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I I

Classical spacetimes which contain evaporating black holes (EBH'sj are constructed using the Vaidya metric. These
model EBH spacetimes are spherically symmetric, asymptotically flat, and contain event horizons which terminate
after finite duration. These model ESH spacetimes are then used as fixed backgrounds for particle-creation
calculations, in an attempt to learn something of the dynamics of real, semiclassical EBB spacetimes while

bypassing the di6iculties associated with the back-reaction problem. The stress-energy tensor of a quantized
massless scalar field is studied on the two-dimensional EBH spacetimes obtained by setting d8 = dt) = 0. If
lim(dM/dv)~ as M—A (v the usual ingoing null coordinate), then an infinite flux of outgoing radiation is produced

along the Cauchy horizon of the EBH. This behavior suggests that a correct, self-consistent semiclassical EBH
spacetime must have lim(dM!dvj =0 as M~, contrary to the behavior deduced by naively extrapolating
Hawking's result all the way down to M = 0, which gives dM/dv -M '. It also shows that not all zero-mass naked

singularities left at the end point of an evaporating black hole are benign; they may produce a divergent flux of
created particles.

I. INTRODUCTION

The discovery by Hawking that a black hole
emits particles like a blackbody with temperature
proportional to its surface gravity" has acted as
a great stimulus to research on the quantum theory
of gravity and the theory of quantized matter fields
on curved-space backgrounds. ' Despite a truly

.impressive amount of effort, little progress has
been made at extending Hawking's work to find
a self-consistent, quantum mechanically correct,
dynamically evaporating black-hole spacetirne
(hereafter referred to as an "EBH spacetime").

The primary approach to the back-reaction
problem has been through the semiclassical theory
of gravity, wherein one has a classical gravi-
tational field coupled to the expectation value of
the stress-energy tensor of quantized rnatter
fields via the se,miclassical Eiristein equations
G„„=Sit(Tu„). Although solutions to these equa-
tions representing EBB spacetimes have not yet
been found, substantial progress has been made
in studying the semiclassical theory. In particu-
lar, solutions within the theory (such as Minkowski
space) seem to be violently unstable owing to
fourth derivatives of the metric appearing in the
field equations. ~ '

Much effort has gone into regularizing and cal-
culating (T„„)on a fixed background spacetime
such as the SchwarzschiM geometry. Thanks
to the efforts of many people, "' it appears that it
is now feasible, at le@st in principle, to calculate
(T„„)for the Schwarzchild black-hole spacetime. '
The result, however, is likely to be a stack of
computer output because of the complexity of the
mode sums involved. The extreme difficulty of

calculating (T„„)for the fixed Schwarzschild
background illustrates how much more trying it
will be to find self-consistent EBH spacetimes
within the semiclassical theory.

In this paper I will study particle creation in
EBH spacetimes by using a rather ad hoc pro-
cedure. The procedure is to construct a classical
spherically symmetric, asymptotically flat space-
time which contains an evaporating black hole,
and then do a particle-creation calculation on that
fixed background spacetime. The procedure is
motivated by the observation that while we have
extreme difficulty performing back-reaction cal-
culations, there are by now several different
methods available to calculate particle-creation
effects in a fixed background spacetime relatively
easily. One could hope, in the best of all possible
worlds, to fortuitously guess a classical EBH
metric which would turn out to have its calculated
(T„„)equal to its preordained classical T„„.
Such a metric vPould in fact be a correct, self-
consistent, semiclassical EBH spacetime. Un-
fortunately, . nothing so grandiose will happen
in this paper. We will see that it is possible to
make some fairly general statements about how

the mass of the black hole decreases as M = 0
is approached, in particular, showing that not
all zero-mass naked singularities at the end point
of event horizons are "benign". Some mass-de-
crease functions, including the naive one obtained
by extrapolating Hawking's fixed background re-
sult all the way down to hf = 0, have naked singu-
larities which produce a diverging flux of out-
going radiation along the Cauchy horizon.

Section II of this paper details the construction
of the classical model EBB spacetimes. Section
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III contains the particle-creation calculation. Dis-
cussion of the results and conclusions are in
Sec. IV. Two appendices detail models for which
one can explicitly calculate (T„„)(in two dimen-
sions) everywhere in the EBH spacetime.

The sign conventions and notational practices
of Misner, Thorne, and %heeler' are used through-
out the paper. Units are chosen. so that G=c=I =1.

II. VAIDYA MODEL OF AN EVAPORATING
BLACK HOLE

where

M(v)=0, v&0,

M(v)=0, v& v, ,

(2)

and in the region vo& v& 0, M(v) is an arbitrary
decreasing function of v, which approaches a posi-
tive finite value m as v- 0 and approaches zero
as v -v, (see Fig. l).

The model EBH spacetime is initially flat, empty
Minkowski space for aD v & 0. Then, at v = 0, an

imploding 6-functional sheD of null fluid with
total (positive) mass m forms a black hole. The
results of this paper do not, however, depend
on the precise manner in which the black hole
is formed; a collapsing ball of matter can replace
the imploding null-fluid shell without affecting
the results. Negative-energy-density null fluid
then falls into the hole at a greater or lesser
rate, depending on the choice of M(v), such that
the mass of the black hole is reduced to zero
at v = v, . The final state is again flat, empty

I will model the Hawking process evaporation of
a spherically symmetric black hole with the Vaidya
metric"" which represents imploding null fluid.
The metric of the- model spacetime is

ds2= —1 - dv'+ 2dv dk
2M(v}

r
+ r'de'+ r' sin'Hdg',

Minkowski space for all v& v, .
A Penrose diagram for such a model EBH is

illustrated in Fig. 2. Regions I and III are Min-
kowski space, while region II is the decreasing-
mass Vaidya metric section of the model. The
null hypersurface labeled 3t'. is the event horizon
of the EBH. The radius of the event horizon de-
creases from some value r~ at e = 0 to zero at
v vQ. The exact value of r~ is a complicated
function of M(v), but it is always less than 2m.
The timelike hypersurface labeled 6 in Fig. 2
is the apparent horizon of the EBH. Its radius
decreases from 2m at v=0 to zero at V=V,. 'The

apparent horizon lies. outside the event horizon,
contrary to Proposition 9.2.8 of Hawking and
Ellis, "because the area of the event horizon
monotonically decreases (the weak energy con-
dition is violated). The apparent horizon and the
event horizon coalesce at the zero-mass naked
singularity (point q in Fig. 2), which gives rise
to the Cauchy horizon, labeled 6 in Fig. 2.

III. PARTICLE CREATION BY EVAPORATING
BLACK HOLES

How does one determine whether a classical
model EBH bears any resemblence to a quantum-
mechanical real-world EBH? Meally one could
proceed by guessing a classical model EBH
metric, then computirig the complete four-dimen-

~~ M(&)

V

FIG. 1. Possible choice of M(y) for an EBH model.

FIG. 2. Vaidya model of an EBH spacetime. BQ is
the event horizon, 6 the apparent horizon, and 6 the
Cauchy horizon of the spacetime. p is the point at
which the event horizon enters the initial Minkowski
region, and q is the naked singularity.
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sional stress-energy tensor of the quantized fields
one is interested in on that background spacetime.
If the quantized field's (T„„)happens to be equal
to the T„„ofthe classical model, then the classical
model EBH is in fact a solution of the semiclas. -
sical Einstein equations. If the classical and quantum
stress-energy tensors differed by a small amount,
then one could hope to find a semiclassical EBH solu-
by perturbation theory on the original model.

In this section (and those which follow) I will
settle for a much more timid goal, namely, trying
to determine which classical model. EBH's pro-
duce an infinite flux of created particles at S'
and which produce a finite flux. If a model EBH
produces an infinite flux of created particles,
then clearly the gravitational back reaction to
those particles is important. Therefore, that
particular model EBH does not resemble a self-
consistent semiclassical EBH. On the other. hand,
a model EBH with finite particle production may
be only a perturbation away from a self-consistent
semiclassical EBH.

This sort of consideration may be applied to
Hawking's original calculation of particle creation
by black holes. 2 Since the constant thermal flux
emitted by a Schwarzschild black hole persists for-
ever, an infinite )otal amount of energy is radiated
from the Schwarzschild black hole. Obviously the
fixed Schwarschild metric is not a good model EBH.
The models in this paper, if somewhat ad hoc due to
their Vaidya nature, at least have event horizons whi
which disappear after only a finite time and are thus
better models of EBH's than the Schwarschild metric.

In order to estimate particle-creation effects
in the model EBH spacetimes, I will calculate
the regularized two-dimensional stress-energy
tensor of a quantized massless scalar field. 'The
two-dimensional background spacetime is obtained
by taking a g= constant, @= constant slice of the
four-dimensional model EBH spacetime. The
regularization of two-dimensional stress-energy
tensors was first accomplished by Davies, Fulling,
and Unruh" and by Davies". Ford and Parker"
have shown that the two-dimensional stress-energy
tensor is related to the geometric optics approxi-
mation in four-dimensional spherically symmetric
spacetimes. Many other techniques, such as
utilizing Bogoliubov transformations, will not
work in model EBH spacetimes because of the
Cauchy horizon which prevents one from Fourier
analyzing functions along O'. 'The two-dimensional
stress-energy tensor calculations do not have
this weakness. The stress-energy tensor may
be found for the entire two-dimensional spacetime
up to the Cauchy horizon after defining the vac-
uum state one .

The metric of a two-dimensional spacetime can

in general be written in the double-null form

ds2=-C(u, v)du dv,

where C(u, v) is a conformal factor. Since all
two-dimensional spacetimes are conformally
flat, the scalar wave equation is simply

(3)

(4)

A special set of null coordinates u, v are defined
to be those in which the solutions to Eq. (4) take
the form of the usual Minkowski normal-mode
solutions exp(1&au), exp(-2&on). The in-vacuum
state is then defined as the state annihila, ted by
the field operators with u& 0. Since the model
EBH's are asymptotically flat, the in-vacuum
state is uniquely defined by requiring the modes
to be plane waves near past null infinity.

Davies, Fulling, and Unruh first regularized
the two-dimensional in-vacuum stress-energy
tensor using geodesic point separation. " 'The
now well-known result is

where

g (127)) 1Cl/2(C 1/2)

g = (I27/) lCl/ (C 2l/2)

(8)

(I)

(8)

C is the conformal factor from the metric in Eq.
(3), and St is the two-dimensional scalar curva-
ture.

Since the model EBH spacetime is past asymp-
totically flat (s exists), scalar field modes will
have the form exp(-i~v) near past null infinity.
'This gives the relation

V=V
y

valid everywhere in the spacetime. In Region
I (v& 0), spacetime is Minkowskian and the two-
dimensional metric may be written as

ds = —dQdv ~ (10)

where u = v -2r, to establish the connection to Eq.
(I). Similarly, in region III (v& vo) the metric is

ds2= -dU dv,

where U=v -2r.
Unfortunately it does not appear possible to ex-

plicitly construct the double-null form of the two-
dimensional metric for region II, except for very
special choices of M(v) (treated in the Appendices).
The two-dimensional metric for region II will
be left in the form
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ds = - I - dv'+ 2dv Ch .2M(V)
h

(12)

r„„=o (v&o). (14)

Since an explicit double-null form for the region
II metric does not appear to be constructable in
terms of known functions, there is no way to pre-
cisely determine T„„in regions II or III. It will
be possible, however, to determine whether the
stress-energy tensor component T« in region
III diverges as U-vp i.e. , as the Cauchy horizon
is approached.

To determine T„„in region III (v& v, ), we need
to know how to identify an outgoing null geodesic
u =u = constant in region I with its corresponding
null geodesic U= constant in region III. If we
could determine this function U(u), then T~„ in
region III could be completely determined, as
the metric there could be written

dU
. Gs = Qu cd

(au
(15)

and T„c uold be calculated using Eqs. (5)—(8)
with C(u, v) =dU/du. Since, by the orthogonal
nature of the double-null coordinate system in
Eq. (11), it is clear that SU/Bv = 0, we can imme-
diately write down two of the three stress-energy
tensor components in region III,

T&v Tvv (16)

Thus the only stress-energy present in region
III is the outgoing flux of energy created by the
EBH, T~.

The limiting behavior of T«near the Cauchy
'

horizon clearly depends on the form of dU/du as
U vo, by Eqs. (15) and (6); thus we must deter-
mine how to identify an outgoing u = constant null
geodesic with its corresponding U = constant null
geodesic in region III near the Cauchy horizon.

Outgoing null geodesics in the Vaidya metric of
Eq. (12) must satisfy

, (, 2M( )~

dv '( r
The function U(u) may in principle be found as
follows. Note that at v =0, u= -2h. Choose a
particular value h, at v = 0, and then integrate
Eq. (17) from v= 0 to v=v, for the chosen M(v). ,
with r(v = 0)=r, as the initial condition. The
final value of h at v„which we callR, may be

(17)

'The usual reflection boundary condition at h= 0
in region I, combined with Eq. (9), yields

(13)

everywhere in region I (v & 0). This is enough
to determine T„„in region I, yielding the obvious
answer

related to U by noting that U = v —2h at v = v, . Thus,
if we consider R as a function of h„we can trivi-
ally construct U(u). In particular, with the above
relations we notice that

dU dB
du Chp

(18)

For the moment consider r in Eq. (17) as a function
of two variables, v and r„ i.e., r=r(v, ro). Then
if a prime is used to denote 8/Bv, Eq. (17) may be
written

,
(

RM(w)'ti

) ' (19)

and taking the derivative with respect to h, one
finds

f sr l M(v)( er
~Br &

r' (sr (20)

This may be rearranged into the form

, (Sr M(v)
hQ (21)

which may be integrated with respect to v to find

(sr ™(v)„
(Bro 0 r

As v-v„r-R, and Eq. (22) becomes

i(dR 'li f M( )'
~dhp )

(22)

(23)

d[ln(dU/du)]
v-y d[ln(vo -U)]

Evaluating Tvv from Eq. (6) with the asymptotic
form of Eq. (24), one finds that

(25}

where the partial derivative has been replaced
by a total derivative since R does not depend on
v, and it is understood that h in the integrand
is equal to r(v, ro)

Since the integrand in Eq. (23) is positive def-
inite for any arbitrary function M(v) used in a
model EBH, the integral must be positive (although
possibly divergent). This suggests that, in a
neighborhood of U =v, (the Cauchy horizon), we
should be able to approximate the limiting form
of dU/du by

—=A(v, -U) +A, (v, -U) ' + ~ ~ ~ .dU

u

Here a~ 0 since, if a&0, then by Eq. (18}the left-
hand side of Eq. (23) would approach negative in-
finity as U-v, (equivalently, as r, -r~, see Fig.
2), while we know the right-hand side of Eq. (23) to
be positive definite. For an arbitrary function
dU/du, a can be defined by
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12@Tv'v = a(a —2)(vo —U) '

A s(s -2)(v -U)-'+ O(1) (26)

mation is self-consistent. Thus, in a neighbor-
hood of any final value R, r(v, x, ) can be approxi-
mated by

in some neighborhood of the Cauchy horizon. Note
that unless either a= 0 or a=2 both the energy
density and the integrated energy density

l
which will

beproportionalto (v, —U) '] diverge as U —v, .
We already know that n4 2 for any choice of M(v).
Let us now see what choices of M(v) yield a= 0,
and hence finite total particle crea.tion, and what
choices of M(v) have s & 0 and divergent particle
creation along the Cauchy horizon.

A divergent flux of outgoing radiation is present
if a&O, and hence

,' (v——v, )+R+ 0((v, —v)'") . (32)

lim ln =+ ~ .
p P

(27)

hus infinite particle production requires that
the integral in Eq. (23) diverge. Clearly the in-
tegral can only diverge if r -0 such that M(v)/

This can only happen near v = vp, since
only there (and only along the event horizon r,
=r~) can r approach zero such that the integral
will diverge. Thus only the asymptotic behavior
of r(v, r, ) near v = v, is important.

I will assume that the mass function M(v) may
be approximated near v =v, by

M(v)=m, (
'

) edigher-order terms, (28)

where b may be defined for an arbitrary M(v) in
a manner analogous to Eq. (25)."

Inspection of Fig. 2 shows that, for any nonzero
value of R, there is a finite neighborhood [range
of (v, -v)] for which

1 M(v),2' r
namely, that area outside the apparent horizon.
As an approximation to r(v, r, ) near v =v„ let us
assume that 2»M(v)/r, so that Eq. (17) becomes

(29)

dh & v «1
dv 2 '

vp

yielding r = —,(v, -v)+R near v=v, . Substituting
this expression back into the right-hand side of
Eq. (17) one obtains

Gg ~ 2tFL, vp —v

dv 2 v —v()+ 2R vp
(31)

and we see that Eq. (30) is justified for all b& 0
as v-V, -O. A further check can be made by
assuming y =&(v v, )+R,+f(v) an-d using this on
the left-hand side of Eq. (31) to find f(v), the first
correction term. This yields f(v)- (v, -v)~",
which is less than (v, -v) as v-v„so the approxi-

Substituting this expression for r into Eq. (23)
yields

4m~ "0 (v, —v)"dv

„, (v. -v)'-4(v, -v)R+4R'

"2M(v)
+ 2 dV,

p
(33)

where v, is smaller than the radius of convergence
of our approximations, i.e. , v, —v, «vp. The sec-
ond term in Eq. (33) can never diverge, since
x can only approach zero as v -v, . To determine
whether the first term diverges as R -0 (U -v, ),
take the limit

4m, . "o (v, -v)'dv
im

( ),
' ~,+SC, (34

1

where K is the necessarily finite limit of the sec-
ond term in Eq. (33). Interchanging the order of
the limit and integration we find

dR 4m, "p
limln =, ' (v, -v)' 'dv+IC.

1

(35)

This integral converges for all b& 1 and diverges
for all b & 1. 'Thus any arbitrarily chosen mass
function M(v) which approaches zero with nonzero
slope (limit of dM/dv as v -vo nonzero) will pro-
duce an infinite flux of created particles, while
only a mass function which has dM/dv = 0 at v = v,
can produce a finite total energy flux.

In terms of the parameters a and b defined by
Eqs. (24) and (28), any b& 1 ha.s a = 0, while
0&b & 1 has a&0. This guarantees, via Eq. (26),
that the diverging energy flux always diverges
in the positive direction (positive-energy-density
particles are radiated to S').

IV. CONCLUSIONS

What can we conclude if we believe that the re-
sults derived here are valid in the generic, real-
istic EBH case? An immediate consequence is
that the extrapolation of Hawking's fixed Schwarzs-
child background result (temperature -1/M) can-
not be expected to hold all the way down to M=O.
A naive application of Hawking's temperature for-
mula, using v as the time coordinate, predicts
that M- (v, -v)'~'. While this should clearly
be true in the early stages of the evaporation,
the above result shows that it cannot hold all the
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&, M{v)

1

0 ~o
FIG. 3. Mass function which has M- (vo-v) for

large M, to agree with Hawking's result, and has
dM/dv 0 as'M 0, to yield finite total particle crea-
tl,on.

V

way down to M=0. Instead, at some time close
to M = 0, perhaps on the order of several times,
the Planck time, the mass-decrease function must
turn over and approach M

= 0 with dM /dv = 0 in order
to have finite total particle creation (see Fig. 3}."

Of course, we must consider just how qualita-
tively correct the results of this paper are when
extrapolated to the generic EBH.case. Clearly
an actual EBH is not well modeled by the cut-and-
past Vaidya model presented here. The Vaidya
model has negative-energy-density matter pre-
sent all the way out to past null infinity, whereas
a realistic EBB probably violates the energy con-
dition only near the black hole. On the other
hand, the negative energy density tends to zero
like r 2, and is only important in determining
the finiteness of the particle creation near the
event horizon, where negative-energy- density
matter would be found in a real EBH spacetime.

There are, however, three more serious. weak-
nesses in these models. First, any null fluid
Vaidya metric has a classical stress-energy ten-
sor with zero trace, i.e., T =0, while a correct
semiclassical EBH spacetime has a nonrero trace
for the stress-energy tensor, quadratic in the
curvature tensors of the spacetime. " I do not
see any easy way to correct this weakness. Null

fluids and classical electromagnetic fields in-
variably yield zero trace stress-energy tensors.
Any crude attempt to mock up a nonzero trace,
perhaps by adding a non-null perfect fluid, will
still not have a trace related to the square of
the curvature tensors.

The second weakness is the lack of outgoing
radiation in the model spacetimes. The shrinkage
of the event horizon is controlled by sending in
negative energy from 5, rather than by having
positive energy radiated to 4'. One must at least
question whether the self-gravitational field of the
outgoing created particles might not damp out
the infinite particle creation found when dM/dv
40 as M -0 (of course, it could also make it

worse). This sort of effect can be modeled with
classical Vaidya metrics. A negative-energy-
density ingoing Vaidya spacetime may be matched
along a timelike hypersurface (ideally near the
apparent horizon} to an outgoing positive-energy-
density Vaidya spacetime. The timelike boundary
surface may then be thought of as a spherical
shell of pair creation events; a negative-energy
null particle falls down the hole, and a positive-
energy null particle escapes to 8'. Such models
of EBH spacetimes, and particle-creation effects
within such spacetimes, will be considered in
another paper.

The third possible weakness is that the results
found here might depend on the use of two-dimen-
sional stress-energy tensor calculations. I feel
that it is extremely unlikely that a full four-di-
mensional calculation would have qualitatively
different results. In previous work; where two-
and four-dimensional stress-energy tensor cal-
culations can be compared (e.g. , the fixed
SchwarzschiM background'"" or the instability
of the Reissner-Nordstrom, Cauchy horizon"'"},
the qualitative results (particularly, the question
of diverging stress-energy along some null sur-
face) have been independent of the dimensionality
of the calculation.

'The main result of this paper also has relevance
to how one thinks about cosmic censorship. While
usually considered as a conjecture within classical
general relativity, there are two ways in which

semiclassical relativity has impinged on cosmic
censorship. First, Hawking showed that black
holes evaporate, ' and Gowdy proved that a future
event horizon which lasts only a finite time implies
the existence of a naked singularity. ' '" This
shows that the effects of quantized matter fields
can create naked singularities. Secondly, par-
ticle-creation effects have been used to argue that
the back reaction from particle creation might
prevent the formation of counterexamples to
cosmic censorship, such as shell-focusing singu-
larities, "Reissner-Nordstrom singularities
with

~
Q

~

&M, "'"and (for strong cosmic censor-
ship) the timelike singularities inside the Reis-
sner-Nordstrom or Kerr-Newman black hole
Thus, quantized matter fields may also prevent
the formation of naked singularities.

Until now, the naked singularity produced by
an EBB has not really been taken seriously; it
is often looked on as a "benign" naked singularity,
since it has zero mass and presumably only
exists for an instant (of course, it could exist
longer, and become a negative mass singularity,
but it need not). The calculations in this paper
show that this sort of zero-mass naked singularity
is not always benign and may produce a diverging
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energy flux of created particles, just as a positive
mass (shell-focusing) or negative mass (Reis-
sner-Nordstrom near r = 0) might.
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ds = -e ' 1-2p,z+ —
dydee,

2 "2f 2

z (AS)

valid throughout region II of Fig. 2, from
g = —ln(v, ) to g =+~. The coordinate z varies from
zero (one and v =v,) to infinity (along the curva-
ture singularity).

The apparent and event horizons are easily de-
fined in terms of the new coordinates. The appar-
ent horizon ft is now the surface z = p, /2. The
event horizon is also a homothetic Killing horizon,
where the homothetic Killing vector, given by

APPENDIX A: SELF-SIMILAR MODEL OF AN
EVAPORATING BLACK HOLE

~'= —1, ~'=0, (A9)

In this appendix I shall examine the self-similar
model of an EBH, where M(v)- (v, —v). This
model is of particular interest since, owing to its
self-similarity (or homothesy), it will be possible
to explicitly. construct the quantum stress-energy
tensor for the entire spacetime.

The metric for the entire spacetime is given
by Eq. (1), where now

0, v«
M(v) = m(1-e/v, ), v, & v& 0

v& vp.

(A1)

2 2m v v
dv +2dvdr.

vp
(A2)

Considerable simplification results from adopting
new coordinates z and g defined by

v vz= r
y = —ln(v, —v).

The metric then can be written in the form2, 2ds'= —e '~
~

1 —2p, z+ —dg'+ —,dgdz,
z z'

(A3)

(A4)

(A5)

where p, = m/vo. The metric can now be reduced
to a double-null form by defining a new null coor-
dinate q by

The homothesy of the linearly decreasing mass
Vaidya metric allows us to explicitly construct
a double-null form for the metric; this. in turn
allows us to find (T&„) everywhere explicitly.
Taking a 8 = constant, p = constant slice through
the model EBH spacetime to get a two-dimensional
metric, we are left with

which satisfies the homothetic Killing equation

&p;. + &', p =2%. (A10)

becomes null. The coordinate equation for the
event horizon is then simply

z =z, = [1+(1+16',)'i'].1
(A11)

~ =4m[1+(1+16')'i') ' (A12)

and hence, if we adopt u and v as null coordinates
in the initial Minkowski region (v & 0), then the
event horizon in that region is given by u = —2r~.

The metric in region I is
ds'=-dude (v«),

and similarly, in region III, the final Minkowski
spacetime segment is

ds'= -dUdv (v&vo). (A14)

The two-dimensional stress-energy tensor for
a quantized massless scalar field may now be
computed by relating these three sets of null coor-
dinates [Eqs. (AS)', (A13), and (A14)] to the canoni-
cal set (u, v) in which the vacuum state is defined.

If the initial vacuum state on 8 is to be the usual
Minkowski vacuum, then the scalar field modes
will be proportional to exp(-i&tv) near 5 . This
immediately requires that

v-v (A15)
I

throughout the spacetime. Reflection of these
m. odes through r = 0 in region I yields

. This implies that the radius of the horizon at v =0
is

q = g+2z*, (A6) Matching u and g across the boundary v = 0, using
Eqs. (A3), (A6), (A7), and (A16), and u=v —2r,
one findsz*= z' —2p,z +2z dz.

This yields the metric form
du 4mv,= vp —u+

u
(A17)
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du u -uv, -4mv,
dU . u(U -vo)

Finally, noting that

dv

df
—=e" =v -V

(A18)

(A19}

the three metrics [Eqs. (A8), (A13), and (A14)]
may be written in terms of u and v:

Performing a second match between g and U at
v =v, and using Eq (.A18) yields

along the event horizon, it is natural to associate
this diverging energy flux with the naked singulari-
ty.

APPENDIX B: "STEP-FUNCTION" MODEL OF AN
EVAPORATING BLACK HOLE

This model is of interest primarily because.
of its extreme simplicity and secondarily because
(T») may again be calculated explicitly for the
entire spacetime.

The spacetime's metric is given by Eq. (1), with

ds'=-dudv (v&0),

u(v, -V)(1 —2gz+2z ')
dQdv (vp& v& 0)~

u -v, u" —4mvp

(A20) v«
M(v)= M, vo&v&0

V& Vp ~

(B1)

ds'=
g

' dudv (v&vo),
—(U —v, ) u

Q Qvp 4mvp

(A21)

(A22)

(A23}Z'„„=0,

in region II {vo&v & 0),
3 2 4 1 3 3 2T =(12&) 'I-'V' '--'V '--'i '

6mv, 4mv, 2m v, {A24}
2 1 2 2

u Q Q

Tgg
= (12K) (4p, z —pgz )p

1 2pz+
24m z) ' (A26)

where z in Eq. {A21) is considered to be a function
of u and v, and U in Eq. (A22) is a function of u.

The two dimensional stress-energy tensor may
now be calculated by the usual procedure. The
results are, in region I (v& 0), ds'= -dudv, v& o,

2m
ds = — 1 — du*dv, vp&v&0p

(»)

ds'= -dUdv, v & vp. (B4)

As usual, to calculate the stress-energy tensor
of a quantized massless scalar field we must re-
late these null coordinates to the canonical set
(u, v) which defines the usual vacuum state on S .
The canonical coordinate v is simply equal to v

by virtue of asymptotic flatness along 0 . Reflec-
tion through r = 0 in region I (v & 0) then gives

Thus the spacetime consists of a positive mass
null shell collapsing at V=0 to form a Schwarzs-
child black hole, followed by an equal-but-negative
mass null shell at V=V, which "erases" the black
hole, leaving Minkowski space.

It is trivial to set up double-null coordinates
in the three regions:

and in region III (v & v, ),
Q =Q. (B6)

mv, (8u' —2v„u —6mv. )
6mu'(U —v,)'

(A27)

(A28)

The stress-energy tensor in region II is ob-
served to be finite everywhere except z =+~ and/
or u= 0, at the curvature singularity. The (q, g)
coordinate system behaves poorly as g-z„g -~
(the event horizon), but examination of the stress-
energy tensor components in a Kruskal-type coor-
dinate system regular on $C shows that they are
finite there.

The stress-energy in region III consists solely
of a stream of outgoing radiation whose energy
density diverges as U- v„ i.e. , as one approaches
the Cauchy horizon. Note also that the integrated
energy density diverges as U- v, . The energy
density is always positive for U(vp. Since the
stress-energy tensor for region II is finite all

du u+4m
du* u

du (u+4m)(v, —U)

dU u(v, —U- 4m)

(B6)

(B7)

The spacetime metrics of the three regions may
now be written in (u, v) coordinates as

ds'= —du dv, (v& 0), (B8)

2mds'= — 1 ——
—.

— du dv v &v&0 B9u+ 4'

Matching the u coordinate to u* and U is simple
because of the simplicity of the Schwarzschild
metric. Noting that u=v —2r, u*=v —2y*, where
r*=r +m2ln[r/ 2m 1~, and U=v —2r, the coordi-
nate matches across v = 0 and v =v, yield the fol-
lowing differential relations:
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u(v, —U —4m)ds'= —
(

'4 }( }
du dv (v&vp).

0
(B10)

tensor is

~o'o Ot (B15)
The stress-energy tensor of the quantized field

may now be calculated by the usual procedure.
The result in region I is the obvious one,

T„„=0 (v&0).

In region II (v, &v &0) the stress-energy is

(B11)

(24„).
(

m 3 m am 24m).
u u

(B12)

T =(24m} ' ——,+-m 2 m')
r' 2 r'& '

T.*.=(24&) '~ ——.
(

1—, ( m'lj 2m
r') r

(B12)

(B14)

Note that p„„and T„+„are exactly the expressions
given by Davies, Fulling, and Unruh" for the two-
dimensional. Schwarzschild black hole. This is to
be expected, since the black hole in this model
is exactly Schwarzschild until the moment of evap-
oration. Equation (B12) differs from Ref. 13 since
their result was the limiting form of T'„~„~along
the horizon r =2m. I have not taken that limit
here (although, when taken, the results agree,
as they must) since in the present model the r = 2m
hypersurface is only an apparent horizon lying
outside the true event horizon. As Ref. 1-3 con-
cluded, (T„„)is finite and regular everywhere
except at the curvature singularity.

Finally, in region III (v & v,), the stress-energy

The divergence at U =&„ the Cauchy horizon, is
real. The energy density diverges as (v, —U) ',
and hence the integrated energy outflow diverges
as (v, —U) . Note that this is a positive energy
divergence; specifically

Tv„= (16m) (vo —U) '+O((vo —U) ') (B18)

near U=go.
Since g„~„~is regular along the event horizon,

one is forced to conclude that the infinite flux of
outgoing radiation is produced by the naked singu-
larity.

m ( 2m

2&(v, —U —4m)' ((v, —U)' (v, —U)

(v, —U)' 2m(v, —U)'&
—3u

~4u

(B16)

The apparent divergence of 7'«at U po 4m is
illusory. The null surface U=pa —4m is the con-
tinuation of the apparent horizon y = 2m into re-
gion III. As U-p, —4m, the numerator of Eq.
(B16) vanishes quickly enough to keep Tv„ finite.
More precisely, the limiting value of p«on the
apparent horizon (extended into region III) is

lim T„v = (128wm'} '[I —exp(- v, /2m)].
0'~vo -&m

(BIV)

S. W. Hawking, Nature (London) 248, 30 (1974).
S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
For recent reviews, see General Relativity: An

Einstein Centenary Survey, edited by S. W. Hawking
and W. Israel (Cambridge University Press, Cam-
bridge, England, 1979).

G. T. Horowitz, Phys. Rev. D 21, 1445 (1980).
5G. T. Horowitz, in Proceedings of the Second Oxford

Quantum Gravity Conference (unpublished).
S. M. Chr-istensen and S. A. Fulling, Phys. Rev. D 15,
2088 (1977).

S. M. Christensen, Phys. Rev. D 14, 2490 (1976).
P. Candelas, Phys. Rev. D 21, 2185 (1980).
C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation (Freeman, San Francisco, 1973).
P. C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951).

, P. Hajicek and W. Israel, Phys. Lett. 80A, 9 (1980).
~2S. W. Hawking and G. F. R. Ellis, The Large Scale

Stnccture of Spacetime (Cambridge University Press,
Cambridge, England, 1973).
P. C. W. Davies, S. A. Fulling, and W. G. Unruh,
Phys. Rev. D 13, 2720 (1976).

P. C. W. Davies, Proc. R. Soc. London A354, 529
(1977).
L. H. Ford and L. Parker, Phys. Hev. D 17, 1485
(1978.).
In this paper I am ignoring the possibility that evapor-
ation will stop at some nonzero mass, leaving a
Planck-mass black hole which is eternal. If the evap-
oration does stop at a nonzero mass, the stress-energy
tensor (by my calculations) does not diverge anywhere
outside the event horizon; of course there is no
Cauchy horizon in this case.
J. S. Dowker and R. Critchley, Phys. Rev. D 16, 3390
(1977).
W. A. Hiscock, Phys. Rev. D 15, 3054 (1977).
N. D. Birrell and P. C. W. Davies, Nature (London)
272, 35 (1978).
R. H. Gowdy, J. Math. Phys. 18, 1798 (1977).
R. Penrose, in Theoretical Principles in Astrophysics
and Relativity, edited by N. R. Lebowitz, W. H. Reid,
and P. O. Vandervoort (University of Chicago Press,
Chicago, 1978), pp. 217-243.
F. J. Tipler, C. J. S. Clarke, and G. F. R. Ellis, in



2822 WILLIAM A. HIS COCK

General Relativity and Gravitation, edited by A. Held
(Plenum, New York, 1980), pp. 97-206.
D. M. Eardley, W. A. Hiscock, and L. G. Williams,
in preparation.

P. C. %'. Davies, Proc. R. Soc. London A353, 499
(1977).
W. A. Hiscock, Phys. Rev. D 21, 2057 (1980).


