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We develop an efficient approximation procedure for evaluating the scalar Feynman propagator in arbitrary
spacetimes. In the familiar manner we represent it by an integral over the transition amplitude for a Schrodinger-

type equation (proper-time method). The amplitude is then represented by a Feynman path integral which is

dominated by the contribution of a certain extremal path. The contributions of adjacent paths are then simply

expressed by working in Fermi normal coordinates based on the extremal path. In this manner the path integral
becomes an ordinary multiple integral over "Fourier coefficients" which represent the various paths. For a
conformal field, or for spacetimes with constant scalar curvature, we evaluate the integral. in the Ghussian

approximation in terms of the curvature along the (geodesic) extremal path. We show the result to be related to the
Schwinger-DeWitt expansion for the amplitude, but valid for well-separated end points. In the Einstein universe our
expression gives the exact amplitude and propagator. In the de Sitter spacetime it gives a good approximation for the

. amplitude even for well-separated points. We also evaluate the post-Gaussian corrections to the amplitude, though
we do not implement them in a concrete spacetime. For nonconformal fields in spacetimes with varying scalar
curvature, we evaluate the amplitude in the Gaussian approximation in terms of the values of the curvature along

the extremal (nongeodesic) path. It is very different in form from the one mentioned earlier, which suggests the
existence of novel effects arising from variation in the scalar curvature.

I. INTRODUCTION

The Feynman propagator or Green's function is
of fundamental importance in any quantum field
theory in curved spacetime. ' From its behavior
as its two spacetime arguments merge (coinci-
dence limit) one can define a regularization pro-
cedure for the theory, and obtain such quantities
as the vacuum expectation value of the stress-
energy tensor, the vacuum energy, the trace ano-
maly, etc. In addition, the behavior of the
Green's function for separated spacetime argu-
ments contains information about elementary pro-
cesses such as pair production by the gravitational
field. The Green's function is also the basic
building block when one generalizes the theory
to include nongravitational interactions.

Although each field has its own Green's func-
tion, those for higher-spin fields are closely re-
lated to the Green's function for a scalar field,
and methods applicable to it can be generalized to
higher spin by straightforward procedures. ' The
scalar Green's function satisfies the equation
(signature +2, R z, ——d„ I~, —B,I ~+, R ~
=R".„„R=R".)

(-V'V„+m + tR)G (x, x') =[—g(x)] '~ ~(x, x')

(1.1)

with m the mass of the field, and 5 a constant.
The coupling to R is included here both to allow
for study of the conformally invariant equation,
and because analogous terms appear in the equa-
tions used to generate higher-spin Green's func-

tions. The Peynman Green's function is tradi-
tionally singled out from among the solutions of
(1.1}by the requirement that it propagate positive-
(negative-) frequency fields forward (backward) in
time. This defining boundary condition is not
easily interpreted in curved spacetime, and in-
stead one usually invokes analytic continuation of
G~ from the Euclidean signature, or the proper-
time (Schwinger-DeWitt) formalism. We shall
employ the latter approach, but our technique
could be adapted to the former procedure.

The scalar Feynman Green's function is known
in flat spacetime, and has been calculated under
various boundary conditions for a handful of
spacetimes, including the (static) Einstein uni-
verse, the de Sitter universe, and a few other
examples. It has proved difficult to calculate
in less special spacetimes, so the information it
contains has hardly been tapped. Evidently any
new general method for computing G~, even ap-
proximately, would represent a welcome addition
to the tools being used to understand quantum pro-
cesses in curved spacetime.

No better starting point for an approximation
scheme offers itself than the Schwinger-DeWitt
proper-time formalism. ' ' In this method, one
replaces our problem by that of solving the Schro-
dinger equation

2 (x six 0) =( V V + )R)(x, s lx', 0) (1.2)
Bs

subject to the boundary condition

»m(x s lx'0) = lz(x) I
'"&(x,x'} .
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The kernel (x, s Ix', 0) is formally the amplitude
for a particle coupled to the curvature to propa-
gate from spacetime point x' to x in the course
of a fictitious proper-time inverval s. The
Green's function is recovered by

C~ (x, x') =i J" (x, s
I
x', 0) e '" 'ds,

0
(1.4)

The f, are functions of x and x'. This expansion
is valid for small s and x and x' close to each
other. Consequently it has proved very useful in
discussing regularization procedures, and especi-
ally in calculating the anomalous trace of the
stress-energy tensor. For these applications the
limits s-0 and x-x' are sufficient. For other
applications (e.g. , particle production, interacting
fields) one is interested in x and x' being finitely
separated. Then a different method for solving
(1.2) and (1.3) is required.

The Feynman path-integral method comes to
mind. Originally developed precisely for calcu-
lating the amplitude associated with the Schro-
dinger equation, ' it is generally acknowledged to
provide deep intuitive understanding of the ampli-
tude, and has been used to infer a number of gen-
eral properties. Yet most would regard it as
impractical for concrete calculations. This last
view is unduly pessimistic. There exists a grow-

where one takes m to have an infinitesimal nega-
tive imaginary part. With this boundary condi-
tion (1,4) represents the Feynman Green's func-
tion rather than some other solution of (1.1).
The kernel is also useful in calculating the vacu-
um-to-vacuum amplitude, a fundamental quan-
tity. ' '" Therefore, most of our attention will
be devoted to methods for calculating (x, s Ix', 0)
in various contexts.

A direct way to solve for (x, s
I
x', 0) is by a

power series in s, the so-called Schwinger-DeWitt
expansion. Let o(x, x') =o(x', x} stand for half the
proper distance squared (or minus half the proper
time squared) along the spacelike (timelike) geo-
desic between x' and x. One defines the Van
Vleck-Morette determinant

=Det(- a'o/ax" ex" )

(determinant of a 4&&4 matrix for given x, x').
The quantity

~(x, x'}=- lz(x) I
"D~ lr(x'}

I

'"
is a biscalar. In terms of it the solution of (1.2}
and (1.3) may be written as'. ""
(x, s lx', 0}=i(4mis) exp(iv/2s) L [1+f&is

, +f,(is)'+ ] .

ing literature concerned with methods for calcu-
lating path integrals for particles moving in vari-
ous spaces, including Riemannian spacetimes.
Many conceptual obstacles have beeri cleared away.
Yet the attention to points, of mathematical rigor
which characterize many recent contributions ob-
scure the potentialities of the various approaches.

In this paper we explore a new technique for
evaluating the path-integral expression for
(x, s Ix', 0} which employs Fermi coordinates as
a device for separating neatly those features of
the amplitude which depend on spacetime being
curved from those which do not. This allows one
to evaluate the path integral in an arbitrary curved
background by a systematic covaxiant approxima-
tion scheme. The emphasis will be on developing
a practical approximation scheme, rather than on
points of rigor. But we shall nevertheless take up
a number of issues of principle, such as the ques-
tion of normalization of the amplitude for infinites-
imally close points. The method developed here
should also be applicable to problems outside
gravitational physics (e.g. , constrained motion,
diffusion, etc.).

The plan of the paper is as follows. In See. H

we write down the path-integral representatipn fpr
the kernel and recast it into a phase-space form
in which all coordinate and momentum dependence
is in the action. The path integral is then reex-
pressed as a multiple integral over the Fourier
coefficients of the representation of the paths and
momenta in Fermi coordinates, ' these coordinates
are introduced relative to the path which extremiz-
es the action (there may be more than one such
path). Because the path integral is dominated by
paths extremizing the action, one may obtain an
approximation to it good for widely separated end
points by working in powers of the Fourier coef-
ficients which effectively measure the deviation of
a particular path from the extremizing one.
Working to second order in the coefficients, we
perform the (Gaussian} integration equivalent to
the path integral for geodesic extremizing paths
(Sec. III) and for nongeodesic ones (Sec. VII).
Since the metric in Fermi coordinates is known in
terms of the Riemann tensor, our results are in
terms of Fourier transforms of the Riemann ten-
spr along the extremizing path. A check of the
Gaussian approximation is performed in Sec. IV
where we use it to calculate the Feynman Green's
function in the Einstein static universe; we obtain
the exact Green's function. In a similar check in
de Sitter spacetime (Sec. V) the approximation is
found tp be valid for finitely separated end points,
though it is not exact here. The general expres-
sion for the kernel to fourth order in the Fourier
coefficients is given in Sec. VI for the case of
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geodesic extremizing paths.
The Gaussian approximation revolves about a

determinant formed from Fourier transforms of
the Riemann tensor. In Sec. HI we show that the
expansion of this determinant in powers of curva-
ture agrees with that for h(x, x') ' as far as the
latter expression is known for a general space-
time. For the Einstein and de Sitter spacetimes
one can show agreement to all orders. Our deter-
minant is thus apparently identical to 4 and it
yields a new and useful expression for the Van
Vleck-Morette determinant. For example, one
can readily expand our determinant to high powers
in the curvature.

We conclude that already in the Gaussian ap-
proximation our approach yields expressions for
(x, s ~x', 0} and Gr(x, x') valid for well-separated
points. These approximations should find numer-
ous applications.

We give here a brief summary of the equation
numbers of the main results of the general analy-
sis and of the examples. This should be useful
to the general reader who may want to look at the
main results and examples without going through
the detailed calculations. The phase-space form
of the path integral for (x, s ~x', 0), in which all

coordinate and momentum dependence appears in
the action, is given in Eq. (2.V) with momenta
defined in Eq. (2.4). That expression for
(x, s

~

x', 0) is recast as a multiple integral over
Fourier coefficients in Eqs. (2.19)-(2.21). For
the case when ($-F)R is constant, the Gaussian
approximation for (x, s ~x', 0} is given in Eq. (3.15)
with the matrix D defined by Eqs. (8.11) and (3.6).
[As noted previously, we present strong evidence
that DetD = b,(x, x') .] The expression for G~ (x, x')
in Gaussian approximation is given in Eq. (3.16).
In the Einstein static universe, the Gaussian ex-
pression for (x, s ~x', 0) is explicitly evaluated in
Eq. (4.11), including the sum indicated after that
equation, and Gr is given in Eqs. (4.12) and (4.13).
In de Sitter spacetime, DetD is directly evaluated
in Eq. (5.5), (x, s ~x', 0} is given in Eq. (5.11), and
Gr in Eq. (5.13). The post-Gaussian expression
for (x, s ~x', 0) when ($ —tt.)R is constant is given in
Eqs. (6.18) and (6.19). For the important general
case when ($ —6)R is not constant, the Gaussian
approximation for (x, s [x', 0) is given in Eq. (V.28)
with D defined in Eqs. (7.27), (V.23), and (7.19)-
(V.21). An approximation for DetD is given in
Appendix C, Eq. (C9).

II. REPRESENTATION OF (x,six', 0) IN FERMI COORDINATES

It is traditional to begin a discussion of path integrals by writing down the amplitude for infinitesimally
close points and then iterating it to obtain the finite amplitude. ' We find it more convenient to start
with an expression for the finite amplitude shown by one of us ' to obey the Schrodinger equation (1.2)
and the boundary condition (1.3):

(x, s ~x', 0& = Jt d[x(s')][a~] exp i ds' —,'g ~,-,—[&+ —,'(p —1)]R(x) (2.1)

where p is an arbitrary dimensionless parameter. (For the meaning of [D~] see below. } It was DeWitt"
who first noticed the need to include R in the path integral even when it does not appear in the Schrodinger
equation(aswhen )=0). He wrote down the cases )=0, $= 3, and )=6 of (2.1) with jl}=0. The existence
of infinitely many representations for a given $ is a rather surprising feature. The interested reader
will find a simple explanation of it in Appendix A. In our development we shall choose p = —, as most suit-
able for computational purposes.

The path integral (2.1) is given concrete meaning in the following way. Divide the interval (0, s) into
K+1 equal increments of duration &. We assume N is large and even. Then

(x, s ~x', 0) = lim —. . I J,' d'x„[ -g(x„)]'"

dx" dx'
xexp g i j~( —,'d„, , —}le-(}t-}}}}})ds.'

~=0-

+P inc(x, x .,) (2.2)

where g=det(g„&), x, =x', and x„„=x. The inte-
gral in (2.2) is along the geodesic between x and
x„.q,

' similarly, ~(x„,x .q) refers to that same
geodesic. If, despite the assumed smallness of

I

& =s/( jV1+), there are several geodesics between
x and x,q (compact space), we agree to use the
shortest. The repesentation (2.2) is patterned af-
ter Feynman's original expression in nonrelativ-
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istic quantum mechanics. ' One describes a gen-
eric path by a series of geodesic segments. - The
amplitude associated with each segment is the
imaginary exponential Qf its action. One.intro-
duces a normalization factor (4mi4:} ' for each
coordinate interval of each segment. (The seem-
ing discrepancy by a factor of 2 here is the result
of our choice of units. ) Since the factor p Int2,

can be traded off for a curvature term in the ac-
tion (see Appendix A), it cannot here be regarded,
as a normalization factor. This would seem to
bring (2.2) in conflict with formalisms which re-
gard 6" (42ii4) ' as the normalization factor per
segment. "'"' ' But as we shall see in Sec. III, the

automatically arises from the path integra-
tion. All formalisms then agree on the presence
of 4 ', but ours recognizes it as a more funda-
mental entity connected with the self-consistency
of the representation (2.2) at all scales.

The appearance of (-g)'~ in (2.2) is understand-
able; it is the natural measure for summing over
paths by allowing each of the points which define
the geodesic segments to sweep all over space-
time; in conjunction with the 4 factors it assures
invariance of the path integral. Yet, because it
depends on the coordinates, it is an awkward fac-
tor when one comes to evaluate the path integral.
We therefore adopt the following strategy. First
choose p = —,

' in Eq. (2.2). Then transform the
spacetime integrals in (2.2) to phase-space inte-
grals with subsequent absorption of (-g) into
the transformation's Jacobian. To understand the
details of this procedure one must be familiar with
two alternative descriptions of geodesics in curv-
ed spacetime.

Consider the geodesic segment from x„" to
x~2" (more briefly x and x„,i); it can be repre-
sented as x" (s') with s'=0 at x„and s'=e at x„,i
(4: need not be small for the following argument).
The customary action for the geodesic segment

may be expressed as'

(2.3)

where 0 is defined in Sec. I. As usual in mecha-
nics, the formal momentum is just the gradient of
S0. Alternatively, from the Lagrangian in Eq.
(2.3) it may be written as g, dx /ds'. Hence at
event x ",

p g q if' x x Px 2 4Ve

where the minus sign appears because x is the
initial point of the segment. One may now con-
struct the 4&&4 matrix ap /ax„.i" It .view of Eqs.
(1.5}, (1.6}, and (2.4), we have

Det[ap /ax „"]
=-."Ig(.„)I"~(x.....,) Ig(x..i) I'". (2.»

The determinant in Eq. (2.5) is just the Jacobian
of the transformation from (x„,x„.i) to (x„,p }: it
changes the description from one in which the seg-
ment is specified by the positions of the initial
and final events to one in which the segment is
specified by the initial position and velocity.

Keeping this in mind, one may transform in Eq.
(2.2) with P =—,

' the integrations at n=2, 4, . . . , N
to d p integrations at n =1,3, . . . , N- 1 (here we
are requiring N to be even}. The appropriate
Jacobians are almost completely supplied by the
factors of L' and Igl'". For example, one has

["d'xi lg(xi) I
"]&'"(xi,xi)["d'xi lg(x2} I

"]
(xi xi) I Det(api, /axi") Id'xid'xi

(xi& xi)d xid pi &

where we used the fact that for the small segment
E(x„x,} is positive. We find that

&x, six', 0&=iiml, I —.
I

.,I ..., d x„d p„~ (x„x,)
&N+I 1/I l ' ' 4 4 in a (xR,i, xR,2)

s j z (4mj.
N (m'~", dx ax~

«e«P I, ~' !R~, , R-( - (R4(R«'). (2.8)
0 ff26

' S S

Almost all factors of 4:
' appearing in Eq. (2.2) (with p =—,') have been absorbed in the Jacobians. There

remains one factor of 4 =(N+1) s, which is responsible for.giving the amplitude an overall factor of
s . In Eq. (2.6) one has a sequence of phase-space integrals, one over every other point specifying the
broken path. This is equivalent to the original form involving spacetime integrations at every point speci-
fying the broken path.

As explained in Appendix B, an expression like LP' (x„,x„,i) has the form 1+0(z ). For this reason the
lone factor 6, '

(x4, xi) in Eq. (2.6) can be replaced by unity as N-~. One cannot similarly deal with the
product of N/2 ratios of ti ' appearing in Eq. (2.6). It is true that taken over a single path the product is
1+O(4) (recall Ne is finite in the limit). But one is summing over many different paths so that the 0(&)
term could build up to a finite quantity in the limit. This is precisely the reason why one cannot replace
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the product of &'~' in our original expression for the path integral (2.2) by 1. However, as shown in detail
in Appendix 8, because of a certain cancellation in the ratio of n ' 's the troublesome 0(») term has just
such a form that it averages to zero over all paths rather than building up. For this reason one can simp-
ly ignore the 6 ' 's in Eq. (2.6) from here on. One has

(x, s. )x', 0) =liml
I

. ( .) f;, d x„d R„exg g ( f dx~
!R.s . , —((-.Xs)R ds'I. (i.V)

The advantage of our transformation is, then, that
it eliminates factors of ~" and g from the path
integral.

In the limit N-~, the path integral should be
dominated by the contribution of that path which
extremizes the factor in the exponential (the ef-
fective or "classical" action). This "classical
path" contribution is known to yield important fea-
tures of the amplitude. It is then natural to deve-
lop an approximation scheme in which one com-
putes in a systematic way the contributions from
paths close to the classical one. ("Classical"x
here does not mean "in the limit as h vanishes"
because the R term we are including involves h. )
We shall develop such a scheme by using Fermi
normal coordinates built about the classical or
extremal path. In such coordinates the metric in
regions traversed by the paths of interest will be
as close to the Minkowski metric as permitted by
the curvature. This results in computational
simplification and offers simple ways to resolve
various ambiguities by comparison with the known
flat spacetime results.

Consider an arbitrary timelike (spacelike)
curve in spacetime described by x' =x,'(s') where
s' is a parameter. Fermi coordinates based on it
are defined as follows. ' ' The coordinates of a
point on the curve are x,' = (~, 0, 0, 0), where ~ is
the proper time (distance) measured along x,'(s')
from its origin to the point in question. Let us
label by e() the tangent to x,': thus eo —dx /d~.
Pick a triad of unit orthonormal vectors e"; which
are also orthogonal to eo. We will have e', e,,
=diag(+1, 1, 1) where upper (lower) sign applies
for a timelike (spacelike) curve. The coordinates
of a point x' off the curve are defined as follows.
Consider the geodesic orthogonal to x,' which goes
through x". . Let its unit tangent at the point where
it intersects the curve x,' be expressed ap n'e', ;
evidently +(o. ) +(o.') +(u ) =+1. The sign on
the left-hand side depends on the curve x,", while
the sign on the right-hand side tells us whether
the geodesic is spacelike or timelike (possible
only if the curve x," is spacelike). Then x'
=(&, & z, o. z, o. z) where ~ is again the proper
time (distance) to the foot of the geodesic, while
z is the proper distance (time) along the geodesic
from the curve x,' to x'. The coordinates are
well defined over the region where geodesics do

not cross (no' caustics).
We come now to specifying the paths which are

summed over in Eq. (2.7). The classical path
which extremizes the action is just the curve
x,"(s') on'which the Fermi coordinates are based.
Explicitly x," =(&(s'), 0, 0, 0}. A path off xR is to
be described in terms of its x' and p„at s'
= », 3», . . . , (N —1)», where»(N+ 1)=s. Half of
this information may be represented by

x'(s') =x,"(x') + 5x" (s')
N/2

-=x,'(s') +g a', sin(Pms'/s) . (2.8)

Here the 4XN/2 constants a~ are to be chosen in
such a way that for the above mentioned values of
s', x," +5x" produces the required coordinates.
To g'et the a's one has to solve (conceptually only)
a system of 2N algebraic linear equations in the
2N unknowns a~. The solution will exist in gen-
eral, except perhaps fop rare values of & for
which the Cramer determinant vanishes. When-
ever it exists, the a's will be unique. We note
that 6x' =0 at s'=0 or s'=s. Thus, as required,
the path represented by Eq. (2.8) begins and ends
at the same x' as the classical path, which is just
that one with all a~ vanishing. We must stress
that for s'R(», 3», . . . , Eq. (2.8) does not in gen-
eral describe exactly the geodesic segments of
which the path is made. But it should give a good
average description for' large ¹

We now turn to the other half of the specifica-
tion. We write

dx'
p. =a~. + &p~ds

-=g„„[x'(s')], + b', sin(pcs'/s),
dx'(s')

ds 0=1

(2.9)

where x"(s') is given by Eq. (2.8). The term in-
volving the b's measures the deviation of p, from
the direction of the curve x'(s'). The bf are to be
chosen in such a way that Eq. (2.9) reproduces the
values of p„at s' = &, 3E, . . . that one has in mind.
The procedure is the same as above, ' one would
use in dx" /ds' the a's obtained in the previous
step. The set a~, b~ then specify our path just
as well as the values of x", p„at every other
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point. We note that when all b's vanish, the p„
given by Eq. (2.9) are just tangent to the curve
x"(s'} given by Eq. (2.8); in this case the original
broken path lies especially close to the curve
x"(s').

We now transform the volume element in Eq.
(2.V) to one in ab space. We have

N-i N/8

The Jacobian above is the determinant of a 4N
x4N matrix. We note that Bp„,/Ba~ contains the

metric coefficient g~„. However, Bx„"/eh~ = 0
identically. Because of the way a determinant is
built, elements in the Bp/Ba block of the matrix
will not appear in the Jacobian —they get multi-
plied by elements of the &x/Bb block which all
vanish. Hence the Jacobian. is metric independent.
In addition, we note that Bx„"/Ba~ = Bp„„/Bb'„
= sin(pcs„'/s) = sin[np&/(N + I)], while all terms
not diagonal in the spacetime indices vanish. As
a result the Jacobian is just the eighth power (four
powers from Bx/Ba, four from Bp/Bb) of the de-
terminant

m
sin X+1

2m . 3r
sin K+1 sin M+1

'N17/2

%+1

3m
sin X+1

Q(N) = sin I sin
10m (2.ll}

(N- I)v
sin X+1

(N l)Nv/2—
M+1

The important thing is that Q depends only on N, so it becomes a multiplicative factor of the path integral.
The last thing to do is to express the integral in the exponent in Eq. (2.7) in terms of a's and b's. We

shall not attempt to calculate the integral along the actual broken paths, ' rather we shall approximate it by
the integral along the interpolating paths defined by Eqs. (2.8) and (2.9). One feels that in the limit N-~
the same result will be obtained for (x, s ~x', 0). The kinetic term is

d(m+1}8 ~„„N ~ g
N

&0f af g g

m.p mp

For 'm odd we have x =x (ma). The point x"„,q lies on the original broken path and not on the curve x"(s')
defined in Eq. (2.8). In the definition of p„„ in Eq. (2.4), the (dx" /ds')x„which appears there is the tan-
gent to the original broken curve at x pointing along the segment from x„to x„,q. The function p„(s') in

Eq. (2.9) was chosen such that p„(me) =p . It follows that x'„.z --x„+ eg'~(x„)p~(me). Thus the above
sum takes. the form

N-1

g gp- + ~ +g g g 8 g ~f P
m~.s... -

+g~(x„.i) "'
~(

"' —ng'"(x )p„(me)) I.
Since g ~(x„.~) —g ~(x„) is of O(e) we may in the above replace g (x„.q) by g ~(x„) while preserving the ac-
curacy of the expression to:0(c). Similarly, we may replace ('. (x'„.2-x'„}by 2dx /ds' at s'=me, where
dx /ds' refers to the curve x'(s') of Eq. (2.8). We then have

dx dxt'
lim-,'Q g, „,„,ds'=-,' ~[x(s')Q (s'}p,(s'}ds'
6"p mp "foal S S . p

+ ,' g gx(s')]-, -p (s'), ds',dx'(s'), dx™(s')p, ds ds' (2.12)
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gIMg 4g + ~eg &
(2 .14)

where y ~=g~ for a timelike curve, and W 8
= diag(l, —1, 1, 1) for a spacelike one; h o is cal-
culated from the Riemann tensor at that point on
the base curve x', (s') having the same time coordi-
nate at which we are evaluating g~. In terms of

where we used the fact that the intervals of s' in
the previous expression were bs'=2&. A simi-
lar but much simpler argument gives

t (m+1)8 s
lim R ds' = R[x(s') jds'. (2.13)
6-0 m=o "m8 0

The functions x (s') and P (s') appearing on the
right-hand side of Eqs. (2.12) and (2.13) are given
by E(ls. (2.8) and (2.9). The final term in Eol.
(2.12) serves to cancel the linear expression in
the b's coming from the previous term.

To write the path integral in a form suitable for
evaluation, we must now be more explicit about
the form of the metric. In Fermi coordinates

N/2

&x' = o'z =x' —x,'=Q a', sin(pcs'/s),
p~i

one has""
Boo = —2A" 5x —(&S&;+ Rt]St]I)hx" 6x'

+ o(cx'),

a„.=- —,'Rf„-;.;ax'ax'+ O(sx'),

sRI))jf ~x 8x + O (5x )

(2.15)

(2.18)

(2.1V)

where A; = 8",A„and Rg;g = e" e~e', e~R, , Here
A~ =D(dx, „/dv)/dT is the four-acceleration of
x', (s'). We also record the inverse metric

y""yo "a„-4n; ~&(~,~d)'

+ o(rx') . (2.18)

Now turning back to Eg. (2.'I), substituting E(ls.
(2.8) and (2.9) into Eqs. (2.12) and (2.18), and
using E(l. (2.10), we obtain the desired represen-
tation of (x, s ~x', 0):

N/2

(x, s]x', 0)=s . )imi'q(ii) d ad 5'exp i f (ii —(i —i)R]ds'I,
N p=i 0

(2.19)

where Ci(N) is a combinatoric factor depending on
N alone, and

I

($ —o)R=const. Then the path which extremizes
the classical action in (2.8) is just the geodesic
linking x and x'. It satisfies

.s

(2.2o)

D dx,"
dS dS

(3.1)

In this last expression g o and g o are to be cal-
culated from E(ls. (2.14) through (2.18) with 5x'
=+~a]', sin(Pvs'/s). Similarly, dx /ds' in Eq.
(2.20) is obtained from Eg. (2.8) as

N!2

+-~ pap cos
dS dS S p-1 S

(2.21)

IH. CASE WITH GEODESIC EXTREMAL PATH:
GAUSSIAN APPROXIMATION

This case covers three interesting situations'.
(a) any geometry but $ =—,

' (field conformally in-
variant), (b) any $ but R = const (Einstein or de
Sitter spacetimes), and (c) any $ but R =0 (vacu-
um solutions of Einstein's equations, solutions
filled with radiation only, etc.). We thus have

Because C(N) is independent of the curvature, its
limiting value can be obtained from flat space-
time. We now proceed with the business of per-
forming the path integral of Eq. (2.19). The case
wherein the classical or extremal path from x'
to x is geodesic will be treated separately in Sec.
III, while the general case of an accelerated clas-
sical path will be treated in Sec'. VII.

The first integral of this equation implies that the
proper time (distance) v from the geodesic's
starting point is proportional to s'. Thus & = Ts'/
s where T is the total proper time (distance) from
x' to x. Therefore, A =D(dxc/d7')/d7 =0 which
much simplifies the expressions for g ~, Eqs.
(2.14)-(2.18). Also, since r is the only nonzero
coordinate for points on x,'(s'),

= (r/s, o, o, o) .
dS

(3.2)

= —,'s6~, (3.3)

we can easily show that

Let us now evaluate (2.19) in the Gaussian ap-
proximation, that is, using the expression for U

correct to second order in a's and b's. Substitu-
ting E(ls. (2.14)-(2.18) into Eq. (2.20) and making
use of

s

cos(pcs'/s) cos(ques'/s)ds'
0

s
sin(pcs'/s) sin(ques'/s)ds'

0
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' V ds'= ,'(a-/s)+-,'sy"&gb'. b&

0

+ (2/8s)y, Q p'a, a,'- —,
' Q A~(, a,'a(,

where o =yo(}T /2 (see Sec. II) and where

(3.4)

Rt,;;;(.= ~7/~)[cos(P —q) &

0

—cos(p + q) $]d t" .

(s.6)

Thus A~&,. is a combination of Fourier transforms
of the curvature along the extremal path.

The integrations over the b's in Eq, (2.19}are
easily performed using the Gaussian integral

J 2e~" dx=(mi/0)'a .
«OO

They give an overall factor g(,.&
(8mi/s)'"(- 8mi/

s) ' both for timelike and spacelike curves. To
perform the integrations over the a's we use the
result (valid for a symmetric matrix M)

t e'" ~" dx" =[Det(- iM/w)] 'a . (3.8)
«4d

Let us identify M~~ with (v'/8s)y ~P 5"—,'A~~-
where a pair (f) plays the role of an index for M.
We may factor ~:

S

(d( /ds') RIDER sin(pcs'/s) sin(qms'/s)ds'.
0

(3.6)

For completeness we define A~0„—A~0-=0. Since
~ =Ts'/s we may rewrite Eq. (3.5) as

product of determinants, we are able to coxnbine
one of the determinants obtained from the a inte-
gration with the factor arising from the b integra-
tions. We get

N/2

Jtexpi ~t Uds', , d ad bP

0 p=i

=C~(N)exp(i —(De)})g} +, (8.12)
2S

where C2 depends only on N. We notice that over-
all factors of s" have canceled between the a and b

contributions.
Substituting (3.12) into (2.19) we finally get

P+

I

(x, s ~x', 0) =Ks exp i ' —i($ —(})Rs (DetD)
2s

(s.ls)

where K= lim„„C~(N)C2(N). We need not evaluate
K directly. It is a geometry-independent combin-
atoric factor. In flat spacetime, 8 =0 and A~~

=0, so that Eq. (3.13) becomes

(x, s ~x', 0)=Ks exp i
2 ~

(flat spacetime}., 01
2s)

(3.14)

But it is known that this expression, with K
=-i(4v), is the exact amplitude. ' ' ~ Hence K
=-i(4w) in every geometry, and we have the
Gaussian approximation

(x, s ~x', 0)o,~,=,(DetD} exp iz . a(x, x')
GRuss 47S 2s

i(~ -', }Rs .

(3.16}

(3.9)

where

C."„=(8s)-'Hn'6" y„„
and

(s.lo)

(s.11}

Then since the determinant of a product is the

We now calculate the Feynman Green's function
in the Gaussian approximation. First we note that
by Eq. (3.6) the quantity sA~& is independent of s.
Hence when Eq. (3.15) is substituted into the
Schwinger-DeWitt formula (1.4), the determinant
comes outside the integral. The exponential in R
combines trivially with exp(- im s) [recall (g —6)R
is constant in this case]. Thus, the form of Gz

mimics that in flat spacetime, ' except for an over-
all factor.

[m'+ {~ s-)R]a',"(f 2[m'+ (g ~)R],pa) (s.16)

where IPj is the first Hankel function of second
order.

The determinant in Eq. (3.15) or Eq. (3.16) is by
no means a transparent quantity. We shall now

I

show that it is in fact the reciprocal of the bi-
scalar n defined by Eq. (1.6) which is itself sim-
ply related to the Van Vleck-Morette determinant.
This appears so unlikely at first sight that we
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shall go through the argument in some detail.
Let

{DetD]
-1 12

=(Det[5~ 6~ —2(s/m )p y"'AP~]] " . (3.17)

Then by the well-known identity lnoetD =Tr lnD,

E=exp[--,'Tr in[5, 5~ —2(s/v')y p 'A~]] .
(s.is)

Expanding out the logarithm and taking the trace
we have

F= exp[(s/v')p '~A",
+(s/w ) P q y™'A~y'"A;~+" ] (3.19)

(summation over p and q). We have here exploit-
ed the evident symmetry of A~~ in o.'P and pq.

To evaluate the A~~ we shall expand the Ro";p,".

in Eq. (3.6} about ~ =0 in powers of &:

Ro-0-.(v = $T/v) =Ryqo". (0) +Rg;-. ;(0)&T/v

+ -'R&-- -(0)((T/v)'+
(s.20)

Because A~o has an overall factor of T, the terms
retained in (3.20) are sufficient to give us F to
O(T }. In fact, to calculate A~~, for the second
term in the exponential of Eq. (3.19}, one needs
only the first term in Eq. (3.20) which is con-
stant. The integral in Eq. (8.6) is then trivial
and nonzero only for p =q. Also, in the fir'st
term in the exponential one only needs A~& with

p =q. The relevant integrals are

~, n=O
P(1 —cos2p))dg= —,'v, n=i (3.21)

—,'v' ——,'v/p', n =2 .

We get

A",, = —.'(T'/s)(Ryg;(0) + —,'Ryg;, 6(0)T

+~[i —3/(2'')]Rq~;;, q(0)T'+ "].
(8.22)

We now carry out the sum over P in Eq. (3.19)
using

is done, and the exponential in Eq. (3.19) is ex-
panded to second order, we get

E= 1+1fRgT +24RM;DT

+—'[gR-" -+—'(R-) +gR P -~]T + ' ' '

(8.24}

In this expression all quantities are evaluated at
v =0 (point x'} and R00;0 —R 8;neo eoea, etc. , where
R~~ —R ~„~.

Now for comparison we compute the expansion
of &(~, x')" to O(T ). We shall not attempt to do
this directly (an intricate calculation}, but shall
instead exploit a useful fact pointed out by one of
us: In Riemann normal coordinates centered at
x', D(x, x'}=[-g(x)] . Now an expression for
(-g) in these coordinates has been worked out by
Petrov (several misprints in that expression are
corrected in Ref. 11):

-g=1 —3R0f~f y ——R~g,„3 J y

——(-pR qR„~ +~R„~"R"6„„+fR q,„n)y y8y"y

(3.25)

Now the Riemann coordinates of x are defined by

y =t 7.', where t is the unit tangent at x' of that
geodesic which links x' to x, and T is the proper
time (distance) along it. Thus in our notation y
=eoT. For example, R„B;„y y~y" =R05;OT, etc.
Making the necessary substitutions in Eq. (3.25)
and calculating (-g) ' to O(T ) we get exactly the
expression (3.24) for E.

Thus the expansions of E and a(x, x') ' in pow-
ers of T agree exactly, at least to O(T ). Fur-
ther, as we shall see in Secs. IV and V, for both
the Einstein universe and de Sitter spacetime E
= a(x, x') n exactly. Thus although we have not
succeeded in proving the equality to all orders in
a general metric, there are good reasons to be-
lieve it holds true, i. e. , that DetD = 4 . This
means, for example, that our result (3.15) can be
written as

(8.23)

In carrying out the sum over the spacetime in-
dices we recall that we have defined 4~0„—= 0; this
is in accordance with Rgoa =0 (by antisymmetry).
The vanishing of the Christoffel symbols all along
x,"(s') allows us to replace d/d~ and d /d7 by
D/d7 and D /dr in Eq. (3.22). Then, since r
is just g on x,", one may interpret every sum
over spacetime indices in Eq. (3.19) as a space-
time trace on the Riemann tensor. When all this

(3.26}

an expression which invites several remarks. We
first note that, apart from the constant phase fac-
tor e '~ ' ', it-coincides with the first term in
the Schwinger-DeWitt expansion for the amplitude,
Eq. (1.7). Thus in the Gaussian approximation,
the path-integral representation of (x, s ~x', 0}
agrees for small s with the "short-time" ampli-
tude inferred directly from the Schrodinger equa-
tion by DeWitt,
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(x, s
~

x', 0) = i(4»»is} 'n(x, x')'~'e" a'. (3.27)

The terms appearing here agree with all those
which involve R in the correction terms mentioned
in Eq. (1.7) when they are computed for x =x'."'
Again, since we did not assume x =x', the impli-
cation is thatfor R=const&0 and (&6, those
terms in the f; in Eq. (1.V) which involve R must
be independent of x and x'. ' There are other
terms in the f» not proportional to powers of
R, ~' ' ' which are not obtained from Eq. (3.26).
Presumably these would come from post-Gaussian
contributions.

Feynman was the first to note, in the context
of the nonrelativistic Schrodinger equation, that
the exponential in the action must, carry a normal-
ization factor (4»»is) ' per coordinate. This is
necessary both for the short-time amplitude to
obey the equation, and for self-consistency in
combining many short-time amplitudes to get the
amplitude for finite time. Following him there
has been a tendency ' ' to regard the 4 ' in Eq.
(3.27) as the extra normalization required in cur-
ved spacetime over the Feynman value (4»»is} (re-
call, in flat spacetime b, =1). This point of view
rather obscures an important feature. We have
seen that the 6 ' is nothing but the contribution in
Gaussian order of the sum over paths apart from
the classical path (which gives e"a'). This will
be just as true in the limit s-0. Thus the factor

is an expression of the fact that even in curved
syacetime each individual short-time (e) amplitude
may itself be regarded as composed of many ele-
mentary amplitudes corresponding to a finer di-
vision of the "short time" one is starting. with.
Were one to fear that by representing a typical
path by the superposition of sines of Eq. (2.8),
one is giving up the chance to include in the amp-
litude the contribution of yaths which "zig-zag" in
an arbitrarily fine scale (these are reputed to
make an important contribution to the path inte-
gral ' ), one's fears should be allayed by the
realization that the formalism is self-consistent
(i.e. , even if there are paths which in the limit
of infinite fineness cannot. be represented as the

Since we did not assume small T in arriving at
Eq. (3.15}, the agreement suggests that, for
small s, Eq. (3.2V) is approximately valid even
for well-separated points, and not just for close
x and x' as usually assumed (see, for example,
Refs. 1 and 15}. With the factor exp[ —i($ -I'»-)Rs]
in Eq. (3.26), our approximation should also be
good when s is not very small. That factor, when
expanded out, gives

-»»»&l»»)»»»s 1 (g 1)R»(~ 1)2R2 2+. . .

(3.28)

limit of such Fourier series, their contributions
are evidently included). The contribution of paths
on a scale-finer than, say, E is implicitly contain-
ed in the amplitude (x, e

~

x', 0) because this has
just the form that one would get by summing all
paths represented by (2.8) and (2.9) with s = &. As
N-~ the contributions of zig-zag paths get in-
cluded.

The most dramatic demonstration of what we
have just discussed was provided by Feynman.
Having argued for the importance of paths which
zig-zag in an arbitrarily fine scale, he proceeded
to ignore them by representing paths by a Fourier
series like Eq. (2.8). Nevertheless, the path
integral gave him exactly the amplitude for the
harmonic oscillator. Obviously the formalism
took care of self-consistency. We now present an
example in curved spacetime of this notable fea-
ture of the formalism.

IV. EXAMPLE: PROPAGATOR IN THE EINSTEIN
UNIVERSE

Here e~" is syacelike (timelike) for a timelike
(spacelike} geodesic. Finally, if a geodesic
starts from X = 0, t = 0 at ~ =0 and terminates
at X, f at proper time (distance) T, then by the
constancy of dX/d7 = e0" we have

7'= aX(E'+1}'" (4.4)

Here we shall calculate the Feynman Green's
furiction in the Einstein universe which may be-
represented by the line element

g,dx dx~ =-dt' + a [dX + sin'X(de' + sin' e dp') ],
(4.1)

where a is the (constant) radius of the universe,
and X is an angular variable. 0 & X & m. The first
order of business is to find the geodesics so that
Eq. (3.15}may be employed. Because the metric
is static, a free particle conserves its energy.
Hence dt/dr =&=const along geodesic paths.
Let us consider a radial goedesic with a=const
and Q =const. Because of the isotropy of the
space this does not restrict generality. The radial
component of dx" /dr may be inferred from
g z(dx" /dr)(d /xdv8)=v1 whe're upper (lower} sign
applies to a timelike (spacelike) geodesic: dX/d&

= a (8 v 1}". The velocity vector .is thus

e," =[8, a '(E +1)'",0, 0] . (4.2)

One may immediately construct a triad of paral-
lel transported unit vectors orthogonal to e0". -

e," =[(E'+1}'",Ea ', O, O],

e," =[O, O, (asinx) ', 0], (4.3)

es" = [0, 0, 0, (a sinX sine} ] .
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The curvature tensor in the Einstein universe
is given by

(4.5)

where II;,- may be inferred from the line element
of the three-sphere:

pendence entirely analogous to that of the ampli-
tude in flat spacetime. Thus the integral (1.4} for
G~ can be taken over from standard references.
The result, taking account of all geodesics, is

G», y, t; 0, 0 =- m'+(g t»-)-R
" a,"(u„) y. +2~m

8~ „„u„sinx
H»&dx'dx' =dy + sin /de + sin 8 d»t ) . (4.5)

(4.i2)
All other elements of A z& vanish. %e can see
that

0, g 7' 6
~oioi = &eg n eo exeoez (4.7)

w slnw (4.10)

applied twice (to o.'=2 and c»=3}. Substituting
from Eq. (4.4) we get E=—(DetD]. " =X(sing)

Finally, according to Eq. (3.15) we must com-
pute o(x, x'). From Eq. (4.2) we have t = ET and

g =a (@v 1) ' & from which it follows that o = ,'T-
=-,'(a'g'-t ), where f, y are the coordinates of point
x. Substituting all this into Eq. (3.15) we get

(f, X,s~0, 0,0)g, ,—-i(4&s) y(sing} 'exp[i —,'(a X —f )s '

—i($ —tt.)Rs] .

(4.ii)
This is the amplitude associated with the di~ect
geodesic from t = 0, g = 0 tp t, X. Because of the

. compact nature of the Einstein universe, there
are other such geodesics; each circles the uni-
verse one or more times in the direction of +X, or
-X befpre arriving at the point t, g. The true
amplitude must evidently be the sum of contribu-
tions like (4.11}for all such geodesics. In each
such contributipn X+2mn plays the role of X in Eq.
(4.11); n is an integer (can be 0 or negative)
which indicates how many times the geodesic in
question circumnavigates the univer se.

The typical amplitude Eq. (4.11) has an s de-

is a linear combination of ~xxxx and components
of R~, with at least one t index; all these vanish,
sp +@of=0. By contrast,

RIM = R»peep egepep =Rye)(e(ep) (ep)

=a '(&'+ I) . (4.3)

Similarly RIM=a (@+1). All other R@p van-
ish. It is trivial to compute A e from Eq. (3.6) be-
cause the R-zg are constant:

AP, =X/, =-,'7's 'a '(Z'+1)5" . (4.9)

All other A~~ vanish. The matrix D =I—(2s/
v )y p A~z is thus diagonal in pq and o.'p. Half
of its elements are unity (those with & =0, 1).
The rest are 1 —(7/ape) (8 +1) for &=2, 3. The
determinant is easily computed by means pf
Euler's identity

where

u„=f- [m + ($ ——)R][a (y+27»n) —t ]'f ~ .
(4.i3)

Hom good is thig Gaussian approximation'P To
check we first note that because R is constant in
the Einstein universe, G& can only depend on the
parameter m + $R, not on m and $ separately
[see Eq. (1.1)]. Thus it suffices to consider the
G» for $=p (conformally invariant) because the
G» for any other $ may be obtained from it by re-
placing m -m. +((—p)R. Our expression (4.12)
obeys this essential rescaling relation. For (
=6 an exact expression for G& has been given by
Dowker (see also Dowker and Critchley ) and
Eq. (4.12) with $ =~ agrees exactly with it. Thus
for the Einstein universe our Gaussian aPPxoxi-
rnation to the path integral for (x, s ~x', 0) is exact.

Dowker ' also established that for $ =p the exact
amplitude coincides with the first term of the
Schwinger-DeWitt expansion (1.7), the so called
WEB approximatipn. He referred to this as the
"exactness of the sum over classical paths. " This
observation proves that the factor + which we
computed here directly in fact equals 4 ' in the
Einstein universe. This further supports our
identification of + with & ' in general spacetimes.
Consider now the amplitude (x, s

~

x', 0)o, for $
& p as given by Eq. (4.11). Expansion of the R-
dependent phase factor nom gives the R-dependent
terms in the f; of the Schwinger-DeWitt expansion.
This confirms our expectation in Sec. HI that
when R is constant those parts of the f» must be
independent of x and x'.

V. EXAMPLE: PROPAGATOR IN de SITTER
SPACETIME

A second example in which the quantities appear-
ing in Eq. (3.15) can be evaluated in closed form
is de Sitter spacetime. The determinant appearing
in the Gaussian approximation is easily evaluated
in this case, and is shoCn to yield again the exact
expression for n(x, x'). We show that the ex-
pression for (x, s x', 0), although not exact, is a
good approximation for mell-separated points.
The factor exp[ —i($-p)Rs] appearing in Eq.
(3.15) is found to be essential for the approxima-
tion to be good when s is not very small.
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which in Cartesian form is

g, „dx'dx' =-(1—~r') dt'

+ [5„+x(1 —~r') 'x,x, ]dx'dx', (5.2)

where x, =x' and x = 6,&x'x'. The nonvanishing
components of the Riemann tensor are

(5.3)

Consider the geodesic at x=0. Because of the
maximal symmetry it is equivalent to any time-
like geodesic in de Sitter spacetime. The maxi-
mal symmetry also implies that the biscalar
(x, s ~x', 0) will depend on x and x' only through the
total proper time T along the geodesic. (The
corresponding results for spacelike geodesics will
be inferred by analytic continuation in the variable
T.) The orthonormal tetrad e" = 5" satisfies
g „e" e"~=g ~ at x=0 and is parallel transported
along the geodesic. Therefore, the nonvanishing
components of Rg-„g; in I"ermi normal coordinates
on the geodesic at x=0 are the same as in Eq.
(5.3). Then Eq. (3.6) yields, for the nonvanishing
components of A.~~,

A~~ =-—,'xX s 5,.&5~ . (5.4)

This matrix is diagonal, so that

DetD =- Det[5 5~ —(2s/v )rl 'p A~]

(1+m 'p '~T')'

= (x'~ T) sinh'(2'2T) . (5.5)

Assuming that Octa is an analytic function of T it
follows by analytic continuation that for any time-
like or spacelike geodesic,

A standard form of the de Sitter line element is

g„,dx' dx" =-(1—Kr )dt

+ (1 —~r ) 'dr'+ r'(d&'+ sin'& dQ'),

(5.1)

(DetD) =(2vg} ' sin [(2vg} ' ]

(O' T) sinh (O' T) (timelike),
(O' T) sin (K" T) (spacelike).

(5.6)

For spacelike separations, the range of T' is 0
~ T &2m~'"

To verify that (DetD) is just b,(x, x'), it is
convenient to introduce Riemann normal coordi-
nates centered at the point x'. The Riemann nor-
mal coordinates y" of a point x are y =t T, where

is the unit tangent at x' of the geodesic from x'
to x, and T is the proper time (distance} along
that geodesic. By summing the infinite series for
g ~ given by Petrov (Ref. 24, p. N) for spaces of
constant curvature (being careful of several mis-
prints), we find that the metric of de Sitter space-
time in Riemann normal coordinates is

+ 1
sin [(ay ) ' ] y y„

geg ~eg
Ky y ]

(5.7)

In these coordinates, one has y, =g ~y~=g ~y~

(Ref. 24, p. 36), and

y'=y, y =2g(x, x'). (5.8)

a(x, x ') = (2 Kg)'" sin '[(2 xg)' "]. (5.10)

Thus, the expression in Eq. (5.6) obtained from
our determinant is the exact expression for
~(x, x').

Making use of Eq. (5.6), the Gaussian approxi-
mation for the kernel given by Eq. (3.15) becomes

We again make use of the relation (Ref. 11) that
&(x, x') = [ —g(y)] ', where y denotes the Riemann
normal coordinates of x. Writing g= & ~'gong]g2ygsQ
(where e ' =1), and noting that terms involving
products like (yoy )(yqy~) do not contribute because
of the antisymmetry of & ~', we find that

~=-(sin[(xy')'"](~y') ' ]',
and in view of Eq. (5.8) that

I

(x, s ~x', 0)o, —-i(4ms) exp[ig/2s —i(g-p)Rs](2Kg) ' sin [(2Ko) ],
where the scalar curvature is

A =12m.

The Feynman Green's function in this approximation is now given by Eq. (3.16) as

[m + (& —r}R) &'"(f- 2[m'+ (5 --')&]g]' ')
8v (- 2[m'+ (& --', )R]g)' ' sin "[(2Kg) ]

(5.11}

(5.12)

(5.13}

This gives the contribution of a single geodesic.
When x and x' can be joined by a timelike geodesic,
there is only one such geodesic. On the other
hand, when x and x' can be joinedby a spacelike
geodesic there are in general two such geodesics.

I

Together they form a great circle of total proper
length 2vz ' on the de Sitter hypersphere. When
x is at the antipode of x', there are infinitely
many spacelike geodesics between the points. We
find below that the approximation in Eq. (5.11) is
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good for T'~ —,'nx ' ', sp that the contribution of the
longer spacelike geodesic cannot be accurately
represented in this way. Assuming that the short-
er syacelike gepdesic makes the main contribu-
tion for T in the above range, we include only the
contribution of the shorter gepdesic in the above
approximation.

To find out how mell the expression in Eq.
(5.11) approximates (x, s ~x', 0), we substitute it
into the Schrodinger equation (1.2). By compari-
son with Eqs. (3.19) and (3.21) of Ref. 11 one
finds that Eq. (5.11}will be an exact solution of
the Schrodinger equation if and only if

a
g 8 i[1 Hl/-6)1Rs I / "1/2 V)s V (~1/2) + ~R] il &i1-/6))Rs

Bs
V V„

or
(5.14)

where a is given by Eq. (5.10). Working in Rie-
mann normal coordinates and making use of Eq.
(3.9) of Ref. 11 with U= 1, one finds that &'/' actu-
a1ly satisfies the equation

r '"v/'v/, (r'") = ,'K((2Ko) '- sin [(2K-o)'"]+3].

(5.15)

The series for the right-hand side is 2K[1 —(Ko/
20) +O(K o' )), so that the Schrodinger equation is
satisfied to excellent approximation when xT is
small. For larger values of xT, we find that for
spacelike geodesics the right-hand side of Eq.
(5.15) remains within 10% of 2K for KT ~ 2.6,
corresponding to a geodesic stretching about one
quarter pf the way around the hypersphere.
Therefore, when x and x' have spacelike separa-
tion the contribution of the shorter geodesic in

Eq. (5.11) and (5.13) generally gives a good ap-
proximation, while the (smaller) contribution of
the longer geodesic is not accurately represented
in that form, and should not appear in Eqs. (5.11)
and (5.13). The approximation should then be good
if T is not much larger than —,'mx '~ and dogs not
approach 1/K

1/ (the antipodal point). When the
separation of x and x' is timelike, the right-hand
side of Eq. (5.15) is —,'K[ —(KT ) '+ sinh '(K'"T)
+3]. This remains between 2K and 2.25K for all
values of T, indicating that the apprpximation may
be better in the timelike directions. For timelike

separation, the factor of sinh '"(K T) in Eq.
(5.11) causes (x, s ~x', 0) to vanish exponentially
fpr T & x '". The sharp contrast between space-
like and timelike directions can be attributed to
the existence of a focus for the spacelike gepdes-
ics emanating from a point. Because the approxi-
mation to (x, s ~x', 0) in Eq. (5.11}satisfies the 5-
function boundary condition when s approaches
zero, and satisfies nearly the exact Schrodinger
equation in both timelike and spacelike directions
fpr T ~-,'~x ', it should be close to the exact
(x, s ~x', 0) for 7' in that range.

If the factor of exp[ —i($ —6)Rs] were not pres-
ent in Eq. (5.11};or if ($ —p) were replaced by a
different number in that factor, then the right-
hand side of Eq. (5.14) would be changed, while
that of Eq. (5.15}would of course remain the
same. Thus, the factor'of exp[- i($ —6)Rs] ap-
pearing in the Gaussian approximation, Eq. (3.15),

- plays an important role in the above considera-
tions.

As our main concern here was tp evaluate and
check our approximation, we do not wish to go into
peripheral questions. We only note that our meth-
od of evaluating the path integral works directly
with quantities like the Riemann tensor which are
entirely insensitive to coordinate-induced bound-
aries. For example, it is immediately obvious
that in- flat spacetime our method gives the usual
Minkowski-space Green's function whether one
starts with Minkowski or Rindler coordinates. ~

The paths entering into the evaluation of the path
integral r ecognize no coordinate boundaries.
Thus, - one would expect that in de Sitter spacetime
this method mould approximate the global Green's
function. ' There is a further complication in
de Sitter spacetime, namely, there are pairs of
points which cannot be connected by any geodesic
(i. e. , when x lies in the light cones of the point
antipodal to x'). The path integral and hence G),
between such points should be small compared to
the case when a geodesic path is dominant, and
may be presumed to vanish in our approximation.

In the next section, we extend the work pf Sec.
III to fourth order in the Fourier coefficents. The
reader interested in the Gaussian approximation
in the important case when ($ —6)R is not constant.
may skip directly to Sec. VH.

VI. BEYOND THE GAUSSIAN APPROXIMATION

(5.1)

Continuing to consider the case when ($-~)R is a constant, let us find (x, s ~x', 0) working to fourth or-
der in the Fourier coefficients a'~ and b~„. The extremum path is geodesic, so that no acceleration
terms appear in the metric. The necessary expansion of the metric in Fermi normal coordinates has
been worked out by Li and Ni. With the h 6 defined by Eq. (2.14), one has to order (5x}

Ilpp =-Rgp) 5x'5x' —6Rg);;/5x 5x' 5x' —oaf 6, ; ,1 5x" x' 5"'"5x5+x/6Rgs,"Rp i)/5x 5x' 5x'bx',
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(6.2)

(6.8)

I „= ,'-R--;;585&' ——.'R-;;,;5X'sx'sx' —I'-,R-;;,;„-5X'sx'sdsx" +~R";;;R»-„„-5X"sx'ex~ex",

h,q= —y Rfrifr" sx sx' —r(R(rr"r- "sx sx'sx" —W6R(W-; "„"sx sx'Sx sx" +kR"Wf(R-„-)gsx sxr ex'sx" .
Using (2.20) we may now calculate if Uds' to fourth order in a's arrd fr's After taking the exponential we

expand the exponential of the third- and fourth-order terms to obtain

S 2

exp i Uds' =exp —+ -s b~b~~+ —y z p a~a&~- — A+&&a~,

1-
2 2 ~ mA&&oa&u;a 12 ~ ~A~' '~ " —4-~ ~ mn &&00ap~aS A, m Pqm jg~ P q m Pq mtt

2 ~ ~~~~ aP~~~ (re 6
2' ~ ~~f~0apa~~ a

3 z ~ m+1~~ apS

—2, Q mn&'(, r, o"ay(a,'d„ao-, Q na~qr, r a~(a, d„'d„
S p~mn Ss

r, Q . mBC )~(dr rrpg Q~QR — Q D@RRigpgq5pd by12s Pq mn

(6.4)

where A~~ was defined in Eq. (8.5), and

S

A~(&0 = ds'ROfrz sin(pws'/s) sin(qws'/s) cos(mws'/s),
0

' PS
A~(&(, = J~ ds'R(((0& g ein(pws'/s) sin(qws'/s) sin(mws'/s),

0

S

A~(&00 = ds'R(((0& sin(pws'/s) sin(qws'/s) cos(mws'/s) cos(nws'/s),
0

p S

A~(~((r = ' ds'(Rr(i„-;R ";5~ —«R((for";",)) sin(pws'/s) sin(ques'/s) sin(mws'/s) sin(nws'/s),
40

S

A;~(, 0 = ds'Ro-;Q~;- sin(pws'/s) Sin(qws'/s) Bin(mws'/s) coe(rrws'/s),
0

S

&"„»"= J ds'Roy-, j sin(pws'/s) sin(qws'/s) cos(mws'/s),
0

S

&~&(,0 = ds'Rarr& sin(pws'/s) sin(qws'/s) cos(mws'/s) cos(nws'/s),
0

S
ds'R" "

d", sin(pws'/-s-) sin(qws'/s) sin(mws'/s) cos(nws'/s),
0

PS
C, (, r

= ~ ds'R;;;& sin(pws'/s) sin(qws'/s) cos(mws'/s) coe(nws'/s),
0

(6.5)

(6.6)

(6.8)

(6.10)

(6.11)

(6.12)

(6.18)

S

Ddr —— ds'(8 V R(((", ((r" +fr V 'RN ,;,"+R8'"r 'Ry~r) sin(pws'/s) sin(qws'/s) sin(mws'/s) sin(nws'/s) .

(6.14)

All these integrals can easily be evaluated if R„~ is known as a function of proper time 7 along the geo-
desic. We only'need to recall that s'=~s/T.

Now from Eq. (2.19) we have

S

(s, s(s', D) =Cs sxP[ —i((-s(Rs], d s d PssxP i Cds'),
P 0

(6.15)

where C depends only on N We notice. that because the exponential in (6.4) is a quadratic form, those
terms in the post-Gaussian corrections involving three a's will integrate out to zero in (6.15). The terms
involving four a's can be integrated with help of the functional
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r2
z(x, x, 0)= I . 0 aoo( poaxP i —xo&P ocaoo——&Ao»aoa,"+—'oxog 0 po„

P

aog xoao' aig 0,", I', ), (6.1 6)

where & and LL(~ are parameters. By differentiating Z an appropriate number of times with respect to
&'s or p's and setting ~= p =0 one can produce the integral over a's and b's of any one term figuring in
(6.4). Evaluating the Gaussian integral in (6.16) we have

X(x, O, 0) =X(x, 0, 0)axp~~ ——,'ig Ool»oxo'—pix P aoyoaoo),
P

(6.1 v)

where I~ is the matrix inverse of M~~ Isee (3.9)j. Performing now the appropriate differentiations of Z

to evaluate the post-Gaussian corrections in the integral (6.15) as specified by E(l. (6.4) we find

(x, o~x', 0) =(x, x~x', 0), .((+ ., Q onnAi oYA» — ., Q A'o,","p»"' +;Q »A)pop» .
~ 2 ~ /71

2% Pq tag )~I)t 0 gq fftff g jQg+ 2 M mnB;;ALOE~~+ 8 ~ navar E
S P~ fffff 32s p ~

2
$7T ~me. f',~&t & M ~op &S+

48 2 ~ mnC&&~, E~ + —~ D~, ~„L~5 y ~S pq S pq

(6.16)

where

(6.19)

and the second-order contributions have been fac-
tored out and displayed as (x, s1x', 0)o, ,

In any concrete geometry, calculation of the
post-Gaussian corrections will evidently be a lab-
orious task. Thus it is not clear under which
circumstances is the above result an improvement
on the Gaussian approximation. We give it for
completeness, and will not go into such questions
here. Rather, we turn to the more interesting
problem of evaluating the Gaussian approximation
when ($ -

6 )& is not constant.

VII. CASE WITH ACCELERATED EXTREMAL PATHS:
GAUSSIAN APPROXIMATION

The main contribution to the path integral in Eq.
(2.7) comes from paths between x' and x which ex-
tremize the action 8 appearing in the exponential,
where

1 P 0 (v.2)

To find the relatioriship between s' and 7, the
physical proper time (length) along the timelike
(spacelike) extremal path, let

dx dx' (dT '
gona d i d i — 001 d i 0f(s') = (v.3)

where x"(s') is the extremal path (recall that y00

is -1. or +1 for timelike or spacelike paths, re-
spectively). One has

d, f(s')+4($--) d, ,„.It=0, (v.4)

tion to (x, s1x', 0) one finds terms like JOB ds'
which are not evident from the proper-time expan-
sion (1.V). Such his"tory dep-endent te"rms are
perhaps related to such phenomena as particle
creation by the geometry.

Varying the action S gives the equation satisfied
by the' extremal path,

dx dxS= —,'g ~, , —(f-())R ds'. (v.1)
from mhich follows that

f(s') =4K(x, x', s) —4($ ——)B(x(s')), (v.e)

In a general curved spacetime the term ($-())R
acts as a potential which causes the extremal
path to be different from the geodesic joining x'
to x. Furthermore, me mill find that the "proper-
time" parameter s' is not linearly related to the
physical proper time or proper length along the
extremal path. These complications, which are
not present in the case when (t'-p)R is constant,
result in the appearance of interesting new fea-
tures. For example, in the Gaussian approxima-

where the constant of integration K is independent
of s'. Then

S'

~(s') =2 Iyo,Z- yoo(& - t't)R]'"ds",
0

(v.e)

+II=0, (v.v)

To find the dependence of E on s, the total
parameter change along the extremal path from x'
to x, we use the Hamilton-Jacobi equation
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where II is the Hamiltonian obtained from the ac-
tion S. One finds with the aid of Eq. (7.5) that

ps
S=-,'&(x, x)s-'+(~ ~)R(x)s 2(g f) I Rds'.

fI =Z{x,x', s) (7.8) (7.18)

at any point along the extremal path.
Evaluating S of Eq. (7.1) along the extremal path

gives

Finally, the proper time or proper length in Eq.
(V.6} takes the form

v (s') =2 J) (-,'yppa(x, x')s '
S

S =&s —2($ —~~) R ds'.
0

The Hamilton- Jacobi equation is

(7.8) + ypp($ —P)[R(x) -R(x(s")}]]'/Pds" .
(v.14)

+are-2(g-~)R{x) =O,
(BK'I

E»), ~

(v.io)

where R(x} is evaluated at the end point of the
path. It follows that

X(x, x', s) = V(x, x')s '+ (~--', )R(x), (v.ii)

V(x, x') =-,'a(x, x') . (v.ia)

Thus the action along the extremal path from x'
to x is 1

where V is independent of s. Therefore, in the
limit that s approaches zero the action of Eq.
(7.9) approaches V(x, x')s . However, as s ap-
proaches zero the first term in Eq. (V.2) is domi-
nant and the extremal path approaches the geo-
desic from x' to x. Thus, 8 should approach
,'a(x, x—')s Ther. efore,

One easily sees that these expressions reduce to
the known result 7 (s') = Ts'/s when R is constant.

We are now in a position to evaluate the path
integral of Eq. (2.19). The acceleration A"
=D(d'x" /d~)/d7' appearing in Eqs. (2.15)-(2.18)
for the metric in Fermi coordinates is readily
evaluated from Eq. (7.2). Recalling that in Fer-
mi coordinates x' =0 and x =& along the path,
one finds that & vanishes, and

Ap =-2(d~/ds') '(& —p) 8 (R . (v.i6)

Also in these coordinates, Eq. (2.8) is
x/2

x" (s') r(s )'=+dQ 'a,"sin(dms'/s) .
(v.16)

Expanding the scalar curvature in a Taylor series
about the extremal path, we obtain to second or-
der

( s S S

R s
)d1

= f'Rds'+g d~. fS Rs.in( ms„/Rs)ds'
~~i'(~) 0 p 0

(v.iv)

[V-(~ ~)R]ds'=S+ ,'srpgb'. -b', + —r.,g p'&a,'

S

+ —,
' gg ag a,' a.a~ sin(p~s'/s) sin(ques'/s)ds',

a 0

where the integrals on the right-hand side are evaluated along the extremal path. Substituting Eqs. (2.21)
and (2.14)-(2.18}[with 5x =pa~sin(pcs'/s)] into Eq. (2.20), and using Eq. (7.17), one obtains to second
order in the a's and b's,

~W

A„a,'a -g qua,'A", ——,'((-~)Q a,'a,"fl„„,
Ar S Ar

(v.18)

where S is given by Eq. (V.18), and

8 (p~s' . &ques' /ctr '
(A "A" +Ry"") sinl sinl

I, s ( s &ds'

(v.ia)

(v.ao)

(v.ai)

with the integrals evaluated along the extremal

I

paths. In these expressions A", is given by Eq.
{7.15) with (dv/ds') given by [see Eq. (V.14)]

(dr/ds')' =ayppa(x, x')s '

+4rpp($ —p)[R(x) —R(x(s'))] . (V.22)

The term in Eq. (V.18) involving A~~ can be
written in symmetric form by defining the matrix
Q~~ such that

(v.28)~)g ——Qp~
———,'q ), Qpp=o, Q)((

——0.eP & Pe Ar Ar

Then Qp, qa(, a,'A~~ =Q((, a(, Q~p a,', and we can rewrite
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Eq. (7.18) as
S

J
[U- (5 f-)R)ds'=S+-'sy g blab,

'
0 P

+Q a~M~~q a, , (7.24)

This result clearly reduces to Eq. (3.15) when

($ —6)R is constant, but it involves several new

features. First note that(DetD]. " depends on s
and is not the same as 6 (x, x') in general. Re-
call from Sec. ill that (even when R is not con-
stant)

where ~, is the symmetric matrix

M+q —Q C~yD"„,

with

C.„=(as) '~V 5"y.„

(V.25)

(v.25)

a(x, x') =[Det(5 5~' —2m sy 'p A~)] ' (7.29)

with
S

&,~ = T, s Ryy& sin(pcs'/s) sin(ques'/s)ds',
0

(v.3o)

-4s~ '(~--', )s 'P' g R„5

(v.2v)

N/2

=s Ce' d a~d b~ exp —g~g b~b~~

Paf P

+i+ a M"~at')~,

—Bv n y"'Q Q~qb

Here we defined &~0 ——&~0„—0. The matrix M~~

reduces to that of Eq. (3.9) when ($-p)R is con-
stant.

Now Eq. (2.19) has the form

(x, six', 0)

the integral being evaluated along the geodesic
from x' to x, and T', being the proper time (or
distance) along the geodesic. The determinant
in (V.29) is not DetD. A second new feature of
interest is the appearance in the exponential of
the integral of R The Feynman Green's function
is obtained by substituting Eq. (7.28) into Eq.
(1.4). Because of the s dependence of DetD, its
form will be very different from that of t"~for the
case that ($-8)R =const, namely, Eq. (3.16).
This may signal the existence of novel quantum
effects resulting from variations in R.
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where C depends only on N. The integrations are
the same as in Sec. IQ. The integration over the
b's yields an overall factor proportional to s ".
The integration over the a's gives (DetM)
=(DetC~) "(DetD~~) ', and (DetC~~) ' is pro-
portional to s". Noting that the R-dependent fac-
tors must have the same value as in flat space-
time, we finally have the Gaussian approximation

APPENDIX A

Here we show that the expression (2.2) for the
amplitude is, in fact, invariant under changes of
the parameter P. The argument is independent of
the original one ' used to prove (2.2). First we
write the obvious composition law

(x, s lx i 0)a ~ =
( ), (Det ~", ) '"

x exp ' + i($ —x-)R(x)s
i&r(x, x')

L- 2s
S

2i(~ --', ) R ds',
0

(7.23)

where D~~ is defined in Eq. (7.27) and Jo R ds' is
evaluated along the extremal path, while cr(x, x')
refers as usual to the geodesic between x and x'.
(A simple approximation for DetD and n when
R ~6 is slowly varying between x' and x is given
in Appendix C.)

(x, s
~
x„,s —g(x„, s —e i x', 0)(-g)'"d'x„

=(x, s ix', O), (Al)

where we regard e as infinitesimal (x=x„,~ in
the notation of Sec. II). For (x, s ~x„, s —&) we
take the expression

(xi s~x~i s &)

=[a(x, x„)] exp[is(x, x„)/2e- it[)+ g(p —1)]R),

(A2)

which is just the infinitesimal version of (2.2);
use has been made of (2.3). From the discussion
preceding (3.25) we now infer that
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[a(x, x„)]'=1+~R,„,„,e'+0(~'),

where dx /ds' =(xl —x„)/c. aut from the relation
between o „and dx /ds' (see Sec. E) it follows

(A4)[2i(x, x„)]'=1+~Mo,„o,,+0(~'),

where o, =-Bo(x, x„)/Bx . Now denoting the expo-
nential in (A2) by & we see that

(x, s Ixg, s —f) =(1 —+3R & [V~V3- 326 p',~;3- 3($ —3+ 3p)(o,~R,3+o ~ 3R,~}]}+0(&}. (A6)

Now, it might be thought that the operator V V~
when applied to F- produces terms of 0(e ); in
fact this is not so. For when one multiplies ~ by
(x„,s —e Ix', 0} in (Al), it combines with the expo-
nential of the action for any path from x' to x„ to
give the exponential of the action from x' to x via
xN. This last action is well behaved as &-0.
Thus when (A5) is substituted in (Al) V V3 does
not give rise to terms singular in E. In fact,

f [1+3iepR 3o—
,,+0(e')]E(x„,s

—~
I
x', 0)(-g}'"d'x„
= (x, s Ix', 0) . (A6)

Now in the limit N-~, x and xN are arbitrarily
close for the average path. Under these circum-
stances o;~-g» hence R~g;~-R. Thus

exp[io(x, x„)/2e - ic(& -3)R](x„,s
—~ Ix', 0)(-g)'"d'x„

=(x, s
I
x', 0) . (A7)

But P no longer appears in this expression which

corresponds to the expression for (x, s Ix', 0}
given by (2.2) with P =0: Whatever value of P we
start with gives the same amplitude as p =0.
Hence the expression (2.2) for (x, sIx', 0) is p in-
variant.

The fact that there exists an independent deriva-
tion -of the p invariance which was never con-
cerned with the expansion (AS) for. h~ has an im-
portant conse2luence: Only terms to 0(e ) in the
expansion for 4~ enter into the final value of the
path integral. We shall use this feature next.

APPENDIX B

We shall show here that one can ignore the b, '
factors in the path integral (2.6). The first re-
sult we need comes from the discussion immedi-
ately preceding and following (S.25) in Sec. HI.
We infer from it that

d~(xi xi} 1+JR 3(x,)(xi -xi)(xf -x$)

yo((x, -x,)'). (al)
Since xi-xi —0(e), s" =1+0(c ). This is the
reason for replacing dF' (x3, xi}by 1 in the limit
z -0.

+0(e') .

—2~4'" (xi}P (~}]

(aS)

For small & we may now interpret x& —xq as
2tdx /ds' 'at s' = & where x (s') is the function
given by (2.8). Upon substituting from (2.9}we
find that

a'"(xi, x,)
s"'(x„x,)

X/2

=1- ~3~'R3(x,), (~) Q &', sin +0(~3) .

(a4)
Other ratios in (2.6) will have analogous form.

To finish our argument we note that the func-
tional f 3 Uds' defined by (2.20) which enters into
the final form of the path integral is exactly quad-
ratic in the 5's (this has nothing to do with the
Gaussian approximation-it is a general state-
ment). Thus the terms in expressions like (a4)
linear in b's will, when put into the path integral
(2.19), average out to zero. Of course the pro-
duct of ratios of b'~'s in (2.6) also contains terms
quadratic, quartic, etc.-, in b's These do not
average to zero. But all these contributions are
of 0(e ) or higher. From what has been said in
Appendix A they should vanish as e-0 (N-~).
Thus one may simply ignore the b, ' factors in
(2.6). One cannot ignore b ' 's that do not appear
in ratios, for example, the d' 's in (2.2) for p
= —,

' because a discussion analogous to the preced-
ing one shows the 0(& ) term in the counterpart of

Consider now

~i /2

,~, ' ', =1+~iR~(xi}[(x3-x,)(xf-x))
(xg) x2)

—(xi -x, }(xf—xf}]+0(~3).

(a2)

In obtaining this result we expanded the denomina-
tor and also identified R ~ at xq and x2 since the
error thus incurred in expression (a1) is of 0(& ).
In the spirit of Sec. II we now replace x2 by x~
+ eg" (xi)p3(E) in the above expression obtaining

2" x x„3," ' —1+hR,(x,)(x™3-xi)[(xf-x[')
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(B3) to be b independent-it will not average out to
zero.

APPENDIX C

with

A, = —,
'

(Aug+ RM")~, ds'
0

' ' Ids' (C8)

In this appendix, we give an approximate ex-
pression for DetD in the case wherein A z, is
slowly varying along the extremizing path from x'
to x. This will also yield an approximation for
DetD and by implication for h(x, x') and the Van
Vleck-Morette determinant.

When we say that 8 +, is slowly varying, we
mean that one can neglect certain Fourier com-
ponents of it and of quantities, such as the "ac-
celeration. " formed from it. In particular, sup-
pose that (with n =1, 2, . . . )

Jl (A;.A;. +Rg~~)cos( )(&',) ds'

0
(C7)

.3-—

A,
g sink. g

@=lj

(C8)

The matrix X ~—= y „~~ is symmetric and can be
diagonalized, from which it follows that X~ can
be diagonalized. I et the eigenvalues of ~~ be de-
noted by &~. Then

DetD"8 =, , (1 —n w AB)
~0 n=1

s t'd 2

(A&A- +80&0")i ds ' (C1)0$0& (d I

or in terms of the original matrix X,

DetD =Det( sinX)/DetX, (C9)

I'a.a~Los
"'*' as' «J a„a~'as', (c2)

~0 S 0

and that

(C3)

where AJ is defined in Eq. (7.15). Condition (C3)
is reasonable because JOAN(d7/ds')ds' is the velo-
city change along the geodesic, which is generally
less than unity in magnitude. Then the matrix
&„"~ of Eq. (7.27) will be diagonal in the indices
n and q. This follows if one considers Eqs.
(7.19)-(7.21), uses the elementary identities

sinne sinm. e =-,' cos(n —m) 8 ——,
' cos(n+ m) &,

sinn& cosm8 = —,
' sin(n —m) & ——,

' sin(n+ m) 8,
and then imposes the conditions of Eqs. (Cl}-(C3)
which permit one to neglect the off-diagonal terms
in the matrix D. The result is

nms''t
$0y )

Re"- cos
i

ds' «Ryg"ds'i)
0

(n =1, 2, . . . ) . (C10)

Then the matrix A~~ is diagonal in (p, q), and one
obtains from Eq. (7.29) the approximation

S(x, x') = Det'r/Det(sin Y'}

with

(C11)

where the matrix sinx can be defined by similar-
ity transformation from the matrix of eigenvalues
sin ~~ or by matrix power-series expansion.
Equation (C8) or (C9) gives the approximation for
DetD(x, x') wheriR„B&& is slowly varying along the
extremizing path from x' to x.

In a similar way, one can obtain an approxima-
tion for L(x, x'). Suppose that R„8&~is slowly vary-
ing along the geodesic from x' to x, in the sense
that

(C4)
1

Ys = Tg y Bf~ 'tag q

0
(C12)

where

X~ =2sy"'A,
~ + 4s(5 —tr) y"'&, ~, (C8)

where u=s'/s and y"'=y„was defined after Eq.
(2.14).
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