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In a manifestly gauge-independent formalism, all relativistic corrections to the fermion propagation function are
determined and the general form of the spin-dependent forces in quantum chromodynamics for heavy-
quark-antiquark (qq) systems is derived. For example, the classical spin-orbit and Thomas-precession terms are
found to be simple derivatives of the static potential. In addition to expressing the spin-dependent forces in terms of
the minimal number of independent potentials, two new applications of this formulation are presented: (1) The effect
of pseudoparticle solutions on the spin-dependent forces is analyzed, and (2) an electric-confinement assumption
produces a zero-parameter spin-dependent potential. This potential determines the fine structure in heavy qq
systems. Spin splittings in the 'f system are predicted and the J/P system splittings are compared with the
experimentally observed values.

I. INTRODUCTION

One of the most important aspects of the J/g and
Y systems is that they are nonrelativistic sys-
tems possessing several states below the threshold
for the production of mesons with the quantum
numbers of their constituents. Therefore, exten-
sive experimental investigation of the excitation
spectrum of these systems has been possible. The
observed masses can be used to build phenomeno-
logical models for the nonrelativistic potential
acting between a heavy-quark-antiquark' pair and
to obtain information about the spin-dependent cor-
rections' to the nonrelativistic interaction.

There are a number of successful potential
models of these states. ' In particular the Cornell
model' (linear plus Coulomb potential) describes
well the spectra of states for both the J/g and T
system. ' Even though the static energy has not
yet been calculated directly from the dynamics of
the strong interactions, ' we can analyze here the
spin-dependent relativistic corrections to the
static energy in quantum chromodynamics (QCD)
and are able to determine their general structure
and many phenomenological consequences inde-
pendent of the actual form of the static energy.
This work is an extended analysis based on a pre-
viously reported work by the present authors. '

The relativistic structures which occur in QCD
have similarities to as well as important differ-
ences from relativistic corrections in QED.
Therefore, in order to develop an intuitive under-
standing of the QCD relativistic effects, it is
worthwhile to compare them to the analogous
QED effects' in, for example, a lepton-antilepton
system (L„/,) where l, and l, are leptons with
masses m, and m„respectively (if f, = l, pair cre-
ation and annihilation are ignored). For electro-

'The leading term is simply the nonrelativistic
projection operator (1+y')/2, while the p ~ y/2m
term represents the first relativistic correction.
Because of the projection operators a single
p ~ y/2m insertion on a fermion (or antifermion)
line will vanish. However, two such momentum
insertions with the static potential interacting be-
tween them give a nonzero contribution, the famil-
iar classical spin-orbit interaction and Thomas
precession [see Fig. 1(a)]. This contribution to
the potential is given by

2mi2 'A dR
(1.2)

where Vc(A) is the static Coulomb potential and

S,. is the spin of the ith lepton. The second type of
correction is due to the exchange of transverse
vector excitations, which in QED are the physical
modes of the electromagnetic field [see Fig. 1(b)].
A simple computation of the lowest-order contri-
bution of these terms yields the elementary re-
sult

dynamics the static potential is known exactly, be-
ing given by the single Coulomb exchange, whereas
in QCD the static potential even in perturbation
theory is an infinite set of graphs, each fermion
emitting any number of Coulomb excitations (in
radiation gauge) which then interact through the
full Yang-Mills couplings. ' Nevertheless, in both
theories there are two distinct types of relativis-
tic spin-dependent corrections to the static poten-
tial. The first type consists solely of corrections
to the fermion propagator due to its motion in the
static potential. 'The numerator of the free fer-
mion propagator may be written as
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FIG. 1. The spin-dependent corrections in QED. A
cross represents an insertion of p y/2m, a dotted line
represents a Coulomb exchange, and a wavy line a
transverse photon exchange. Figure (a) displays those
graphs that depend on V~(R), while the graphs in Fig.
(b) depend on transverse photon excitations.

where Vr(R) is the potential associated with the
exchange of transverse vector fields. Of course,
Vr(R) = Vc(R) in QED since Vc(R) is the single
Coulomb exchange which arises from the same in-
teraction 4"A„ in the Lagrangian as the transverse
exchange. For the non-Abelian case, although
there are still the same two types of interactions,
the analog of Vc(R) is not a single exchange and
therefor'e is not necessarily equal to the analog of
Vr(R).

In Sec. II, as the first step toward determining
the form of the spin-dependent forces in QCD, all
relativistic corrections to the nonrelativistic fer-
mion propagation function are determined in a
gauge-independent formulation of QCD. In order
to transform these corrections into perturbations
of the static energy, the %'ilson-loop formalism is
introduced and reviewed in Sec. III. Then, the re-
sults of Secs. II and III are used in Sec. , IV to pro-
duce the general form of the spin-dependent for-
ces inQCD through order 1/m'. The general ap-
proach is similar to that of other authors" "who

I

make use of a Foldy-Wouthuysen transformation
on the interacting Hamiltonian. The various
terms involve expectation values of the non-Abel-
ian electric and magnetic fields as well as the co-
variant kinetic energy all of which are evaluated
in the presence of the interactions which produce
the static potential. 'The formal expressions can
be greatly simplified by use of the Jacobi identi-
ties for the gauge field and a non-Abelian general-
ization of Stokes' theorem applied to path-ordered
integrals. Type-one contributions, the classical
spin-orbit and Thomas-precession terms, are
simply related to the static energy whereas type-
two corrections cannot be reduced in this way.

The applications of this general result are given
in the remaining sections. In Sec. V the inclusion
of pseudoparticle effects, that is, solutions of
self-dual (or anti-self-dual) equations are ana-
lyzed. Using only the duality properties of these
solutions without the usual dilute-gas approxima-
tion, we show that the spin-spin and tensor forces
are simply determined by the pseudoparticle con-
tribution to the static potential. 'The spin-orbit
terms are more complicated but these can also be
determined by the same static potential. 'This re-
sult is in disagreement with the conclusions of
de Carvalho" and also of Callan et al." It is ex-
plicitly shown by considering these instanton con-
tributions that the number of independent spin-de-
pendent potentials in QCD appearing in the general
form derived in Sec. IV cannot be further reduced
without additional assumptions about the nature of
the spin-dependent forces.

The final sections consider the phenomenological
applications of the formalism developed in Sec.
IV. In Sec. VI a plausible argument is given for
extrapolating the structure of the spin-dependent
forces to mesons with one light and one heavy
quark. The mass relations obtained are in good
general agreement with data and lead to many
testable predictions for the (bu), (bd), and (bs)
meson excitation spectra. Comparison with the
spin-dependent interaction of De Bujula, Georgi,
and Glashow'4 is made. To make a quantitative
determination of the fine structure in heavy-
quark-antiquark systems we assume that the
large-distance behavior of the static potential is
determined uniquely by the longitudinal component
of the non-Abelian electric field. (The longitudinal
modes of the Yang-Mills electric field may be is-
olated by a gauge-independent procedure. ") In
Sec. VII it is shown that this assumption yields a
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zero-parameter determination of the spin-de-
pendent forces in terms of the spin-independent
static energy. Then the Cornell-model para-
meters for a linear- plus Coulomb static potential
are used to determine the fine structure in (cc)
and (bb) systems. The comparison with experi-
ment is discussed for the (cc) system. In the
last section our results are summarized and dis-
cussed. (P -m)S(x, y; A)= 5'(x -y), (2.2)

where F,„=B„A„—B„A„+g[A,,A„], A, —=A'„t'.
(f~"fare the structure constants of the gauge
group (SU, ) and {f')are the representation ma-
trices for the fermions in the fundamental repre-
sentation of the group. The fermion propagation
function is denoted by S(x,y, A) and satisfies the
equation

II. RELATIVISTIC FERMION-PROPAGATOR
CORRECTIONS

The physical system we investigate is that of a
quark and antiquark bound together nonrelativis-
tically in a color-singlet state by QCD. The
standard Lagrangian which describes this interac-
tion is

Wt)= fS x[ y'x(S=„',.S"")zD(Z)(+ gy(-zz)yz],

(2 I)

where D = i8 +gA~. The nonrelativistic propaga-
tion function S, is obtained from Eq. (2.2) by ig-
noring the spatial motion of the quark:

(D,y' —m)S, (x y A)=6s(x-y). (2.3)

Formally, this equation can be solved exactly with
boundary conditions such that the fermiori propa-
gates forward in time and the antifermion back-
wal ds:

0 r 0& 0 &&0'(

S (x ~. Ao) fg(xo ~o)e-iys o(ohio) + y p x
6(x y) &g(yo xo)&-im(yo-. so) y p 6(x y) (2.4)

0 0

in which

x g

=P exp ig dz A~(z) (2.6)

S"(x,y)=S (x,y)+ fS z (S, x)zDyS '(z, y),
(2.8a)

In Eq. (2.4) the path-ordered exponentials depend
only on A.'. In terms of S, an integral equation for
S is given by

S(x,y; A) =So(x,y; A)

+ d z So x,z; A. y ~ DS g, y; A.

(2.6)

The operator y ~ D, the kernel of the integral equa-
tion, gives rise to spatial motion and Eq. (2.6)
provides a formal solution to Eq. (2.2). To extract
the relativistic corrections most efficiently, pro-
jection operators onto the nonrelativistic Dirac
eigenstates are introduced:

1+ 1+yo

yo 1+
S =— S(x,y; A)

(2.7)
1+y' yo

1-yo 1-
S = S(x,y; A)

Clearly S; =S,'=0. In terms of these projection
operators Eq. (2.6) becomes

S (x,y)=+ f S'zS ( , ) xDzS"y(z, y), (2.8b)

+ d'zd'AS x,z; A y. D z

x S, (z, w; A)y ~ D(w)S"(w, y; A) .
(2.9)

Graphically, this equation is represented in Fig.
2. The quark propagates from x to z interacting
with the gauge field no'nrelativistically (the open
circles indicate fully interacting nonrelativistic
propagators). At z it suffers a "hard" interaction
y I5 after which the quark propagates backwards in

time to gg, where it suffers another "hard" inter-
action, and then propagates from zg to y interact-
ing fully relativistically with the gauge fields.
To obtain the relativistic expansion for S(x, y; A)

it is first necessary to evaluate more explicitly
the kernel in Eq. (2.9) by inserting into it the
explicit form of S, from Eq. (2.4}. The spa-
tial integrations are then trivial because of the

with two other equations obtained by exchanging+
and —.Combining Eqs. (2.8a) and (2.8b) produces
a closed equation for S" (an equation for S is ob-
tained similarly}:

S"(x,y; A) =S (x,y; A)
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- CS=
S++ ' s++0

short. 'To expose this behavior analytically one
performs the time integrations by repeated inte-
grations by parts on the term e ' '

.
' ' in Eq.

(2.9) up to order 1/m'. The 1/m term is the in-
tegrated kernel evaluated at sv'=z' so that to this
order the kernel is effectively (r ~ D)'= -D'
+g&7 B. The 1/m' terms require one time deriva-
tive acting on the kernel, a derivative which ap-
pears covariantly. Explicitly, this term is

[D', y D]y ~ D = -ig(5'~ -i&'~'cr, )E,D, . (2.10)
FIG. 2. The integral equation for the ++ component

of the full propagator S. So is the propagator in the non-
relativistic limit and a cross represents the insertion
of a y p operator.

functions. Moreover, it is expected that in the
nonrelativistic limit the time interval during
which the quark propagates backwards will be
suppressed so that the large-mass limit should
correspond to the time interval zv'-z' being

In addition, in order 1/m' there is a local term
which arises from the nonrelativistic suppression
of the region w0&x'. (This term does not contri-
bute to spin-dependent effects in order 1/m' but is
included for completeness. ) The details of the de-
rivation of the 1/m expansion of Eq. (2.9) to arbi-
trary order are given in the Appendix. The final
form of this equation, correct to order 1/m', is

)r (0 -grr 0) s"(x,y;A}=s"(x,y;A) fgxs —(xrx;A)",(0 -gir 8)x (llrr r'xxrx)-sDr

1x S"(w, y; 2)+ 0 —, (2.11)

Equation (2.11) describes explicitly all relativis-
tic fermion-propagator corrections through order
(1/m)'. [Higher-order terms are given in Eq.
(A17).] This equation, the basis of the derivation
of all spin-dependent forces, is independent of
gauge and formally the same as the corresponding
expression in QED. The essential difference be-
tween QED and QCD is in the implicit non-Abelian
fermion representation matrices in Eq. (2.11).

nonzero coupling of the operator to the bound
state denoted by ~M). The path-ordered exponen-
tial is included to maintain gauge invariance. To
derive the Wilson-loop form of the potential, how-
ever, it is convenient to introduce the four-point
function

III. THE STATIC ENERGY IN POSITION SPACE (3.2)

In order to incorporate the relativistic propaga-
tion-function corrections in Eq. (2.11) as correc-
tion terms to the static energy (potential) it is ad-
vantageous to develop a formulation of the nonrel-
ativistic limit in such a way that relativistic ef-
fects may be easily included. The Wilson-loop
formalism, "which is reviewed in this section,
provides such a basis. A quark-antiquark bound-
state wave function can be written gauge invari-
antly as

'x
os(x —y)x"'*"'r'=(0 T'oi(x)I'p ry(y) M),

(3 1)

in which k2 equals the mass squared of the bound
state, T~ indicates time ordering, and X' has the
appropriate Dirac and flavor structure to ensure a

I"~ = y'r~y'. 'The kinematic region in which the
bound state M contributes significantly to I is giv-
en by the time interval

7' =—(y', + y,')/2 —(x', +x,')/2- ~

with x,'-x', and'3lg pg fixed. Then, in Euclidean
space, the connection between I and % is easily
established by inserting a complete set of physical
states between iy(y, ) and 4'(x, ) in Eq. (3.2). Care
must be taken in the order of limits since both
time (T) and quark masses (m) are becoming
large. For T- ~ first the lowest-mass state
(presumably ~M) with mass M„) exponentially
dominates the sum over states and

I 5~M~ (ym y~)Mg(x~ -x2) ex-p(-TM~) .
(3.3a)
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However, for deriving the static energy the appro-
priate order of limits is m —~ then T- ~. In this
limit the motion of the quark and antiquark can be
neglected (actually treated perturbatively); hence
the quark-antiquark separation commutes with the
Hamiltonian. The eigenstates are therefore la-
beled by H„=x, -x, (R, =y, —y, ). Inserting a com-
plete set of states and removing the trivial de-
pendence of the energy on the quark masses re-
sults in the expression

I- 5~5(R„-R,)MsR M~ e 2™Texp[-Te(R)],

(3.3b)

as T-~. e(R) is called the static energy (or po-
tential) between the quark and antiquark separated
by a spatial distance R =R„=R,.

To actually compute e(R), the nonrelativistic li-
mit of I is obtained by using the Schwinger func-
tional formalism to reexpress Eq. (3.2) in terms
of fermion propagators in external fields. These
external fields are &„(x)= (0I&(x)l 0)~=i(5/5J)
(OI0)~. [(0 0)J is the vacuum expectation value of
A„(x) in the presence of an external source J"(x)
=J,"(x)t'.] In terms of the fermion-propagation
function S(x,y; A), I becomes

Ta ty X)~
I= Tr S x2,y2; -z5 5J &qS yy pxyp s5 5J P I q

[ 2a

X-Tr S(y„y, ; -i5/5J)P I's Tr S(x„x,; -i5/5J)P 1"„Z(J)
x

I

where Z(J) = W(J)/W(0) and

rr(Z)=De([S(-rs/ss)] [Sr)']expIr f r( x[ , rr(s'""p=,'.les;S.]I.

(3.4)

Now consider the various terms in Eq. (3.4) for
quarks with very large masses. The fermion de-
terminant factor, Det [S(-i5/5J)], which produces
quark loops is spin independent in order 1/m' and

therefore we may safely ignore heavy-quark loops.
(Light quarks are not being considered here. ")
Also, the double trace term, the annihilation con-
tribution, will be ignored. Since this term is a
short-distance effect (R-1/m) the effective coup-
ling constant o'. ,(R) will be small; and furthermore,
in perturbation theory, this term does not contri-
bute (to any spin-dependent effect) in lowest order.
(For C= —1 states it contributes in order o." and
for C =+ 1 states in order n'. ) Therefore (in this
approximation), the qq sector of the Fock space
is completely separate from all other sectors
which have different quark content. The nonrela-
tivistic form for I becomes

ry
I~= Tr S(x„y,; -i5/5J)P

rX ~
1

x S(y„x,; -i5/5J)P I"„Z'(J)
24x

J'=o

(3.5)

where Z '(J') = W'(J)/W'(0) and

w'( ) fs[sr( ]ezpI(f s'x=[ ''rr(p"'s'„)+s'„A,"]I.=

Physically, Eq. (3.5) corresponds to a fermion and

antifermion propagating in a potential (-i5/5J~)
whose form is determined by a functional integral
over a pure Yang-Mills theory with an external
source J~(x). In bound-state systems such as the
J/g and the T families, each quark moves in the
presence of the Yang-Mills fields generated by it-
self and its partner.

It is now straightforward to obtain the Wilson
loop from Eq. (3.5) by using for the fermion
propagators the nonrelativistic form, given in Eq.
(2.4), to produce

g+ yO ] yO
r =e*' e(r r)s(x -r)rr r r )y' ' y' r

2 2

l

xTr Pexpig dz -i Z' J
C(R, T)

(3.6)

~he~e T= lx' —&'I R= IX2 —xil and C(R, T) is the
curve shown in Fig. 3. Also, the trace over Di-
rac matrices has been separated from the trace
over fermion representation matrices. The
closed path in Eq. (3.6), the Wilson loop, occurs
because the temporal path-ordered exponentials
of the nonrelativistic fermion propagators com-
bine with the spatial path-ordered exponentials
needed for gauge invariance to produce the closed
path C(R, T). This integral may be rewritten as
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~ (xi, -, 7/p) (Y),T/&}

R

(x&, -T/p) ( y&,T/p)

FIG. 3. The Wilson loop C(R, T). The rectangular
closed curve C(g, T) has a spatial length g and a temp-
oral length T.

antiquark in a color-singlet state. In QED since
the action is quadratic in the field strengths, S'
may be explicitly evaluated (when a gauge-fixing
term is included in the usual way) and the left-
hand side of Eq. (3.10) inimediately gives the
Coulomb potential (independent of the gauge choice
used to evaluate the functional integral). How-
ever, in QCD, the left-hand side cannot be calcu-
lated exactly and must be treated numerically' or
by some other approximation scheme. Here, the
static energy is not determined, but as will be
shown in Sec. IV some of the spin-dependent for-
ces can be related to it.

5
('-=—Tr I' expig dz -i Z' J

C(R, T& 5Z z
J'=p

Tr I' expig dr~A„z e' ~M("),
C(R, T)

(3.7)

where S~M' is the Yang-Mills action. Therefore,
the Wilson-loop expression has been related to the
large-mass limit of the fermion-propagation func-
tion. Also, (.'is related to the static energy e(R).
In Euclidean space for large T, ~ becomes

(0 Q(R T)e& (R )T (3.8)

ln (-'g
lim = -E(R) .
T~

(3.9)

c(R) is the static energy, that is, the potential in
the nonrelativistic limit. Therefore,

1lim- —ln TrP expig
ph oo c(B,T )

Euch&een

&d8~ $ ~ + (J =gg 3 fo

is a gauge-invariant expression for the nonrela-
tivistic potential between a very heavy quark and

Comparing Eq. (3.3b) and Eq. (3.7) it is clear that
A(R, T) behaves no worse than a power of T for
T large. Thus, more precisely,

IV. THE SPIN-DEPENDENT FORCES

The results of the two previous sections can be
used now to determine the form of the spin-de-
pendent forces in QCD through order (1/m'). The
static energy, Eq. (3.10), was derived from the
Wilson-loop expression in Eq. (3.6) by substituting
for the fermion-propagation function S in Eq. (3.5)
its nonrelativistic limit S, given in Eq. (2.4). The
relativistic corrections, however, are given by
replacing S in Eq. (3.5) not by S, but by the propa-
gation function with relativistic effects included as
given in Eq. (2.11). For example, in order (1/m),
the propagation function S"(x,y) is replaced by

glp $p g Ql ] 2fpg D go B p gg

instead of by S (x,y). The effect of this substitu-
tion is to modify the Wilson loop to include, along
the time integrations, an insertion of the operator
-i(D' - go ~ B)/2m some time t, T/2» f & T-/2.
Similarly, all other corrections from Eq. (2.11)
are insertions into the Wilson loop of the appro-
priate operator. In order to avoid long and cum-
bersome formulas to describe these relativistic
effects, the following expectation-value notation
is introduced to describe the insertions into the
Wilson loop:

(e(x))-=f[dd ]rr{P eze idf"dz,d" (z) e(x) e"r"'"'.
C(B,T) ~eC

6 is any operator. In particular

(4.1)

(4.2)

and ((I/2m)(D'-go ~ B)) is essentially the correction to (-'in order 1/m. It is convenient to introduce a
quantity I which removes the unnecessary Dirac-matrix dependence in I. In order to consider the most
general case, the quark mass (m, ) will not be assumed to be equal to the antiquark mass (m, ). I is de-
fined as follows:



(4.4)I= (1)6(x,-y, )6(x, -y, ) .
As discussed in Sec. III, I is effectively the exponential of the static energy. Including all corrections to
I from Eq. (2.12) through order (1/m)' gives

I must be inside the Dirac trace since it will have a nontrivial Dirac structure, unlike t'-. In the nonrela-
tivistic limit

I= (1)6(x, —y, )6(x, y—,)+i
T/2

dz
2

(5'(x„z) -go ~ B(x„z))
T/2 2511

~ T/2

+ dz (D'(x„z) -go, ~ B(x„z})6(x, -y, )6(x, -y, )
T/2 R 2 ~1

~ r/2
+ 2 ( g) dz[(&~y izgyyo'&)(E (x& z)D (x z))+(1 2)].4m1'

T/2 r/2
dz dz'8(z' -z) [((D' -go, ' B)(x„z)(D'-go, ' B)(x„z'))+(1 2)]4m1 -T/2 -T/2

T/2 T/2

dh dz'((D go& -' B)(x»z)(D2-go'3'B)(x2, z')) 5(x -y )6(x -y ). (4.5)m1Pl 2 ~/2 r/2

In order 1/m, all terms except the first are iterations of the 1/m term. Equation (4.5) may be consider-
ably simplified by using the following observations about the structure of the expectation values. First,
note that only the spin-dependent part of I is relevant so that all spin-independent terms, such as (D'),
may be omitted. Also, parity invariance implies that some terms vanish. For example, (o ' B)= o'(B'),
but (B') must be proportional to R', the only three-vector available. Therefore, (B')= 0 since (B') and
8' have opposite parity. 'The form of I now becomes

+jg t T/2
I= (1)6(x,-y, )6(x, -y,)+, dz[z, z~ (oE~'( „x}Dz~(x„))z+(1 —2) j

f' T/2 " T/2+,J' dz dz'[o,'(B'(x„z)D'(x„z'))+ (1—2)]4+1 "T/2 "T/2

r/2 " T/2

+ 'I dz dz '[o', (B'(x„z)D2(x„z '))+ o,'(D'(x„z )B'(x„z'))
T/2 T/2

-go', o( B'(x, )zB(t„xz))] 6(x —y, )(x, -y,). (4.6)

Next, Eq. (4.6) can be reduced further by using the following identities involving the path-ordered expo-
nentials:

P(x', y')P(y', z') =P(x', z'),
gp

(4.7a)

D'(x')P(x', y') -P(x', y')D'(y') = dz P(x', z)gE'(z)P(z, y'),
yP

1

P(y, t; x, t)D, (x, t)P(x, t; y, t)=D, (y, t)-e,g,g dn (x .-y} [P(y, t, z, t)B (z, t)P(z, t; y, t)],
"O

(4.7b)

(4.7c)

where z —= &y+ (1 —u)x in Eq. (4.7c). The first identity is not trivial because of the path ordering necessita-
ted by the noncommutativity of the vector potential. In Eqs. (4.7a) and (4.7b) all spatial points are taken to
be equal. All three of these identities are established straightforwardly, for example, by expanding both
sides of the equations in a power series in the coupling constant. The third identity, Eq. (4.7c), will be
used for large times t = + T/2 where as T- ~ gauge magnetic fields are assumed to vanish. " In this limit
the identity simplifies to

P(y, t~ x, t)D, (x, t)P(x, t; y, t) = ia', .
I tl~~

(4.7d)

To illustrate the usefulness of these equations, consider the first nontrivial term in Eq. (4.6). Using Eqs.
(4.7a) and (4.7b) one obtains
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T/2 "T/'
dz «„,(gE'(x„z }D~(x„z))=

'

dz «(~, (gE'(x„z)D'(x„T/2))" -T/2 " -r/2

since the term involving «,.»(E'(x„z)E~(x„z')) vanishes by symmetry. Then using Eq. (4.7d)
T/2 " r/2

dz «,.»(gE((x„z}D~(x„T/2))= i ' dz «,»(gE ((x„z))8)i
-T/2 " -T/2

and applying Eq. (4.7b) again to the right-hand side gives
~ T/2

dz «,.q~(gE'(x„z}Di(x„z))=—«, q~B',.(1)Bi) ." -r/2

Similar manipulations lead to the following relationships:

J
T/2 P T/2 " T/2 f' T/2

dz )I dz '(B'(x„z)D'(x„z '))= 2ig dz dz'(z ' —z) (B'(x„z)E~(x„z'))8f,
"T/2 -T/2 -T/2 " -T/2

(4.8a)

(4.8b)

(4.8c)

(4.9a)

T/2 f' T/2 " T/2 " T/2

dz Jl dz '(B'(x„z)D'(x„z ') = 2ig dz dz '(B((x„z)z 'E~(x„z '))82~. (4.9b)
-T/2 -T/2 " -r/2 " -r/2

Here = denotes equality for the spin-dependent terms only. The final form for I now becomes, incorpora-
ting the results in Eqs. (4.8} and (4.9),

" r/2 & T/2
I= (1)5(x, -y, )5( ,x-y, ) +, «»o» IB( )1)8+,o,' dz dz( 'z- )z[(B (x(„z) E~(xz, z)) ~~B( 2)]

- ms ~y ' -T/2 "-r/2
.2 ~ r/2 p g/2

+ o', ' dz ~' dz'[(B '(x„z)z'E~(x„z'))Bi+(1 2)]2P )%2 " -T/2 -T/2

2 pr/2 ~ T/2
o(o2~ dz d (zB (x(„)Bz~( ,x2)z) 5(x, -y, )5(x, - y, ) . (4;1o)4e,m2 ' '. ,/,

This equation determines all the spin-dependent forces in QCD to order (1/m) . However, only for the
first correction term is the spin dependence given by the static limit. This term «(»8, (l)8, includes the
classical spin-orbit interaction and the Thomas precession. It is an effect which was called in Sec. I a
type-1 correction to the potential; that is, a relativistic correction to the potential not involving the ex-
change of transverse gluons between the quark and the antiquark. All the other terms in Eq. (4.10) in-
volve transverse gluon exchange and require new potentials.

Explicitly, the first correction term in Eq. (4.10) is

,«, »o»8', (1)8, ~5(x, -y, }5(x,-y, )+ (1—2)
P'

I o) )r~ o) ' L 7 o2 L2)) 1 (f«(R }
), 4,' 4;)R dR

which when combined with the static energy term (1)= e "")r results in the potential V' given by1,(7()z, 1 T~
o, 'L( o2'L2 1 d«(R)

o, 'L, o, 'L, 1 d«(R)
4m, ' 4m, ' R dR

(4.12a)

(4.121))

Equation (4.12a) follows directly from Eq. (3.10), suitably generalized to include the spin-dependent effects
in Eq. (2.11). To, obtain Eq. (4.12b), the logarithm in Eq. (4.12a) has been expanded to lowest order in
T/m' which is a small quantity since to obtain the nonrelativistic limit m-~ first and only then does T
become large. " The appearance of «explicitly in the spin-orbit term in Eq. (4.12b) implies that not all
spin-dependent forces are short range in QCD. This result follows only from QCD and the existence of
the static limit, and is independent of any detailed mechanism for confinement or of perturbation theory.

The other terms in Eq. (4.10) may also be rewritten as potential terms leadingtothe totalspin-dependent
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potential V» given by

o, 'L, o2' L, 1 dk(R) 2 dV, (R) o, L, o, L,
I

1 dV, (R)

+
12 o, 'o,V, (R)+ (So, 'Ro, 'R -o, 'o, )V,(R),1 mgm2 2m m2

with k(R) the static potential and

p r/2 ~ r/2
ii, — '—:iimc, .

~ J dzJ dz' )g' 2/(8'(x, ,z)E~(x,z')),/( )i,
T~& -T/2 -T/2

r/2 I T/2
= limk, » dzJ dz' —g /2(B'(x2, z)E (x„z'))/(1),

T~ ~/2

+ T/2 T/2

T~ & ~ T/2 -T/2

(4.13)

(4.14a)

(4.14b)

(4.14c)

Finally, the potentials V, and V4 are not independent. The expression for V, can be rewritten in terms
of purely magnetic field correlations. For V,(R)

~ T/2 T/2

dz 'k,. „is",[(B'(x„z)E~(x„z'))](z ' -z ) = dz 'k, (B'( .„x)z[D,E~]( „xz))( 'z-z)
" -T/2 -T/2

+ terms which vanish by symmetry.

Now using the Bianchi identity

[D„B']+k'"[D, ,E,]=0,
and then performing an integration by parts over z',

" -T/2

Thus the equation for V, may be reexpressed as

~ T/2 T/2

dz 'k, ,~(z
' -z )3~2 (B'(x„z)E~(x„z')) = — dz '(B'(x„z)B,.(x„z ')) .

-T/2

(4.15)

(4.16)

(4.17)

P2V (R)= Iim "»2
dz

4 -T/2 " -T/2
dz' —, ~'&B'(x„z)B;(x.,z'))/&1) . (4.18)

Comparing Eq. (4.18) with Eq. (4.14c) we have

&'V, (R) = a V (R ) .
Thus V, (R) may be eliminated in Eq. (4.13) to obtain

o ~ L, o ~ L, 1 dk(R) 2 dV(R) o, 'L, o, 'L, 1 dV(R)
4m~ 4m2 8 dR R dR, 2m m2 2m& 2

(4.19)

+ o, 'o,V'V, (R)+ (So, 'Ro, 'R —o, 'o, )V, (R) .
m gm 2

(4.20)

Equation (4.20) is the complete spin-dependent
potential in QCD through order (I/m. )' with V„
V„and V, given in Eq. (4.14), Eq. (4.17), and

Eq. (4.14c), respectively, as expectation values
of the appropriate electric and magnetic fields.
In QED the V, 's may be evaluated explicitly to or-
der o' (in which case V, = 0) to reproduce the Breit
equation. However, Eq. (4.20) is valid both in

QED and QCD, independent of perturbation theory,
and will serve as the basis of the examination of
spin-dependent forces given in the remaining sec-
tions.

V. PSEUDOPARTICLE CONTRIBUTIONS TO
SPINAEPENDENT FORCES

'The general form for the spin-dependent forces
in QCD as given in Eq. (4.13) can be further simp-
lified when only instanton contributions are consid-
ered. 'The pseudoparticle solutions of the spin-
dependent potential included here arise from all
solutions of the Euclidean field equations which
also satisfy the duality E = B (or antiduality E
= -B) condition and therefore the results are valid
beyond the dilute-gas approximation. " They in-
clude arbitrary multi-instanton contributions pro-
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vided only that the configuration is a local mini-
mum of the Euclidean action (i.e. , multi-instanton
regions and multi-anti-instanton regions of space-
time are well separated). Furthermore, the only
property of the pseudoparticle solutions needed is
their definition (E = a 8); no particular construc-
tion of these configurations or gauge conditions
need be specified. The potentials in this section
are labeled by the subscript I to emphasize the
fact that only the contribution from pseudoparti-
cles is included.

'To investigate the spin-dependent forces in the
nonzero topological charge sector, we start with
Eq. (4.20):

Vl (R) ~

og Ll 82'Lm~ 1 dz (R) 2 dV, (R)
(4m ' 4m, 'i & dR R dR

(o2'Lg og'L, 1 dV2(R)
(2m, m, 2m, m2 R dR

+
6

o', 'o', &2Vz(R)
PE QS22

[(R~R& i si') Vr(R)+ 2 6uVRVr(R))

T ~ ao T T/2 T/2 (1)

(5.2b)

T/2 T'/2

=gz dz dz'(E'(x„z)E'(x„' z'))
-T /2 -T/2

= —e,'e~(1),

1 e~sr(l) e e
lim

T (1) sR& eR, [a (R)]

(5.3a,)

(5.3b)

= (R%~- '5'r) ———~z'(R)
A ~ d 1

dR' R dRJ

It is easy to see that in the instanton sector the
spin-spin and tensor force terms, V'V, and V,
are simply related to the nonrelativistic potential
6» since

T /2 T/2
g' dz dz'(B'(x„z)B'(x„z'))

-T /2 -T /2

+ ' 6"V'e'(R) (5.3c)
+

1 (3tr, 'R(rz 'R -o, 'o, )Vs(R) . (5.1)Pl /gal 2

The potentials V„V„and V, are given by the
pseudoparticle contributions to the Euclidean space
expectation values in Eqs. (4.14a) and (4.14c), us-
ing Eq. (4.19):

TI2 T/2 (zr
R~—V~r(R) = lim c,» dz dz'

-T/2 -T/2

x ( 'B(x„)Zz&(x„)z)/(1),

(5.2a)

Using Eqs. (5.3c) and (5.3b) in Eq. (5.2b) we con-
clude

1d't
»

dRz RdR ~ (5.4a)

and

r(R) ~ r(R) (5.4b)

in which Eq. (5.3b) is a consequence of Eq. (4.7).
There is an additional identity for pseudoparti-

cle solutions which relates V, and V». Using Eq.
(4.7) and the dual property of pseudoparticle solu-
tions (E =+B) it is straightforward to show that

r T/2 T/2 'T/2 T/2
dz dz'g(B'(x„z)D'(x„z')) =+ dz dz'g(Z'(x„z)D'(x„z'))

-T/2 T/2 -T/2 . -T/2

T/2 T/2
dz i e,'(D'(x„z)) w dz ([D', D'](x„z))

-T/2 -T/2

in which the commutator term may be expanded as follows:

[O', D'] =igz. 'r'(B~, +D,B„).
=+2igeo'E j3&+nonspin-dependent terms.

Inserting Eq. (5.6) into Eq. (5.5) and observing that e,'=-e,' produces

(5.5)

(5.6)

(5. Ia)

(5.7b)

r T/2 T/2 T/2 T/2
dz dz'g(B'(x„z)Dz(x„z')) =+ dz ie,'(Dz(x„z)) —2ige'~' dz (E+r(x„z))

T/2 T /2 W/2 -T/2

T /2 T/2
dz dz'g(B'(x» z)D'(x» z')) +2ia'»(s~(1)} sf .

-T/2 -T/2

Note that this result, Eq. (5.Vb), is independent of whether the pseudoparticle configuration is self-dual
or anti-self-dual. " Now using Eqs. (4.9a) and (4.9b), (4.13), and (4.14a) and (4.14b) we have
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T/2 T/2 (Bi x 2)D2 x ~I)) I T/2 T/2

lim —g dz dz' " " = lim —2g2i dz dz' (2' —z)(B'(x„z)Z/(x„z')) 8~/

T~ T/2 --T/2 ( ) T~~ -T/2 T/2-

, 1 dV,'(R)
'R dR

(5.8a)

and

,. 1 dv2/(R)
iR dR

(5.8b)

Hence using Eqs. (5.8a), (5.8b), (4.11a), and

(4.11b) in Eq. (5. tb) the desired relation between

V, and V,' results in the following:

d d
R dR dR'i

V/(R) VI(R) ~/(R) (5.9)
V, —V2-&

Therefore, all terms in the spin-dependent poten-
tial have been reexpressed in terms of the spin-
independent potential for the pseudoparticle con-
tributions. [See Eqs. (5.4a), (5.4b), and (5.9).]
The final result of this analysis is given by

2m, , R dR 3,m,

+ [(S, R)(S, R) S, S,]3~1m 2

(d' 1 d l r

(5.10)

where L=L, =-L„S,=o,/2, S2=og2, and S=S,
+ S2.

Unfortunately, although Eq. (5.10) expresses all
the spin-dependent forces due to pseudoparticle
solution in terms of their contribution to the static
energy a'(R), it is not directly useful for the phe-
nomenology of heavy-quark systems as the static
energy &T(R) is difficult to calculate. " Even so,
there is important information about the general
form of spin-dependent forces in QCD contained in

Eq. (5.10). We may conclude by comparing the
contributions from instantons in Eq. (5.10) with the
perturbative contribution to the spin-dependent
force which in lowest order [see Eq. (7.1)] are es-
sentially the same as in QED [Eq. (1.3)] that there
can be no further relations between V„V„and V,
without making specific dynamical assumptions in
QCD (e.g., those to be discussed in Sec. VII).
Comparing the two equations we find for perturba-
tion theory [see Eq. (1.3)]

d d'~
lR dR dR

and V, (R) of order &,'; while for instantons [see
Eqs. (5.4a), (5.4b), and (5.9)]

Thus no general relationship can exist between
V„V„and V, in QCD.

VI. PHENOMENOLOGY:
GENERAL CONSIDERATIONS

The general form for the spin-dependent forces
in QCD through order (1/m)' is given by Eq. (4.20).
This form may be directly applied to meson sys-
tems involving two sufficiently heavy quarks. We
will. discuss the quantitative applications to such
systems in the next section. However, the success
of nonrelativistic dynamics [such as SU(6) predic-
tions for ordinary mesons and baryons] suggests
that for dynamical reasons not yet completely un. —

derstood the form of Eq. (4.20) may be more gen-
eral than is apparent from its derivation. Our
modest extension of it from the nonrelativistic
limit is to meson systems involving one heavy and

one light quark such as the charmed-meson sys-
tems D'(cu), D'(c/I), and F(cs), and the corre-
sponding bottom-quark systems B (bu), B'(bd)
and E'(bs}. If M is the heavy-quark mass and m

is the mass of the lighter quark, then the dynam-
ics is governed by the reduced mass p, =Mm/(M+ I}
=m for M» m. Even if m is not large, the

Dirac structure obtained for heavy-quark systems
may still be valid but now with the various V,.(R)
completely unknown functions of R and p, , and not
given by the expectation values derived in Sec. IV.
A simplification in the unequal mass case is that
the annihilation term identically vanishes. The
form of the spin-dependent potential for such
heavy-light systems then becomes

V2n= Sg 'L V, (R; )/, )

+—(S, +S„)~ LV, (R; p.)+—S, S„V.(R;u)

(6.1)
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where V„V» V„V„are completely unknown
functions of 8 and p, . SH and S, are the spins of the
heavy and the light quark, respectively (p/~ «1).
The dominant term is S, ' L=—k(J,'- S,

' —L, ') where
J, = S, + L so that the coupling scheme is jj and not
Es in atomic physics terminology.

Equation (6.1) may be used to obtain scaling re-
lations between mesons which differ only in the

flavor of their heavy constituent. All the depen-
dence of the energy on M is explicit in Eq. (6.1).
The dynamics of the wave functions and spin-de-
pendent functions V„.. . , V~ is determined by p
alone; thus the coupling between states ~nl J) and
~n'I-'J) due to the spin-dependent forces is given
by

az(nL, n'I ') =~+ co(n, 1)5„.„51,.z, +S, 'L5@, zz, (n, I;n')+ —(S, + S~) ' L5zz, a, (n, I;n')

+~ Sg ' S, z~.E (n, I;n ') +M (L
~

3S, ' 8 fs ' 8 —5, ' Ss
~

L')eq(n, I;n'I ') . (6.2)

Equation (6.2) is still a matrix equation in the spin
degrees of freedom of the states. The quantities
a„a„z~, z„and a~ are universal numbers for
heavy-light systems. Once determined in some
heavy-light system, the masses for any other such
systems are obtained by simply scaling M appro-
priately. For example, the excitation spectrum of
the charmed mesons will determine this quantities
e„z„q„&„ande„and so the &-meson excita-
tion spectrum can be predicted. For ground-state
mesons (I-=0), only co and e, have nonzero coeffi-
cients and the spin splitting will be proportional to
the ratio of the masses of the heavy quarks:

I

J', and I" * masses, '"and m, = 1.84 Ge V and m ~
= 5.17 GeV the spectrum of ground states of the B
meson can be determined. The results are shown
in Fig. 4. Similarly, P-state splittings for the cu
system determine those of bu via Eq. (6.1). Al-
though those splittings have not yet been measured
one could attempt to use the & (su) meson system
to make these estimates. " Of course, treating the
strange quark as heavy is a questionable approxi-
mation. In analogy to Eq. (6.2),

m(&~) —m(K) = '[m(D*) -m(D).]= 500 MeV,
1Ã

(6.4)

m(B~) —m(B) =—'[mlD*) —m(D)] =50 MeV.
(6.3)

Using the experimental information on the D, D*,

Excitation Energy (MeV)

while actually the difference is %00 MeV. The
approximate validity of Eq. (6.4) supports the ap-
plication of Eq. (6.1) even to the strange mesons.

Even more speculative is the assumption that
Eq. (4.13) has the correct structure for the spin-
dependent effects for light mesons. The form of
the spin-dependent potential would be

200—

100—

E '(150 MeV)

1S---- —
(140 MeV)

E' (111MeV)

50—

0 — 1S-----
+o B+-(13 MeV)

Bo B-( 38MeV

(bu) and (bd) (bs)

FlG. 4. The spin splittings for the ground-state (1S)
B (bu ), B (b2), and E. (b s ) mesons. The small mass
differences arising from electroweak interactions and
the current-algebra I-d quark-mass difference have
been ignored [e.g. , m(B ) —m(B )= 4.4 MeV]. The center
of gravity (c.o.g.) of the 1$ state is indicated by adashed
line.

m g m

(S, +S~) 'LV, , (B) g S2y, (R)2' /Pl' 2 Pl QVl'

+ (3S, AS, A —S, S,)V,'(ft),
2 (6.5)

with V,', , „completely unknown. Since the spin
splittings in light mesons are not as large as the
separations between the radial or orbital excita-
tions, it might be possible to treat V» perturba-
tively. Furthermore, assuming SU(3) symmetry,
the expectation values of V. ..„are independent
of the quark state (u, d, or s) so that many rela-
tionships between meson masses are obtained. In
fact, the potential in Eq. (6.5) was used by De Ru-
jula, Georgi, and Glashow'4 in the SU(3) limit.
They obtained the above form by making the as-
sumption of single-gluon exchange between the
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quarks which of course does dominate at very
small quark-antiquark separation. The results of
their analysis indicate that Eq. (6.5) is valid to
within 30'%%uo [the order of SU(3) breaking]. Naively
it would not be expected that Eq. (6.5), derived by
extrapolating the nonrelativistic expression Eq.
(4.20) into a highly relativistic region, would be
so successful.

VII. PHENOMENOLOGY: HEAVY-QUARK-
ANTIQUARK SYSTEMS

In this section the spin-dependent splittings are
obtained for a bound state of a heavy quark and
a heavy antiquark. Although Eq. (4.13) is directly
applicable to these states, the potentials V, (i
=1, . . . , 4) are not presently calculable (except
in perturbation theory) even though they are given
explicitly in terms of various expectation values.
Furthermore, a model of the static energy is
needed to make explicit predictions.

To proceed with a phenomenological analysis,
the following basic assumption is made: The
longitudinal color electric field alone is respon-
sible for the long-range part of the static energy.
Such an assumption, that the confinement mech-
anism is due to longitudinal electric fields, is a
direct generalization of the confinement mech-
anism in the two-dimensional Schwinger model
and the mechanism indicated by the lattice gauge
theories (at least in the strong-coupling region)
as well as string models. Furthermore, the
longitudinal component of the electric field may
be isolated by a gauge-invariant procedure" so
that the results are not limited to a particular
gauge, such as the radiation gauge, in which
isolation of the longitudinal electric field is par-
ticularly easy. Magnetic field correlations are
therefore short range and should be calculable
in perturbation theory. In particular, since V, ,
V„and V, as given in Eqs. (4.14a), (4.14c),
(4.19), and (4.20) are determined by magnetic
field correlations, they should be given reasonably
accurately by their lowest-order perturbation-
theory expressions. Therefore, one obtains a
potential for spin-dependent forces in QCD without
the introduction of any new parameters:

(R) I' 1 -
y

1 ~ g ld(R)
so ~2m 2 & 2m 2

1 1+('o. ) —L 5' m, m, R

+(p4n, ) 5, 5,4v5(R)' smlma '

+(;&,) (35, .RS, A-5, 5,)„,mgm2

(7.1)

E
a(R) =-—+-a a" (7 2)

where a =2.34 GeV ', and E&=0.52 and E~ =0.48.
This potential gives a very satisfactory descrip-
tion of the nonrelativistic structure for both the
charmonium (cc) and the (bb) systems with m,
=1.84 GeV and mb =5.17 GeV, respectively. Sub-
stituting e(R) given in Eq. (7.2) into Eq. (7.1) for
the special case m, =m, (appropriate to the J/g
and T families of resonances) gives

+ (35 &5 R-S S)
(7.3)

where a, is the running coupling evaluated at q'
=4m'. It is interesting to compare this potential

where S =5, +S„o,is the running coupling con-
stant in QCD, and e(R) is the static energy T. he
only corrections to Eq. (7.1) arise from higher
orders in perturbation theory, possible inclusion
of pseudoparticle contributions, and higher -order
relativistic corr ections.

Some general comments about the assumption
of electric confinement and a short-range magnetic
force are appropriate. For the spin-spin and
tensor forces this assumption leads to the dom-
inance of single-gluon exchange, in Eq. (7.1), for
these forces (the result of lowest-order pertur-
bation theory). This is the same assumption made
previously by De Rujula, Georgi, and Glashow, '4

and by Jaffe" who investigated the force associ-
ated with the "magnetic" component of single-
gluon exchange within the context of the MIT bag
model. However, the treatment of the spin-orbit
interaction arises here as the natural consequence
of the underlying vector gauge character of ele-
mentary quark-gluon interactions and the assump-
tion of a short-range magnetic force, and does
not agree with these works. The assumption of
only a single gluon exchange of course does not
give any long-range component ot the spin-orbit
force. %ithin the MIT bag model" there is a
long-range component associated with the quark
motion in the effective bag potential (a Thomas
term). However, Eq. (7.1) contains a long-range
term arising from the vector nature of the inter-
action in addition to a Thomas term.

Finally, a phenomenological model for e(R) is
needed if Eq. (7.1) is to be used to estimate spin
splittings. For this purpose the linear plus
Coulomb potential is used with parameters as
determined by the Cornell mode14:
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with a general phenomenological analysis based
on the Breit equation in QED reviewed by Appel-
quist, Barnett, and Lane. ' An instantaneous
Bethe-Salpeter kernel consisting of vector and
scalar interaction terms is typically assumed:

l'c.„)..(&')y,"y,„+& (0')1","(k)r,„(K)+ V, (n')l, l,
(7.4a)

I

where I is a unit matrix in Dirac space and

I'„(k) =y„— o„P" (7.4b)

with X being a color magnetic moment of the quark.
Further, Vc,„), b =-K/R, V'v =)1(R/a'), and Vg
= (1 -)7)(R/a~). )). and )7 are adjustable parameters
(0 &)7 & 1) and K= fn, . —The resulting potential
is

)

V(R, K, )(.) =
~

—~+4(1+)).)r(, -- ——+—, L'5 + 2 4vK6(R)+(1+)(.)')7 Ra'

~+ 'W

(V.5)
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FIG. 5. The spectrum of low-lying (c c ) meson states.
The dashed lines are the spectrum of states arising
from the nonrelativistic potential alone. The solid
lines, the results of including the spin-dependent cor-
rections. The experimental masses of observed states
are also included. The J/g and g masses and the center
of gravity of the 1 Pz states was used as input to the
nonrelativistic potential model employed.

The last contribution to the L ~ S interaction is the
Thomas term. The scalar part of the potential
Vz =(1-r))Rga' contributes only here. Considering
only the L ~ S terms in Eq. (V.5) one would conclude
)7 = —,, A. =0 gives agreement with Eq. (V.3). That
is, that the confining potential is a mixture of a
vector and scalar exchange. However, in reality,
the assumption that went into deriving Eq. (2.3)
was the vector nature of the color magnetic inter-
action.

n, (q') = ~~mv[ln(q'/A, ')] -',

where A, is taken to be 400 MeV. %e choose q'
=4m, ' and hence c(, =o.,(4m, ') =0.341 as the
expansion parameter. This choice of a, would
not be expected to lead to large logarithmic terms
in the next order in n, for the cV' states. The
expectation values of the powers of 8 needed were
evaluated using the Cornell-model potential given
in Eq. (V.2). For comparison, the experimental
values" Ior the masses are also given in the
figure. For the 'I'~ states the qualitative agree-
ment with the experiment is good. The Cornell
potential. .model was used to fit the center of
gravity (c.o.g. ) of the P states. Therefore, only
the splittings directly test the spin-dependent
potential of Eq. (7.3). One parameter which has
been used to characterize the P-state splittings

9

m('P, ) -m('P, )
m ('P, ) —m ('P, )

(V.6)

Experimentally r,~ =0.506+0.018 while Eq. (7.3)

I

Comparing the full form of Eqs. (7.5) and (7.3)
it is clear that an analysis based on the Breit
equation and the instantaneous Bethe-Salpeter
kernel of Eqs. (V.4) is inadequate. Equation (7.3)
cannot be obtained for any values of g and X. The
Bethe-Salpeter kernel can be further generalized by
allowing for the exchange of all possible (parity-
conserving) Dirac invariants, scalar Vz, pseudo-
scalar V~, vector V~, axial vector V„, and tensor
V~. This more general form still does not allow
agreement with Eq. (7.3)."

The spin splittings induced by the potential in
Eq. (7.3) for the 1S, 1P, 2S, 1D states of the cc
system are given in Fig. 5. The running coupling
constant o(q') is given by
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gives x,„=1.02. For comparison a pure K ~ S
coupling gives x =2 whereas a pure Coulomb
potential gives x =5. The details of the contribu-
tions to the spin splitting from the perturbative
term and confining potential terms in Eg. (7.5)
are shown in Table I. The splitting, J/ilt-q, has
recently been measured experimentally": m(J/iIt)
-m(q, ) =116+9MeV. The result agrees well with
the lowest-order splitting calculated above. How-
ever, the theoretical calculation has uncertainties
that must be mentioned. The spin-spin force here
is the lowest-order perturbative result first sug-
gested by Appelquist and Politzer, "a result which
depends linearly on u, and the wave function at
the origin squared. However, caution must be
exercised in using relations depending on the
wave function at the origin since even in the non-
relativistic limit they may have large perturbative
corrections. For example, the leptonic width of
the J/g is related to the wave function at the origin
in lowest order in n, by the Van-Royen-Weisskopf
relation:

r(J/y-2'I ) =4( ')n' le(0-) I'/M, /,
'. (7.7a)

This relation does not agree with experiment for
the value of IC'(0) I' calculated with the potential
model of Eq. (7.2). However, first-order cor-
rections in o,, have been calculated" and are
indeed large. The corrected relation is

r (J/1I'-I'2 ) =4( )o.'/Mg/, ' I+(0) I'[1 —Vtx. +O(n. ')]
(7.7b)

Equation (7.7b) to order o., actually works well
for the J/iIt resonance but, of course, there is

TABLE I. Details of spin splittings in the (cc) system
(in MeV).

should hold independent of the size of the pertur-
bative corrections. Thus the splitting between
tl' and rI', is expected to be

m(tlt') -m(rl,') =80 +15 MeV (7.8b)

using Eq. (7.8a) and the experimental values of
the leptonic width of the J/1It and iIt' and the m(71,).

Now we analyze the bb system in which the
heavy-quark expansion should be better. The
parameters for the bb resonances are a,(4m p')
= tx,(4m, ')[1 + (25/12m) In(m„'/m, '] ' = 0.227, K~
=0.483, m~=5. 17 GeV, and a =2.34 GeV '. The
resulting spectrum" including the spin-dependent
forces is shown in Fig. 6. The detailed contribu-
tions to the spin splittings from each of the terms

no assurance that there are not also large cor-
rections in order n,'. Similarly there might be
large perturbative corrections to the spin-spin
splittings, but these corrections are not identical
to those for the leptonic width, and the agreement
between the lowest-order result and experiment
suggests that the total correction term is actually
small. A one-loop n, calculation" should resolve
this question. However, the separation of the
short- and long-distance parts of the correction
for the spin-spin force is not as simple as it is
for the leptonic width.

The perturbative corrections to the lowest-order
relation between singlet-triplet splitting for 8
states and the wave function squared at the origin
will cancel out in ratios of splitting for different
radial quantum number. Thus the relation

m(tIt') -m(q'. ) Ie,.(0) I' r(q'- e'e-)M, .'
m(J/g) -m(rl, ) !sit„(0)I' r(i'- 8'e )M~/p'

(7.8a)
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15.9

-8.8
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FIG. 6. The spectrum of low-lying (bb) meson states.
Notation as in Fig. 5. The T and T' masses were used
as input to the nonrelativistic potential model. The
threshold for Zweig-allowed decays is indicated.
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TABLE II. Details of spin splittings in bb system (in
Mev).

Per turbative
term

Potential terms
Linear Coulomb Total

Sg

i
Sp

3P

3P

Pp

2'S,

2 Sp

3D3

D2

3D

Dg

23P

2 iP

2 Pg

2 Pp

3'S,

3 Sp

2 DB

2 D2

23D

23D

+ 23.7

-71.2
6.3

-3.5
-20.9
+10.3
-30.9

2.6

-0.7
-4.9

4.6

-2.5
-15.2

+ 7.8
-23.6

2.4

-0.7
-4.6

2.0

-2.0
-3.9

0.

3.0

-1.5

1.6

-1.6
3o2

2.2

-1.1
3o3

5.5

-5.5
-11.0

2.2

-1.1
303

4.0

-4.0

-8.0

2.1

-1.0

23.7

13.8
0.0

-11.0
-35.8

10.3
-30.9

7.8

0.0

3Q3

-12.6
10.2

0.0

-8.2
-26.4

7.8
-23.6

6.7

0.0

-2.8
-11.0

in Eq. (7.3) are given in Table II.
The predictions for the spin splittings in the

b5 as well as the cc systems are the result of
three separate approximations within the electric-
confinement hypothesis:

(1) The nonrelativistic assumption —the spin-
dependent interaction is treated only to lowest
order in v'/c'. The expected magnitudes of
neglected terms are -(v'/c') x typical splittings,
and (v'/c')

&
=0.2 while (v'/c') ~

= 0.1.
(2) Short-range perturbative assumption —the

short-range (magnetic) terms of the spin-depen-
dent interaction are treated in lowest-order
perturbation theory, i.e. , O(o, ,). For the cc
system c.,=0.34 while for the b7p system z, =0.23.
Therefore, the nominal order of the neglected
terms is -35'%%uo in the cc and -259o in the bb sys-
tem —of course, the actual correction will depend
on the particular term considered.

(3) Neglected contributions are small —instan-
tons, light-quark pairs, and annihilation terms. "
The contribution from pseudoparticle solutions
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FIG. 7. The spectrum of low-lying (bc ) meson states.
Notation as in Figs. 5 and 6.

was given in Sec. V in terms of the pseudoparticle
contributions to the static energy which, however,
are difficult to estimate quantitively. Certainly
the contributions to a low-lying (bb) state. will
be smaller than the corresponding (cc) state. The
effects of light-quark pairs have been studied by
the Cornell group' by including the effects of
coupling to virtual-charmed-meson channels.
The results indicate that the dominant effects of
this coupling can be absorbed into a redefinition
of the potential parameters E, a, and the mass
m, (or mp). Finally, the annihilation terms begin
only in order a., for C =+1 mesons and n,' for
C = —1 mesons. Therefore, they are higher order
in od, and fall under category (2) above.

In all cases we find (as expected) much more
reliable calculations may be performed for the
bb system than the cc system.

Finally, we turn to an unusual heavy-quark
system —(bc). This system is interesting because
it is the lowest-mass system with both quarks
heavy but unequal in mass. Since the threshold
for Zweig-rule-allowed decays into B +D is above
the 2S state the 1I' states are narrow, spin split-
tings can be studied in detail. The excitation
spectrum of low-lying (bc) mesons including the
spin-dependent forces is shown in Fig. 7. The
general considerations of Sec. VI for systems
with one quark much heavier than the other apply
here and the notation intorduced there to classify
the states is used in Fig. 7. The reduced mass
of the bc system is 2.71 GeV. The other parame-
ters used were n, =0.26, K=0.51, and a =2.34
(GeV) '. The details of the spin splittings are
given in Table III. In Table III we have included
the mixing between states having the same total
angular momentum 7 and differing j, =L +s,
through order (1/m, mp) (i.e. , we have not included
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TABLE III. Details of spin splittings in the (bc) system (in Me&)-

Perturbative term
Potential terms

Linear Coulomb Total

's(

Sp

2 i~

2'Sp

3P

P
1P

1P

5D

5D

~D

3D

-2.64

-1.87

-0.61

—0.50

+ 23.9

-71.8
13.4

-40.4
7.14

-1.87

-1.38

-23.8
3.75

-0.50

—0.40

-7.06

3.21

3.21

-6.42

-6.42

4.52

4.52

-6.79

—6.79

0

4.11

4.11

-8.22

-8.27

2.09

2.09

-3.14

-3.14

23.9

-71.8
13.4

-40.4
14.5

4.8
-16.2
-38.4

10.4
6.2

-10.4
—17.0.

the I/m~' terms). The full mixing matrix is given
in the table where necessary. The column "total"
gives the energy shift of the true eigenstate as-
sociated with diagonalizing this matrix in these
cases.

It may be possible to study this interesting
system since (be) mesons can be directly pair
produced in e e annihilation. In particular for
the 1P states: The bc('S, ) +bc('P, ), bc('S, )
+bc('P, ), and bc('S, )+bc('P, ) final states can he
produced in a relative S wave with thresholds at
12.96, 13.04, and 13.06 GeV, respectively, while
the bc('S, ) +bc('P, ), bc('S, ) +bc('P, ), and bc('S, )
+bc('P, ) final states can be produced in a relative
D wave with thresholds at 12.98, 13.08, and 13.08
GeV, respectively. Unfortunately the cross sec-
tion for production of these final states is expected
to be quite small.

VIII. SUMMARY

The main results of this paper are the following:
(1) the derivation of the general form of the spin-
dependent for ces between a heavy quark and anti-
quark within QCD through order (1/m)' a.s given
in Eq. (4.20); (2) the reduction of the spin-depen-
dent forces due to pseudoparticle configurations
(which are minima of the Euclidean action) to
their associated contribution to the spin-indepen-
dent static energy, Eq. (5.10); (3) determination
of a parameter-free spin-dependent potential,
Eq. (7.1), based on QCD as expressed in Eq.
(4.20), and the additional assumption of electric
confinement, or equivalently, short-range gauge

magnetic interactions (no ad hoc parameters or
interactions have been included. ); and (4) applica-
tion of tive resulting phenomenological potential
to the (cc), (bb), and (bc) systems, yielding good
agreement with the observed spin splittings in
the first system and numerous predictions for
spin splitting in the others (see Sec. VII and Figs.
5 —I).

The phenomenological spin-dependent potential
presented here does not fit into the framework
used in previous discussions of the spin-depen-
dent interaction, because that framework pre-
supposes that the potential arises from the
instantaneous exchange of elementary excitations
with definite Lorentz character (Lorentz scalar,
four-vector, etc. ). This simple classification is
not useful in QCD. The mechanism of confinement
is nonperturbative and the nonrelativistic limit
need not resemble the nonrelativistic limit of a
single-exchange potential a,s in QED. Even in
perturbation theory the spin-dependent potential
receives contributions from all possible Lorentz
structures which survive in the nonrelativistic
limit. In particular the spin-dependent potential
we find cannot be reproduced by assuming the
static potential arises from any combination of
a Lorentz-scalar —and Lorentz-vector -exchange
potential'in a Breit equation.

There are several ways that the work presented
here may be extended. First, it should be rel-
atively easy to extend the general analysis pre-
sented in Secs. IV and VII to baryons and obtain
the general form of the spin-dependent forces
for baryons analogous to Eq. (4.20) for mesons.
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It is also possible to attempt to evaluate the
electric and magnetic correlation functions, Eqs.
(4.14a) and (4.14c), explicitly in a lattice gauge
theory and use Monte Carlo methods to attempt
to extract the continuum limit. This would allow
a direct evaluation of the spin-dependent terms
without recourse to-perturbation theory. Further-
more, the assumption of short-range magnetic
correlations could be .checked explicitly. The
corrections to the phenomenological spin-depen-
dent potential presented in Eq. (V. l) should also
be investigated. In particular the higher -order
perturbative corrections and the contribution of
the annihilation terms should be estimated. It
would also be useful to obtain an estimate of the
contributions of pseudoparticle solutions to the
spin-splitting in heavy-quark systems. It is
possible that including these contributions will
improve the comparison of P~(cc) spin splittings

with experiment. A clearer picture of the validity
of Eq. (V.l) will emerge when the spin splittings
in the bb system have been measured and com-
pared to the predictions presented here.
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APPENDIX: 1/m EXPANSION FOR THE FERMION PROPAGATION FUNCTION

In this appendix the details of the derivation of Eq. (2.11) are presented. In fact, it is shown how to
formally expand the fermion propagation function to any order in (I/m). The explicit form of the nonrela-
tivistic propagation function given in Eq. (2.4) is substituted into Eq. (2.9) (The dependence of S" on A„ is
suppressed):

1+ ' 0 t

&'*(x,y)=i„"(i,y)+( d'zd ( M)&((x'' —-a')e' ' '"'P " ll(x*-z)
0gz

p "((

xy D(z)(-f)8( 'w-z')e ' ' ' "'P 5(s-w)y D(w)$++(w, y).

It is convenient to remove the time dependence of the propagation function as follows by defining S:

Therefore,

1+ '
g++( ) S++( )

1 + y e i (xa iii)i0)f

(A2)

(As)

where

dz dg) gg -z egg z e ~ ~ z (A4)

f(t)-=P y D(k)P y D( )S"(,y). (A6)

(all spatial points equal)

I may be rewritten as

I= dw' dz'e ""' ' "'8(x' —z')8(w'-z')[8(x'-w')+ 8(w'-x')] f(z')
m ()o

uo x0

dw' dz'8(x'-w')+ dz'8(w'-x') e ""' ' 'f(z')
m ()o % ao

OO 0 0
dw' dz'8(x'-w' )e" "f(z +w')+e ""' *" dz'e""' f(z'+x')8(w' —x')

~ OO ~ OO

The z' integrals are now evaluated by integrating by parts:

(A6a)

(A6b)

(A6c)
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r
0 f n+)

2imz f(Z0+W0)
~

( 1)f ( )(W )
~ oo n- 0 I), 2@i

0 n+1
d Z0e2imz f0( Z0+ X0) g ( 1)f (z)(X0)

~ OO p 2m

(A7a, )

(A7b)

The derivatives on the right-hand side of Eq. (A7) are evaluated directly from the definition of f given in
Eq. (A5). The first derivative is given by

0& P

f'($)=P [-igA ($)y D($)+y D'($)+y D($)igA'($)]P y D(w)S"(w, y). (A8)

The A terms come from time derivatives of the path-ordered exponentials. The term in brackets in Eq.
(A8) may be rewritten as

-2[D' y D]

so that
pw

f'(()=(- i) P [D', r D](k)P r D(w)S"(w, y).
iK ~

Similarly, each higher derivative introduces one new commutator with D' with the result that
pw

f'"'($)=(- )"P [L)., [L)., [&,r D]" 1](5)P r D( )S"(,y),
0

where there are n commutators. Putting Eq. (A11) into Eq. (AVa) then produces
0 n+1 & 0(

dz'e" "f(z'+w')=P (-i)~ P [D', '''[D', r D] ]r D(w)S"(w, y)
L, 278 0iK

and plugging Eq. (A11) into Eq. (A7b) gives

f0 ~x"dz'e"""f(z'+x')= T(x')P y D(w)S" (w, y),
oo i'

(A9)

(A10)

(A11)

(A12R)

(A12b)

n+1
T(')=-(- )Z [D', " [D', r D] "]r D(').

p 2m

Next, Eqs. (A12a) and (A12b) are inserted into Eq. (A6c) to produce the final form for I. Putting Eq.
(A12b) into the second term of Eq. (A6c) results in

dw'e ""'" ""T(x')P y D(w)S" (w, y)
-xp 02N g

(A13)

dw'e "" T(x')P y D(w'+x')S" (w0+x', y0) (A14a)
ized +x ~

0 0

n+1
=Z (+0(z T(~ l(0') i0(~')2'" (*'",)"). (A14b)

0

To obtain Eq. (A14b) from Eq. (A14a) integrations by parts were performed on e 2™~. Finally, Eq.
(A14b) and Eq. (A12a) are used in Eq. (A6c) to give

oo p w n+1
I= dw'6(x'-w')P (-i) g [D', [D', y D] ]y D(w)S" (w)

n 0 2'

T(x')(D')" y D(x')S"(x', y') .
(2m (A15)

To reexpress Eq. (A15) in terms of S and S„Eqs. (A2) and (AS) are used as well as Eq. (2.4), the equation
for the nonrelativistic propagation function Sp:
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n+1
s"'(x, y)=s*'(x, y)+ /avis. "(x~)P(2 (&', " ( oi o)" Ã r&(~)S"(~,v)In=0

+i g ~

'

)
T(x')(D')" y D(x)S"(x,y),

n=o (2m

which may be rewritten as

(A16)

n+x

1+i g ~

T(x)(D')"y D(x) S"(x, y).=o 2m j
n+1

=s (x, v)+ 1s+s,"(~,~) T 2 [&, . (&, t o) li' o()&" ~(, y). (A(7)
n=0

(A18)

Therefore

I

Equation (A17) describes all relativistic propagator corrections to the fermion propagation function. To
obtain Eq. (2.11), Eq. (A17) is expanded to second order in 1/m. On the left-hand side only h=0 contri-
butes since T(x), given in Eq. (A13), is at least of order 1/m, whereas on the right-hand side both n=0
and n= 1 contribute. Also, note that

-(y D)' = D' —ger B

I1+,(D2-gB a) S"(x,y)=S,"(x,y) — d'~S, (x, ~) (D'-gc S)+,(&,, -is, ,,c')&'&'
4m' .2m 4m'

xs"(t(), y)+0 1
m j'

where z, Z~=-6, , +is„so' has been used. Equation (A19) is identical to Eq. (2.11).

(A19)

~For a general reference on using the mass spectrum
to construct the potential by the inverse scattering
method see H. B. Thacker, C. Quigg, and J. L. Rosner,
Phys. Rev. D 18, 274 (1978); 18, 287 (1978).

2The various phenomenological potentials for spin-
dependent forces are reviewed by T. Appelquist,

. R. M. Barnett, and K. D. Lane, Annu. Rev. Nucl. Sci.
28, 387 (1978).

3See Ref. 2 and also J. Richardson, Phys. Lett. 828,
272 (1979).

4E. Eichten, K. Gottfried, K. D. Lane, T. Kinoshita,
and T-M. Yan, Phys. Rev. D 17, 3090 (1979); 21, 203
(1980).

The T system has three observed J = 1 $ states
below threshold. D. Andrews et al. , Phys. Rev. Lett.
44, 1108 (1980); J. Bohringer et al. , ibid. 44, 1111
{1980).

6M. Creutz, BNL Report No. BNL 26847, 1980 (un-
published); K. Wilson, Cornell Report No. CLNS-80-
442, 1980 (unpublished). Great progress has been
made recently by use of Monte Carlo techniques in
the lattice version of @CD.
E. Eichten and F. Feinberg, Phys. Rev. Lett. 43, 1205
(1979).

The spin-dependent effects in @ED are discussed in,
for example, A. Akhiezer and V. Berestetskii,
Quantum E/ectrodynamics, translated by G. Volkoff.
(Wiley, New York, 1965), p. 528.

F. Feinberg, Phys. Rev. Lett. 39, 316 (1977); T.Appel-
quist, M. Dine, I. Muzinich, Phys. Lett. 69B, 231
(1977); W. Fischler, Nucl. Phys. B129, 157 (1977).

F. Feinberg, Phys. Rev. D 17, 2659 (1978).
C. Callan et al. , Phys. Rev. D 18, 4684 (1978); also
see F. Wilczek and A. Zee, Phys. Rev. Lett. 40, 83
(1978).
N. Parsons and P. Senjanovic, Phys. Lett. 79B, 273
(1978).

3C. de Carvalho, Phys. Rev. D 19, 2502 (1979).
A. De Rujula, H. Georgi, and S. Glashow, Phys. Rev.
D 12, 47 {1975).

5R. Treat, Phys. Rev. D 12, 3145 (1975).
K. Wilson, Phys. Rev. D 10, 2445 (1974).

~A systematic method of including light quarks for
heavy-quark systems near the threshold for Zweig-
rule-allowed decays is to consider these contributions
in terms of the virtual physical states which contribute
and then saturating the sum over physical states by
the low-lying states. The detail of such an approach
may be found in Ref. 4. The conclusion that is drawn
from that work is that the effects of the light quarks
are not so large as to invalidate a separate treatment
of these terms. In particular, the contribution to the
spin splittings is generally small.

~ This assumption is actually unnecessarily strong. If
the gauge magnetic fields did not vanish. as ( t

~

Eq. (4.7d) would contain such terms on the right-hand
side. However, these terms would still not contribute
to the spin-dependent potential. This is because the
static energy and spin-dependent potentials are terms
proportional. to T in the ln of I jsee Eq. (4.6)]. This
T factor arises from the invariance under time trans-
lation of the contribution being considered, while any



E. EICHTEN AND F. FEIN BERG

contribution including a term appearing on the right-
hand side of Eq. (4.7d) is of order one in T and can be
ignored if a finite correlation length between gauge
magnetic fields is assumed. This is consistent with
the assumption of electric confinement which will
be made in Sec. VII.
As pointed out by L. S. Brown and W. I. Weisberger
IPhys. Rev. D 20, 3239 (1979]the virial theorem re-
lates the average potential and kinetic energy for the
ground state (or any fixed excited state) of a heavy-
quark-antiquark system. Thus the kinetic energy
cannot be completely ignored for a fixed bound state
even as m ~. Of course, the mean radius of the
state ('Rz) ~t approaches zero as mo —~ so that for
sufficiently large m the properties of the state may
be calculated in perturbation theory. Formally this
application of the virial theorem implies limit T
and then m ~, while the static energy and spin-
dependent potentials are obtained with the opposite
order of limits. For large but finite m the kinetic
effects may be rather complicated.

2PA general review of pseudoparticle solutions and their
applications see, e.g. , S. Coleman, in The Whys
of Subnuclear Physics, proceedings of the International
School of Subnuclear Physics, Erice, 1977, edited
by A. Zichichi (Plenum, New York, 1979),

2~This result disagrees with the results of C. Callan
et al. (Ref. 11) and C. de Carvalho (Ref. 13) who con-
clude that in the dilute-gas approximation all the
terms on the right-hand side of Eq. (5.7b) can be ex-
pressed in terms of the instanton contribution to the
static potential V& but the term on the left-hand side
cannot be so expressed.

22For the properties of the D and D* mesons, see, e.g. ,
V. Luth, in Proceedings of the 1979 International
Symposium on Lepton and Photon Interactions at High
Energv, 'es, FermiLab, 2979, edited by T. B. %'. Kirk
and H. D. I. Abarbanel (Fermilab, Batavia, Illinois,
1979).
The results of the DASP collaboration for the masses
of F' [R. Brandelik et al. , Phys. Lett. 80B, 412 (1972)]
has recently been confirmed by R. Ammar et al. , Phys.
Lett. 948, 118 (1980).
Application of the heavy-light analysis to the K system
is given in the Appendix of E. Eichten, K. Gottfried,
K. D. Lane, T. Kinoshita, and T-M. Yan, Phys. Bev,
D 21, 203 (1980).

R. Jaffe, Phys. Rev. D 15, 267 (1977); 15 281 (1977).
K. Johnson (private communication).

2~The general kernel

V=Vs(R)+Vp(R)y Sy -Vv(R)P~SP

-V„(R) y'q~(sy'y, + V,(R) ~""3~»
4mgm2 4mgm2

has been analyzed by D. Gromes, Nucl. Phys. B131, 80
(1977). The spin-dependent forces in leading order
of 1/m are dependent on Vz, and V& only through the
combination (Vz —V&). The constraint of Eq. (4.19)
requires V~+ 3(Vz -V~) = 0. The nonrelativistic static
energy determines Vs+ V& Finally, requiring agree-
ment with Eq. (7.3) imposes three conditions (on the
remaining two invariants) which have no solutions.
The most recent data from the Mark II detector at
SPEAR on the 1P states is reported in T. M. Himel
et al. , Phys. Rev. Lett. 44, 920 (1980) while the result
of the Crystal Ball Detector are presented by
E. Bloom, ~Proceedings of the 2979 International
Symposium on Lepton and Photon Interactions at High
Energies, Fermilab, 2979, edited by T. B. W. Kirk
and H. D. I. Abarbanel (Fermilab, Batavia, Illinois,
1979).

~9This parameter was introduced by H. Schnitzer, Phys.
Rev. Lett. 35, 1540 (1975).
T. M. Himel et al. , Phys. Rev. Lett. 45, 1146 (1980);
R. Patridge et al. , ibid. 45, 1150 (1980).

3~T, Appelquist and H. D. Politzer, Phys. Rev. Lett. 34,
43 (1975); Phys. Bev. D 12, 1404 (1975).
R. Barbieri et al. , Nucl. Phys. 8105, 125 (1976);
W. Celmaster, Phys. Rev. D 19, 1517 (1979); E. C.
Poggio and H. Schnitzer, ibid. 20, 1175 (1979);
L. Bergstrom, H. Swellman, and T. Tengstrand, Phys.
Lett. 80B, 242 (1979).

3The logarithmic terms in one loop have been calcu-
lated by M. Dine, Phys. Lett. 81B, 339 (1979) and
Yale thesis (unpublished).

34For the details of the Y spectrum see E. Eichten, Phys.
Rev. D 22, 1819 (1980) and the references therein.

3~The annihilation terms are formally higher order in
n, . One method for estimating the magnitude of the
coefficient is given in Ref. 14. Applying this method
to the cc and b5' systems, we find the contribution to
Sf Sp mass differences typically a few MeV. This

justifies the neglect of these terms in our consider-
ations.


