an arbitrary system of effective radius R. For systems with negligible self-, gravity, the bound follows
from application of the second law of thermodynamics to a gedanken experiment involving a black hole. Direct
statistical arguments are also discussed. A microcanonical approach of Gibbons illustrates for simple systems
(gravitating and not) the reason behind the bound, and the connection of R with the longest dimension of the system.
A more general approach establishes the bound for a relativistic field system contained in a cavity of arbitrary shape,
or in a closed universe. Black holes also comply with the bound; in fact they actually attain it. Thus, as long
suspected, black holes have the maximum entropy for given mass and size which is allowed by quantum theory and
general relativity.

I. INTRODUCTION

Gravitational entropy is one of the most in-
triguing concepts that have emerged from much
recent work on quantum fields in curved space-
time and quantum gravity. " Its most striking
manifestation occurs in Hawking's radiation pro-
cess by black holes, ' in which it is connected with
the area of the event horizon. Even though this
area behaves very much like entropy, two obsta-
cles have stood in the way of attempts to under-
stand the still mysterious connection between
area, a geometrical quantity, and entropy, a ther-
modynamic one. First, since its very inception,
black-hole entropy has seemed to be numerically
much larger than the entropy of any ordinary sys-
tem of like mass. ' Thus, a solar-mass black hole
has black-hole entropy 10' times the sun's ther-
mal entropy. Is it not preposterous to think there
is a common denominator in two quantities so un-
like in sizeV Second, even if the two entropies are
of like origin, how can one hope to express black-
hole entropy in statistical terms (the logarithm of
a number of interior states or configurations) when
that task evidently demands a full accounting of all
that could possibly happen inside the hole~

In this paper we address only the first difficulty.
We point out that it arises from the insistence in
comparing black holes with nonrelativistic sys-
tems. When compared to relativistic systems of
massless particles, black holes do not have in-
ordinately large entropy. Bather, black-hole en-
tropy is revealed as matching the maximal en-
tropy for a given mass of more ordinary systems:
There is no gap in magnitude between black-hole
entropy and ordinary entropy. This comes about
because of the existence of a hitherto unnoticed
upper bound to the entropy-to-energy ratio of non-
black-hole systems of given effective radius R

(see Sec. II for definition):

S/E &2ttE (1)
(in units where h=5= c= 6=1). Making this
bound plausible is our main task in this paper.
For systems with negligible self-gravity, inequal-
ity (1) keeps S from growing faster than E, a well-
known property of ordinary bodies which is re-
sponsible for the seeming gap between this entropy
and black-hole entropy (which grows as E'). How-
ever, as one compresses a body to its gravitation-
al radius, R becomes of order 2E, and S can begin
growing as F.' thus catching up" with black-hole
entropy. The closing of the gap shows it is con-
ceivable that black-hole entropy should be calcu-
lable in terms of the number of interior black-
hole conf igurations. '

The plan of this paper is as follows. Relation
(1) is formulated as a conjecture in Sec. II, where
we also point out that for systems with negligible
self-gravity it follows from the second law. Yet
this way of deriving it gives no hint as to what
physically limits the entropy. Thus other ap-
proaches, based on statistical physics, are im-
perative in understanding the limit, and in extend-
ing it to strongly gravitating systems. One such
approach, based on the microcanonical ensemble,
has been pioneered by Gibbons. ' We describe this
approach in Sec. II. It shows what keeps S/E from
reaching arbitrarily large values. Its main dis-
advantage is that it can only be applied on a case-
by-ease basis. It does suggest a more general
approach to the problem which we develop in Sec.
III, and which is found to lead directly to the ca-
nonical ensemble. By this method one goes be-
yond examples to establish the upper bound on
S/E for a broad class of systems with negligible
self-gravity. The existence of the bound is found
to be intimately connected with the vacuum energy
of fields.

287 1981 The American Physical Society



JACOB D. BEKEN STEIN

II. WHY A BOUND ON S/E?

Classically, entropy is a measure of the phase
space available to the system in question. It is
then not difficult to see why an upper bound might
exist for S/E. Let the system hive energy E, or
alternatively, let its energy be no more than E.
This amounts to a limitation on the momentum
space avail3ble to the system's components pro-
vided the potential energy is bounded from below.
If the system is also bounded in space, then its
phase space is bounded, and so mu t its entropy,
The bound evidently increases with F.. But our
simple argument cannot establish that it increases
linearly and neither can it say anything about the
proportionality constant. In fact, it would seem
impossible to write down a concrete bound for
S/'E without going into details about the system.
This may explain why such a bound has gone un-
noticed by workers in statistical mechanics (but
see Brernermann' for an information-theoretic
analog}.

In fact, black-hole physics yields a specific
form for the upper bound on S/E for systems with
negligible self-gravity. According to the gener-
alized second law of thermodynamics, "' the sum
of the thermal entropy outside a black hole and the
black-hole entropy (-,' of the horizon's surface
area) should never decrease. Now, it has long
been known" that when a stationary hole absorbs
a body with negligible self-gravity, energy I; and
effective radius R (for the precise definition see
Ref. 6), the hole's surface area must increase by
at least 8~ED. Since one can arrange the absorption
process so that this minimal increase can be at-
tained, ' the second law will be violated unless the
body's entropy (what disappears from the hole's
exterior) cannot exceed 2mER. Thus we obtain the
bound (1) on S/E as applied to weakly gravitating
bodies. Note that although the quoted minimum
area increase is derived under the assumption
that the body is small compared to the hole, noth-
ing prevents us from choosing a hole as large as
needed (this also makes the Hawking radiation en-
tropy negligible}. Hence (1) holds regardless of
the scale of R.

The intriguing feature of the previous argument
is that it uses a law whose very meaning stems
from gravitation to derive a bound on S/E for sys-
tems in which gravitation is negligible, a bound
which has nothing to do with gravity [written out
fully, relation (1) would involve 5 and c, but not
Gj. This provides a striking illustration of the
unity of physics, but it also throws a challenge at
the theorist: Provide a proof for the bound inde-
pendent of gravitational considerations. To at-
tempt this will be the main task before us later on

in this paper.
The question suggests itself, how dependent is

the bound (1) on the assumption that the self-grav-
ity of the system is negligible' To clarify mat-
ters, consider a Kerr black hole, a system with
maxiQlal gravitational effects. Let its energy be
E; then its surface area will be

A= 4~([E+ (E' a' q')'~']'+ a2] (2)

where a is the specific angular momentum and Q
the charge. We define the effective radius R by
4mB'=—A, Then it is clear that R &2K, the equal-
ity corresponding to a=@=0. Now since S=A/4,
S/ER = mR/E; it then follows from the inequal-
ity that Kerr holes conform to the bound (1); the
Schwarzschild hole actually attains the bound.

If systems with negligible self-gravity and black
holes both obey the bound (1), it is reasonable to
assume that systems in which gravity is of inter-
mediate strength do also. Thus bound (1) appears
to be of universal validity so long as R is appro-
priately defined. In fact, guided by the 8 for a
Kerr black hole and that for an ordinary spherical
object (the metric radius), we shall be assuming
that R for an arbitrary system is given in terms
of the area, A of that (quasi) spherical surface
which circumscribes the system by

R = (A/4~)'~'.

The only exception to (3) will be for closed uni-
verses which, of course, lack any circumscrib-
ing sphere". For them we define 8 in terms of
the volume of the universe.

How can we begin to see directly that bound (1)
actually holds for systems with negligible self-
gravity'P For systems composed of nonrelativistic
particles this is easy and the basic idea has long
been known. ' Let the system s mass be M, and
let m be the typical mass of the active constituent
particles (stars, atoms, nuclei, and nucleons, de-
pending on the kind of system). There are roughly
M/m such particles. Thus the system's entropy
will also be M/m in order of magnitude and its
entropy-to-energy ratio 1/m. On the other hand,
the system's size will exceed, typically by many
orders of magnitude, the Compton lengths of its
constituent particles, which are of order 1/m.
Thus the bound (1) is obeyed, with orders of mag-
nitude to spare.

Evidently, systems composed of nonrelativistic
particles are not very interesting from the point
of view of the bound. In them the bulk of the ener-
gy is tied up in rest masses, and does not partake
of the degrees of freedom which are manifested in
the entropy. To put our proposed bound to an in-
teresting test, we must consider assemblies of
massless particles. Consider, then, ordinary
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blackbody radiation confined to a cavity. The fa-
miliar formulas' tell us that

S/E = 4/3T, (4)

where T is the temperature and E the thermody-
namic energy of the radiation. Formula (4) seems
to predict that S/E can be made as large as we

please by lowering T sufficiently. But in fact the
thermodynamic description of radiation on which
(4) is based breaks down when T is no longer large
compared to the reciprocal of the characteristic
size of the system (typical wavelength not small
compared to cavity size). Boundary effects make
themselves felt. These can be expected to arrest
the growth of S/E as T is lowered further. The
transition in behavior comes just when S/E is of
order of the bound set by (1), so that the present
example comes close to challenging (1). This cir-
cumstance motivates a shift of interest to the S/E
of massless quantum fields confined to a region of
prescribed size and shape by a material cavity (or
in the case of a closed universe by the topology of
the curved spacetime).

Gibbons' has developed a microcanonical ap-
proach for determining the maximal S/E for such
systems. He labels the quantum states of the
field by the occupation numbers of the various
eigenfrequencies and takes the energy E of each
state to be the sum of the eigenfrequencies
weighted by the appropriate occupation numbers.
He then assumes the entropy at a given F. to be
given by the Boltzmann formula. '

S„(E)= lnN(E),

where N(E) is the number of distinct states with

energy E. N(E) can always be computed explicitly,
at least for low E, if the eigenfrequency spectrum
is known. But thus far no general method for
doing this has emerged and N(E) must be computed
separately and Laboriously for each spectrum. In
all cases for which this has been done (i.e., scalar
field confined to a. one-dimensional cavity, to the
flat interior of a two-sphere, or to an Einstein
universe S'), lnN(E)/E has a maximum at some
moderately low E. The maxima all lie below the
bound (1) (with R interpreted as the radius of the
appropriate n-sphere) thus providing support for
it.

These results also support our remarks about
the relation between the bound on S/E and the
breakdown of the thermodynamic (continuum) de-
scription of a field at low temperatures (energies).
They suggest that the maximal S/E is a phenome-
non of the low-excitation states of field. This
may explain why the existence of the bound (1) has
not been widely noticed. When cavities having
two or three very different scales of length are

considered in the Gibbons formalism, it becomes
clear that the maximal S/E is determined by the
longest scale (that most clearly associated with
the lowest eigenfrequencies). This feature is the
primary motivation for the definition of effective
radius (3): twice E is never less than the longest
dimension of the system.

DeWitt has remarked' that the question of a uni-
versal bound for S/E is quite unique in that it can
have no meaning except when a particular choice
of the zero of energy is made: obviously (1) cannot
hold for every such choice. Gibbons's procedure
exemplifies one possible choice of zero: For
every field system the zero of energy is the ener-
gy of the vacuum (no-particles) state. This choice
is not unique; in fact there is an alternative one
more in harmony with the lessons of quantum field
theory. The (regularized) vacuum energy of a
field in flat space confined by some boundaries is,
in general, different from the vacuum energy of
that field in unconfined Minkowski spa, cetime. '
The most famous example of this is, of course,
the Casimir effect" "which has been verified ex-
perimentally. It thus seems most natural to take,
for each type of field, the vacuum energy in un-
confined Minkowski spacetime as the zero of ener-
gy. It is known that with this choice the energy of
a given field state is its gravitating energy (active
gravitational mass). ' lt is thus just that energy
responsible for the growth in horizon area in the
gedanken experiment just discussed. Thus, at
least for systems with negligible self-gravity, the
present definition of the zero of energy is the ap-
propriate one for stating the bound on S/E in the
form (1). By extension of this idea we shall take,
for any field system, the energy of the no-quanta
state to equal the vacuum energy as computed by
an appropriate regularization scheme. Thus in
the microcanonical approach just described, a
constant (different for each system) must be added
to every energy computed from occupation num-

bers alone.
The big question remaining is, how may the

bound (1) be established by the microcanonical
method without recourse to a case-by-case analy-
sis which, in any case, could not proceed far be-
cause the eigenfrequency spectra of most field
systems are not known~ We will now replace this
question by a more general one which, not only
proves more tractable, but also turns out to be a
more fundamental statement of the problem being
considered. To describe this approach we first
recall a few results from quantum statistics. ' A

quantum system is described by its Hamiltonian

H; its state is described by a density operator p
satisfying the norm@ization condition

Trp= 1, (6)
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The mean energy is

E= Tr(PH)

and the entropy

S= -Tr(plnp) .
It is well known that the microcanonical entropy

(5}is just the maximal value which S attains over
all p which satisfy (6) and which assign nonvanish-
ing probabilities only to states with energy F..
Thus

lnN(E)/E = max (S/E), (9)

with the maximization carried out under the same
conditions as before. In particular, (9) holds for
th'at Z for which I N(Z)/Z is la gest. If we ow
remove the constraint that p is confined to a given
Z, max(S/Z) can only increase. Therefore

max[lnN(Z)/E] & max(S/Z),

where the maximization in the left-hand side is
over E, while that in the right-hand side is over
all p which fulfill (6). Thus the peak S«/Z value
is bounded by the maximum that S/E attains for an
arbitrary normalized p. If it can be shown that
the last quantity is below the bound (1), then one
will know that S«/Z fulfills it also. As will be-
come clear in Sec. III, this program can be im-
plemented without recour se to a case-by- case
investigation.

Most important, the new statement of the prob-
lem is important in its own right. Very often the
state of a statistical system is not one of definite
energy, but has a well-defined mean energy. The
maximum possible value of S/E is then of interest
and, as (9}shows, it cannot be inferred from
microcanonical considerations. Thus from now
on we shall concentrate on the question of what
upper bound can be set on S/E for an arbitrary p.

III. BOUND ON S/E FROM QUANTUM STATISTICS

For simplicity we consider only systems com-
posed exclusively of massless fields: scalar,
electromagnetic, and neutrino (for technical rea-
sons we do not consider gauge or metric fields).
We ignore interactions, except as needed in en-
forcing boundary conditions at cavity walls. We
assume the systems are stationary; this is clearly
not a great restriction, for stationarity often im-
plies equilibrium and maximal 8, other things be-
ing equal. We consider fie1.ds in flat spacetime
confined by cavities of arbitrary shape, or fields
confined in a model (Einstein) universe of con-
stant space curvature. We do not, however, con-
sider fields in flat spacetimes with non-Euclidean
topologies (i.e., cube with opposite faces identified
to make T' topology).

Let us ask which p makes S/Z maximal'? It is
evidently given by the solution of the variational
problem

6[- Tr(p lnp)/Tr(pH) —X Tr(p)] = 0,
where X is a Lagrange multiplier used to enforce
the normalization condition (6). Varying p, re-
arranging terms and normalizing, one finds

(12)

(13)

(14)

Thus the wanted distribution is the canonical one
whose inverse temperature parameter is just the
peak value of S/Z for the system. To find this
value one computes S/Z with (12) and compares
with (14) to get

The problem is thus superficially simple; the
maximal S/E is just that P for which the partition
function is unity. However, for the field systems
we have in mind this prescription is not trivially
applied. Each field mode has a ground-state en-
ergy +co/2 for bosons or fermions, respectively.
If lnZ is calculated naively, the mode sum of
ground energies will make it diverge unless the
boson and fermion gr'ound-state energies cancel
miraculously. We thus need to regularize lnZ.
In principle, one knows how to do this." But tech-
nical difficulties have limited explici. t calculations
of the finite lnZ to a few systems of high symme-
try, ""or to the high-"" and low-" temperature
limits. Since we are interested in the general P
case, and wish to treat systems wholesale rather
than on a case-by-case basis, it seems reasonable
to adopt a pragmatic approach.

Let &,. be the eigenfrequencies for our system
and let them be g,--fold degenerate. Then at in-
verse temperature P the mean energy in all spe-
cies is given by

F=E,+Q g,.(u,.(e'"~+1) ', (16)

where upper (lower) signs are for boson (fermion)
modes. The Z, is the sum of regulari red vacuum
enery'. es, while the mode sum is just the usual
thermal contribution. That the intuitive form (16)
follows from detailed regularization of the finite-
temperature quantum fie1,d theory has been amply
demonstrated by Al'taie and Dowker" and Dowker
and Kennedy. " Substituting (16) and (12) into (7)
and integrating with respect to P, one obtains the
fini fe expression

InZ=C —PZ, +g +g, ln(1+s "'),
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where C is a constant of integration. Now using
(12) to calculate S, one finds that at zero temper-
ature (P- ~) S- C provided no +,. vanishes (see
Appendix C). However, for the fields we have In
mind the vacuum state (absence of quanta) is non-
degenerate; thus we expect S- 0 at zero tempera-
ture (third law of thermodynamics). Hence, we
must set C=O.

It is clear from (17) that, provided Eo& 0, lnZ
is a monotonic decreasing function of P. As P-0,
lnZ- ~, while lnZ —-~ for P- ~. Hence by con-
tinuity there exists some P for which (15) is sat-
isfied and there exists a maximal S/E. This is
clearly not the case if Fo- 0. Later we shall in-
dicate how one copes with the case Eo 0 within
our formalism, but we shall have to assume that
in nature no complete system can have a negative
vacuum energy. Actually, seeming counterexam-
ples to this assumption can easily be found. The
Casimir vacuum energies of the electromagnetic'
and scalar fields" between two infinite parallel
plates, or the scalar vacuum energies in some in-
finitely long rectangular pipes" are all negative.
But these are infinite systems and for them (1)
does not set a bound on S/E. The fact that E, &0
and that no P, exists is, therefore, irrelevent
here.

Fields in flat spaces with non-Euclidean topolo-
gies also frequently have E, &0 even when the
space is finite. ' But though non-Euclidean topology
is important in highly curved spacetimes, the
physical relevance of flat non-Euclidean spaces is
yet to be demonstrated. Presently they are mere
mathematical models in which regularization cal-
culations are tractable. For this reason we do not
consider such spaces. " By contrast to the above,
vacuum energies of massless fields in the Einstein
(curved) universe with topology S' are all positive.
Likewise, the electromagnetic vacuum energy in a
Euclidean, flat, spherical space is positive. " The
known facts are few but they do indicate that E,& 0
is a physically plausible assumption.

A. Case withEO)0

Assume, as is probably the case, that the vacu-
um energy of every species of field confined to a
finite cavity, or to a compact universe is positive;
let E» be the vacuum energy for the kth field.
Now solve the equation

(0)

E» P» 'H»(P»)=—+P» 'g——g, ln(1+e " ') (18)

sions (18) for all k into (17) evaluated at P= P, we

get

(19)

Now, as direct differentiation shows, p 'H»(p) is
monotonic decreasing in P both for fermions and
bosons. It is then fairly clear from (19) that )8,

is bracketed by the smallest and largest P„. This
leads to great simplification: By treating field
species separately one can find upper and loiter
bounds for P0 for any conceivable mixture of
species.

UPPer bound

Introduce n»((()), the number of modes (counting
degeneracies) of species @with eigenfrequencies
up to u. Clearly at every ~ which is an eigen-
value, n»((v) has a, step discontinuity of strength
+g,. This (18) can be written as

E «() f =(d«(dw)ln(1 ««)»«.
0

Integration by parts gives

(20)

E„= n(»(u)( e""+1) 'd(u
0

(21)

(22)

where the sum includes all eigenfrequencies up to
The inequality holds (for any p& 0) since every

&u; & (v, while n»((v) is just the number of terms in
the sum. The sense of the inequality is clearly
preserved if the sum is extended to all eigenfre-
quencies in which case it becomes the well-known
g function for the Hamiltonian of the field k' '
(see also Appendix B),

Since r»(p) converges only for p) 3, we restrict
all our following remarks to that range. We now
use (23) to set an upper bound on the integral in
(21):

as a condition for P, . In most cases we know little
about the precise form of n, . However, one can
easily obtain from (21) an upper bound for P» which
will suffice for our purpose —establishing that (1)
holds generally.

One starts with the obvious inequality' (valid for
p&0)

(which involves the sum over the kth field's modes
only) for the parameter P». Repeat for every other
species. One has then a series of distinct P». Now

Eo=p»EO». Therefore, substituting the expres-

(24)

Evaluating the integral" in terms of niemann's
f function f„(p) and isolating p», we get the bound
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P, & [I'(I+p)r (1 + p)K„(p)E., '(I —6,2 ')]'"'"',
(25)

P, (scalar; S') & 5.70a. (26)

This may be compared with the exact value

p =4.13a which is obtained by finding (numerically)
the zero of lnZ, an exact expression for which

may be inferred from the work of Dowker and
Critchley" [Eqs. (30)-(33)]. In like manner, and
still using p= 6.4, one finds

where 5„=1for fermions and 6,=0 for bosons.
For the scalar, electromagnetic, and neutrino

fields in an Einstein universe one knows all quan-
tities in (25)." For example, for the scalar field
E» —(240a) ' and fs(p) = a~&'s(p —2), where a is
the radius of the universe. By trial and error one
finds that p=6.4 gives nearly the lowest bound on

P„. Inserting numbers" one gets

~ = r(1+p, ) exp[-(1+ p, )p(1+ p, )]

or its alternative form

(30)

universe, "" are precise results known (and for
the Casimir energies of some infinitely long sys-
tems not of relevance here" "). In all these cases
f =Z»/g, &o, is in the range 10 '-10 '. In fact,
since ~, sets the energy scale in each ease, and

g, is of order unity, one expects, on order-of-
magnitude grounds, that ] will be within a few
orders of magnitude of unity. %'e shall allow it
the generous range 10 -10'. Although one can
conceive of Z» being exactly zero (see below), it
seems unlikely that it can fall below the range in-
dicated and yet be nonvanishing.

Let us now find the tightest bound on P„&u, by dif-
ferentiating the RHS of (29}.with respect to p; it
occurs for p= p, where p, is determined by

P,(neutrino; S') & 4.25a, (27)

which again compares favorably with the exact
result P=2.61a inferred from the InZ implicit in
Dowker and Al'taie. " Finally, for the electro-
magnetic field one has (also with p= 6.4)

P„(electromagnetic; S') & 2.70a. (28)

In this case there exists no exact result for com-
parison. Evidently, if we identify a with the ef-
fective radius of the universe R, then all our P, 's
are below 2mB. Consequently, an Einstein uni-
verse filled with any mixture of photons, neutrinos
and scalar particles obeys (1).

For fields in flat space confined to a cavity of
arbitrary shape one does not generally know Epy,
or the spectrum out of which f~(p) is constructed.
To minimize the effect of our ignorance we work
with large p; in the limit of large p, t;~(p)- g,e, ~,

so we need know only the first eigenfrequency and
its degeneracy. Also, because of the exponent in
(25), the dependence on E„is weak. Actually, we
cannot take p- ~; because of the I'(1+p) the bound
on P„would blow up. But it will be sufficient to
restrict attention to po 10. Appendix B shows
that for such p, approximating g~ by g~(u, leads
to fractional errors of order 10 '-10 ' in the
right-hand side (RHS) of (25) for all cases in which
one knows &„ accurately. The replacement is thus
a good approximation. Also for p&10 one may
neglect the 2-~ in (25) and replace g„(1+p) by
unity. The fractional errors incurred are only
10-4. %e thus get the bound

where

y(p) =- d lnI'(p)/dp. (32)

P„(g, & 13.30. (33)

The only question now is what is the first eigen-
frequency w, . As shown in Appendix A, for fields
in a sphere of radius R, &o, = m/R for the scalar
and neutrino fields and +,= 2.082/R for the elec-
tromagnetic field. As shown in Appendix C, for
a nonspherical cavity we have u, & w/R for scalar
and neutrino fields and ~, & 2.082/R for the elec-
tromagnetic field, where R is the radius of the
sphere which circumscribes the cavity; this is
just the cavity's effective radius by (3). Combin-
ing these values with (33) we finally get

P~(scalar or neutrino; cavity) & 4.233R (34)

By inserting in (30) a trial p, - 10, one finds the f
for which it gives the best upper bound for P,u&„.

that bound is obtained by simply evaluating the
RHS of (31). Inserting numerical values, "one
finds that p, increases monotonically from 10 to
12.8 as ] goes from 2.1x10 ' to l.1x10-', simul-
taneously the bound increases from 10.50 to 13.30.
For $ & 2.1 x 10 ' the p, would be below 10. In or-
der to preserve the accuracy of our approximation,
we simply use p=10 in (29} for ( &2.1x10 '. Evi-
dently the bound on P~+, decreases as ( increases
beyond 2.1x10 '. Hence for 10 ' & ] & 10' (or even
larger)

[F(1+p) %~JE»] . (29) P, (electr'omagnetic; cavity) & 6.388R . (35)

Calculations of Zp„are proverbial for their dif-
ficulty. Only for the electromagnetic field in a,

sphere, "and for all three fields in the Einstein

Thus for scalar and neutrino fields, P~ &2mB.
The RHS of (35) exceeds 2' by only one percent.
But one can be quite confident that for the electro-
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magnetic field P» is also below 2mR. To have it
otherwise would require an unlikely "conspir-
acy"": ]= 10 ', u&, = 2.082/R, and n»(&u}

= f»(12 8).w"' .The last condition cannot possi-
bly hold for arbitrarily large u. The second
would be true only for a quasispherical cavity,
but for a spherical cavity one knows" that ( = V.39
~ 10 ', not 10 '. Hence, we can see that an arbi-
trary mixture of scalar, electromagnetic, and
neutrino fields would satisfy bound (1}.

2. Lower bound

Thus far we have no inkling of how much our
bounds for Po overestimate it. It is important to
know this in order to support our claim in Sec. I
that ordinary systems can approach bound (1) and
thus close the gap between ordinary matter and
black holes. There is no easier way to settle
this than to obtain lower bounds for the P». Let
us return to the defining relation (18}. If one dis-
cards in the sum the terms beyond that with the
lowest &,. and solves

P»Eo» =+g, ln(l + e» ') (36}

for P», one will evidently get an underestimate for
P». We only consider the case for which E»«&o„'
examples" ""for which Spy is known are of this
type. Then (36}can be consistent only if
exp( —P»a, ) «1 so that

P E gc»~1 (37)

or, in our previous notation,
~k1

P&»(u, = e (38}

Numerically we find that as $ decreases from 10 '
to 10 4 to 10 ', P»co, increases from 3.4 to 7.2 to
11.4. These values are consistent with (33). As
we mentioned, u&, & 2.082/R for the electromagnet-
ic field and m, & m/R for the other two. Thus there
could exist a cavity in which P, & 2.3R for a neu-
trino field if only the ] in question had a rather
modest value «10 '. Likewise, for the electro-
magnetic field in a spherical cavity (see Ref. 18
and Appendix A) $ = V.39 && 10 ', so that we know
with confidence that p»+, = 3.62; thus p» & 1.74R."
There are, therefore, fields in cavities which are
only a factor of 3 below the universal bound (1}.
As we mentioned earlier, a scalar-filled Einstein
universe reaches -,'of the bound (1). Hence there
is no great gap between matter and black holes as
far as S/E is concerned.

8. Case vrithEO=O

If one or more Fp, vanish but still Ep & 0, no
change is required in our previous analysis. We
may simply define fictitious positive Ep~ for the

ln2 = g + g,. ln(1 + 8 0"') . (39)

I et there be v species of massless fields present
(including several neutrinos, etc.). The role of
(18) is now taken over by

(in2)/v =H»(P») . (40}
We can still conclude that Pp is bracketed by the
extreme P»'s and we can carry out an analysis
analogous to the one leading to (29) to obtain

P»(o, & [I'(1+p) g,v/ln2]'~». (41)

The slightly different power of p here has its root
in the absence of a factor P, in (39) as compared
with (17) at P= P, . Implicit in (41) is the condition

p ) 10 introduced for the same reasons as before.
In general, g, is a small integer while v is evi-
dently not large. We can with confidence assume
that g,v/1n2 & 100. Then with p = 10, (41) gives
P»+, &7.18. In view of the above-mentioned lower
bounds on ~„we see 'that no P» may exceed 3.45R.
Thus an arbitrary mixture of scalar, electromag-
netic, and neutrino fields with vanishing vacuum
energy would also satisfy bound (1).

IV. ASSESSMENT

Resting as they do at three points on plausibility
rather than on rigor, our arguments do not con-
stitute an airtight proof that S/E complies with
bound (1), but they do make this very plausible for
mixtures of scalar, neutrino, and electromagnetic
fields in cavities of arbitrary shapes. With the
same degree of plausibility, they indicate that. the
microcanonical SMc/E satisfies (1) for those same
situations. These partial successes in explain-
ing" (1) underscore the need for deepening the
rigor and broadening the scope of the arguments.

In particular, one would like to encompass in
the scheme Dirac fields in interaction with gauge
fields. Not only is this a case of great physical
interest (are there thermodynamic constraints on

fields which have none at the expense of those
which have in such a way that the sum of 8» is
still the physical Fp. The fictitious Epp are un-
likely to have to be smaller than the minimum we
require (corresponding to ]=10 '). Thus our ar-
guments go through. A problem of principle
arises, however, if (and we emphasize if} all
vacuum energies vanish. We may then argue that
a vacuum (no particles) state with vanishing energy
is impossible to detect and could well be discarded
from p and Z without ill effect for the sort of ques-
tion we have in mind. Since Z =Pe o,'4 this
amounts to subtracting unity from Z. Then the
condition that the ~w Z is unity at P, implies [see
(17)] that
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the possible structure of hadrons'?), but it also
poses a great technical challenge: how to handle
the zero-frequency Dirac modes that may appear
in this context? One would also like to make
bound (1) plausible for self-gravitating systems,
not merely for fie1ds in a prescribed gravitational
background. This is perhaps the greatest chal-
lenge in connection with (1), relating as it does to
the question of whether black-hole entropy can be
calculated in terms of the same concepts used for
calculating matter entropy.

Note added in Proof. Recently K. A. Milton
[Phys. Rev. D 22, 1444 (1980)]has demonstrated
the positivity of the vacuum energy of a confined
system of gauge fields and fermions in interaction.
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APPENDIX A

Here we summarize the eigenfrequency spectra
for scalar, electromagnetic, and neutrino fields
in a spherical cavity of radius R and make some
remarks about the choice of boundary conditions.
+or the neutrino case the well-known problem with
prescribing boundary conditions is resolved. We
regard spacetime as flat here and in Appendix C.

Solutions of the scalar equation which are har-
monic in time may be found only for discrete
eigenfrequencies ~,. which arise from the eigen-
value problem defined by

(A1)

together with suitable boundary conditions for Q.
We shall follow DeWitt in demanding Q =0 on the
boundary. " One advantage of this (Dirichlet)
boundary condition is that it is conformally invar-
iant (whereas the Neumann condition is not}. Thus
one can treat the conformal scalar field. The
solutions of (A1) which are regular at the origin
are j,(~r)Y,„(8,Q)e '"', where j, is the standard
spherical Bessel function of order L. The bound-

ary condition then demands that ~R be a positive
zero of j,. Hence the spectrum is

where j„,is the nth positive zero of j,(x); the de-
generacy is 2l+1. The lowest eigenfrequency is
(d~o = 1T/R.

Sourceless electromagnetic fields which are
harmonic in time obey the time-independent Max-
well equations

V~K =i~B,

V x 8 =-i+E.
(AS)

(A4)

o ~ p= —io "r '[(8/Br)r —(J'+-', —L')j,
where 0"=0 ~ r; 0" has the property"

J8 J+1/2 J&JT1/2 '

(A7)

(A 8)

With the help of (A7) and (A8), as well as the re-
lations21

The boundary conditions depend on the physical
characteristics of the cavity. Intuitively one would
like the fields to be confined to the cavity. Then
one must assume it is a perfect conductor which
implies that the tangential component of E, E,
vanishes on the boundary. The "electric" solu-
tions of (AS) and (A4) have" E =j,(vr)X,„e '"',
where X, are the vector spherical harmonics ob-
tained by operating on the F, with the angular
momentum differential operator. The B may be
inferred from (AS). Evidently E, vanishes on the
surface only if j, vanishes. Hence the spectrum
of the electric modes is the same as the one for
the scalar field (A2), except l =1,2, . . . because
X,—=0. The magnetic modes have" B =j,(&ur)

x X, e '"'. By (A4) the E field is proportional to
the curl of this expression. Because X, has only
8 and P components, E, can vanish on the surface
only if the radial. derivative of j, vanishes. Thus
the spectrum for the magnetic modes is

&u„, =j„',R ', n=1, 2, . . . ; f =1,2, . . . , (A5)

where j„', is the nth positive root of jI(x); the de-
generacy is 2l+1. The lowest eigenfrequency is
&u» = 2.082/A.

The free neutrino field is described by the Weyl
equation. " Since the neutrino is purely a negative-
helicity particle, for a field with time dependence
exp(-i~t) the equation reads

(AG)

where o is the triplet of Pauli matrices, |}is the
neutrino bispinor, and p is the momentum opera-
tor -iV. One may introduce the operators for
orbital. angular momentum L2 and total angular
momentum J' and J'. Their joint eigenfunctions
are the spinorial spherical harmonics Jg~ with
eigenyalues L(L+1), J(4+1), and M for the three
operators, respectively. One then has"

(A2} ~ f fr 3Nj J+1/2 j J'-1/2 4 2 ~ j J+1/2 & (A 9)
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~ jrjJ"1//2 jJ+11P. h~ 2/ (A10)

J2 =
|jatos "g, (AIR)

where g' is the Hermitian conjugate to P, s" is
a four vector of 2 && 2 matrices whose anticom-
mutator is twice the metric and 5 is a "Hermiti-
zing" matrix. One may choose cr and s' in such a
way" that the space part of Os" is o while the time
part is +1. Thus the radial component we require
is just g~o"g. Substituting (All) we have

N~"=—b, /
' '9~, /. FJz / +(~+ -~— )]

Af Af
+~&Z+i/2&Z-i/24HZ+i/2 Z jjZ+i/2 ( + 2

(A13)
Evidently J" must be real. It is obvious that the
two angular terms in the last square brackets
are real. Hence the second line in (A13) is pure
imaginary. Its radial dependence is different from
that of the first line, so it cannot be canceled by
it. Hence the second square brackets in (A13)
must vanish identically. By the same token, the
two angular factors in the first square brackets
(each other's complex conjugates) must be real
(hence equal) since they are multiplied by differ-
ent radial functions. Hence

2+'
L2 J+2/2 ~ Z i/2 / JLf 1+1/2 18 Z-1/2 ' (A14)

satisfied by the spherical Bessel function j,(x),
one verifies that

[&@+i/2(~+)ZSZ+i/2 —ij Z i/2(er)ZQZ i/2]e '"'
(A11)

is a solution of (A6) (evidently J) 2). Since (All)
is an eigenfunction of J', J', and the helicity
e 'o p [eigenvalues J(j+I), M, and -1, respec-
tivelyj, it is just the right mode function for the
problem. The only thing missing is the spectrum
of v. To get it one must prescribe boundary con-
ditions, and this is where the difficulty lies. One
cannot demand lj =0 or il ~ (7'g) =0 on the boundary;
the solution (A11) does not satisfy either condition
essentially because the two spinorial harmonics
a re idependent. Thus traditional boundary condi-
tions do not work. This is the well-known difficulty
in posing the boundary conditions required to de-
fine a discrete spectrum for neutrino eigenfre-
quencies in a cavity.

We argue that the difficulty has its root in the
fermionic nature of P; one should not impose
boundary conditions on P as one does for a bosonic
field (i.e., scalar). Rather, one should impose
conditions on a bilinear expression in g, for only
such a quantity is an observable. For example,
one might require the normal component of the
neutrino number current J" to vanish at the boun-
dary (cavity material impermeable to neutrinos).
In standard notation"

P = 2&@/j/ -o/j/+ ,i(/j/ —7/j/ —7g /j/) . (A I 6)
The boundary condition requires us to formally
replace P by the left-handed g and set the normal
component of P to zero on the boundary:

P" =2+-t" —4i(g g „—g „g) =0. (A 16)

Putting (A11) and (A14) into (A16), canceling
terms, and taking account of the realness of the
angular factor appearing in (A14) gives as boun-
dary condition that at x=R,

P ~ 2q 'I ~ p

27+1/2 2 j-I/2 2 J-l/2~ J+I/2 2 J+I/22'-1/2 ' (

In view of (A9) and (A10) it now follows that

(J+1)j~ „,(&g)j/ „2((uA) =0.

Since J) —,', we see that the allowed ~A are the
positive zeros of either of the j, in (A18). The
neutrino eigenfrequency spectrum is then

(A18)

a-&
a6 J jn J+6 (A19)

where & =+~. These eigenvalues are 2J+1 de-
generate. In addition, half of the eigenvalues for
given. J (» =+-,') are degenerate with half of the
eigenvalues for J+I (» =-2).

Thus far we have ignored the possibility of zero
eigenfrequencies. We now show there are none in
our problem. For ur =0 the scalar equation (All)
reduces to Laplace's equation. The nonsingular
solutions have the form / =2'1', (6, Q); none van-
ish at r =A. Thus v =0 is not an eigenfrequency.
For &u =0, Maxwell's Eqs. (A3) and (A4) imply E
and B are each the gradient of a different poten-
tial. The divergence equations then imply that the
potentials solve Laplace's equation. The tangen-
tial derivative of the potential x F, cannot vanish
at r =B. Hence no E field satisfying the boundary
conditions for a perfectly conducting cavity exists
for ~ =0. The 8 field is uncoupled to E; hence
one must (for u& =0 only) specify boundary condi-
tions for 5. It is simplest to imagine the cavity

Since the zeros of different j, do not coincide, we
see that J"cannot vanish on a spherical boundary
(although its angular integral does). Thus our
presumed boundary condition is also inadequate.

According to Unruh, "the fact that J" cannot be
made to vanish at the boundary reflects a Klein-
type paradox: If the cavity material is imper-
meable to neutrinos, it will create neutrino-anti-
neutrino pairs and so defeat the boundary condi-
tion. Apparently for the same reasons, the condi-
tion that the normal component of the energy cur-
rent vanish on the boundary fails also. However,
a related, somewhat mysterious condition works.

From the four-spinor expression for the Dirac
stress-energy tensor, "one may easily compute
the energy flux for a fictitious sight-handed neu-
trino field in terms of the appropriate bispinor Q:
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material as superconducti. ng. It then excludes the
B field; thus the normal component of B must
vanish at the cavity boundary. But the radial. de-
rivative of r'W, cannot vanish at x =B, unless B
vanishes identically. Hence co =0 is not an el.ectro-
magnetic eigenfrequency. An analysis of the Weyl
equation along the lines of the one given above
shows the regular solutions for (d =0 to be of the
form (=a ~ "'zg~z „,. Onlythatwith J = —', satisfies
the boundary condition and this only because I
vanishes identically. Further, such a solution
does not have negative helicity: (T ~ p operating on
it gives zero. Hence we would not include the as-
sociated eigenfrequency in the mode sum (16).
Thus, in the context of this paper, .+=0 is not an
eigenfrequency.

APPENDIX B

Here we show by exam. pie that for large p var-
ious g functions of interest are well approximated
by their ground-state parts. For a spectrum (d,.
with degeneracy g, ,

t(P) =Z~, ~; ' (B1)
j=1

The ground-state contribution is g,e, . Evidently
as p-~, f(P)-g, ~, '. But as we shall see, al-
ready for p = 10 the approximation is adequate
for the purposes of Sec. V. We first consider
fields in an Einstein universe of radius g.

For the conformal scalar field" +,.g=i, g,. =i'
with i =1,2, . . . . Therefore g(p) =a~re(p —2),
where f~ denotes the Riemann f function. Thus

g(10) =1.004&v, ". For the electromagnetic
field, ""(u,.a=i+1, g,. =2i(i+1) with i =1,2, . . . .
Thus f(p) =2a~[(s(p —2) —&s(p)] and f(10) =1.05
&& 6+, ". For the two-component neutrino field"'"
(u,.a=i+2, g,. =2i(i+1) with i =1,2, . . . . Thus2'

j„,+j „,replaces j„,in (B2). A good approxima-
tion to this g(p) may be obtained by summing over
the eigenvalues up to five times larger than

~, = 2.082/R (about 140 ~ 's). One finds 1.(10)= 3.33
x 3u, ' . In all these cases the fractional errors
incurred in ((p)'~ '"~' by replacing P(p) by g, &u,

~

are 1-10% for P =10.

APPENDIX C

QV'QdV &v'/R'.
S

(Cl)

Now the normal component of 7'Q has a step dis-
continuity at SC, so V'p has a 6-function singu-
larity there. However, v2Q in (Cl) appes, rs mul-
tiplied by Q which vanishes at BC. Hence the
singularity does not contribute to the integral.
Neither does the region C where Q =—0. The con-
tribution from C follows because by (Al) V'P
= —~,'Q in C. Hence

Here we establish lower bounds for the lowest
eigenfrequencies of the scalar, electromagnetic,
and neutrino fields in an odd-shaped cavity. " Let
C denote the cavity's interior, and BC its boundary.
Imagine C is circumscribed by a sphere of ra-
dius R. Let the sphere's interior be denoted by

S, and its boundary by 8S. Finally, let C denote
the part of S outside C.

Let &f&, be the normalized eigenfunction of the
scalar equation in C which corresponds to the
lowest eigenfrequency e, . We assume the boun-

dary condition /=0 on SC We. now consider a
test function Q which equals Q, in C and vanishes
in V. Evidently Q is normalized in S, obeys the
boundary condition on BS, and is continuous
throughout S. Thus by the Rayleigh-Ritz principle,
as applied to Eq. (Al), we can set an upper bound

on the lowest eigenfrequency for the scalar field
in S, which we know (Appendix A) to be w=w/R:

I(P) = 2a'[(2'- 4)&s(P —2) —(2'-1)&s(P)] v, &w/R. (C2)

so that g(10) =1.02 x 4z, ". Of interest in Sec.
V is f(p)" "'~'. For p =10 the fractional errors
incurred in this quantity by replacing any of the
above f by p]R] ~ are less than & percent.

Let us now consider the various fields in a
sphere of radius B. According to Appendix A,
for the scalar field

g(p) =R~g (2l+1)gj„,-~.
)=0 n=l

(B2)

For the neutrino field g is just twice this expres-
sion. A good approximation to these g(p) is ob-
tained by summing only over the eigenvalues up to
five times larger than ~, =w/R (about 220 ur's).
One finds f(10) =1.10&v, "for both the scalar and
neutrino fields. For the electromagnetic field,

B -jgx 0 iB~
Let E, denote a solution of (C3) in C which obeys
the boundary condition E, =0 on BC (conducting
cavity) and corresponds to the lowest eigenfre-
quency e, . We assume it is normalized:

J ~r ~ ~,dV= J c(E'+9')dV ='l. As before, we
define a tes't field E as colncldlng with E 1n C
and vanishing in |.. Evidently E is normalized in
S and obeys the boundary condition on 8S. But in
general it has step discontinuities in some of its

In deal. ing with the electromagnetic field it
proves convenient to write Maxwell's Eqs. (A3)
and (A4) as

r
= MI' . (C3)
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components across &C. However, being piece-
wise continuous in S, it can be expanded in the
eigensolutions of (C3) for S, and so a straight-
forward generalization of the Bayleigh-Ritz prin-
ciple applies:

Fr MFdV &j, ,/R,
S

where j, ,/R is the lowest eigenfrequency in S
(see Appendix A).

Now

MI' =iE ~ 7''x B —iB ~ 7 xE.

(C4)

(C 5)

Due to discontinuities in I' across 8C there could
appear 5-function contributions to (C5) which would
then contribute to its integral in (C4). We show

this does not occur. Evidently only derivatives
of E or 8 normal to 8C can generate o functions.
Since E, is continuous across BC, V xE does not
have a singularity there. Now V&&5 could have
one, but it would occur only in the components
tangential to 8C. However, E, =0 there, so
E ~ g xB cannot contribute to the integral right
at BC. Neither can B ~ V x E which, as we saw,
does not have singularities. Thus only the integral
over C contributes in (C4); it can be evaluated
from (C3) and we get immediately

(C6)

We now turn to the neutrino field. Let g, be a
solution of (A6) in C which obeys the boundary
condition P"=0 (n for normal) at SC and which
correspond to the lowest eigenfrequency m, for
the region C. Again we define a test field g which
coincides with g, in C and vanishes in C. Evident-
ly tjt obeys the boundary condition at 8S rather
trivially. We normalize P, by fog~(, dV=1; then

g is normalized in S. Since |j will. have only a
step discontinuity across BC, it can be expanded
in eigensolutions for S and one can generalize the
Hayleigh-Ritz principle to apply to the neutrino
equation (A6). It gives

i g~&r Vtj dV&x/R,
s

(C't)

where w/R is the lowest eigenfrequency for the
neutrino in S (see Appendix A).

Of interest here is whether the 0-function sin-
gularity that arises in Yg from the jump of g
across BC contributes to the integral. We show it
does not. If n denotes the outward normal to 8C,
then clearly

f»—5(BC)n+ ~ ~ ~ (C 8)

(C9)K s 0
ac

where 0"=0 ~ n and cK is the element of area on
BC. We shall now write down explicitly the boun-
dary condition for P„namely P"=0, at SC by
making use of (A15):

-ipt~a"g, +-,'~, '(%tent |jI, —gt 7'tj, ) ~ n=0. (C10)

Substituting this into (C9) and making use of
Gauss's theorem it follows that

(C11)

However, by iterating the neutrino equation (A6)
one finds V'|jt, =-~,'g, and a like equation for g~.

Hence the integrand in (Cll) vanishes identically.
Thus only C contributes to the integral in (C7).

By applying (A6) one has ia ~ V'g= ~, tjt in C. Thus
for neutrinos the bound for ~, is again given by

(C2). We thus have lower bounds for the lowest
eigenfrequencies of the three fields in terms of
the effective radius R of the cavity (radius of cir-
cumscribing sphere). One can prove exactly
analogous upper bounds for (d, in terms of the
radius of the sphere inscribed in C.

where 5(SC) denotes a Ci function inthe coordinate
running normal to SC, g» is g, at SC, and the ad-
ditional terms (~ ~ ~ ) are tangential components with
no 5 functions. Hence the contribution from BC to
the integral is
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