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Problem for theories with spontaneous CP violation and natural flavor conservation

A. I. Sanda
Rockefeller University, New York, New York 10021

(Received 19 January 1981j

Using a vacuum-saturation approximation, Vainshtein, Zakharov, and Shifman have shown that L = LQcD + L E~
can explain the EI = 1/2 rule of strange-particle decays. Requiring LE~ to possess spontaneous CP violation and
natural flavor conservation, we estimate e'/e using a similar approximation. We show that a very crude
computation results in a very stringent limit 0.050 &!s /e! & 0.048. This estimate is in conflict with the experimental
measurement !E'Ie!= 0.003+0.015. This is a problem for theories with spontaneous CP violation and natural
flavor conservation if the above understanding of the AI = 1/2 rule is correct.

I. INTRODUCTION

Understanding the source of CP violation has
been a challenge for nearly two decades. Even
within the context of the SU(2)sx U(1) gauge theory
of weak interaction, there is more then one equally
appealing way of introducing CP violation to the
theory. ' '

(a) Spontaneous CP violation is introduced in a
system of at least three doublets of Higgs bosons.
If discrete symmetry is imposed to guarantee
natural flavor conservation' (NFC), an observable
complex phase appears only in the coup)ings of
Higgs bosons to quarks. 4 In particular, the
Kobayashi-Maskawa (KM) matrix' can be chosen
to be real in this scheme.

(b) CP violation is introduced in a system of at
least six quark flavors in a way that a complex
KM matrix is needed to diagonalize the mass ma-
trix.

In one scheme, the complex phase appears only
in the Higgs-boson coupling to quarks, and in the
other, the complex phase appears in the gauge-
boson couplings to quarks. It should be possible
to differentiate these two possibilities.

In this paper, we report on an investigation
which shows a possible difficulty for scenario
(a) in correctly describing the experimental re-
sult for e'/&, a ratio of CP-violating parameters
for K decay. This result suggests a need for
either a nontrivial complex phase in the KM ma-
trix or an extension of the gauge group to include
superweak interactions. It is interesting to spec-
ulate that the complex phase in the KM matrix ap-
pears spontaneously [scheme (b) + spontaneous CP
violationj. Then a strangeness-changing neutral-
Higgs-boson interaction must exist at some level.

In Sec. II, we state the notations for reference.
In Sec. III, we discuss the theoretical framework
with which we compute e'/e. In Secs. IV and V,
we discuss the computation of &'/e. In Sec. VI, we
discuss uncertainties in our computation. In Sec.

VII, we summarize our results and give some con-
jectures about CP violation. In Appendices A and
B, we give details of our computations.

II. NOTATIONS

12 2 12

The states of definite mass M, , and widths I', ,
are

(2)

where

Solving for e and ignoring terms of order
(ImM»/M»)', and (ImI'»/I'»)' we obtain

i ImM„+ —,'Imr „
~m —z:,'~r

where
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Using the experimental information

(4)

For completeness and for reference, ' we state
here some well-known conventions for parametri-
zing CP violations in K-meson decays. The mass
matrix is given by

Z
M ——I' M ——1"

2 12 2 12
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and ignoring terms proportional to

—,aI'1

x (ImM» or ImI'»),
Arn

we have

e ' .ImM„ ImI'„

Denote

(5)

(6)

(8)

g g y &
2 $ Re(Ay)KM

&~+2& Ao

where e = 1m(M»)zM/Re(M»)zM. We have ignored
ImI'». Note that I'» is dominated by the (2v) z,
channel and this amplitude is defined to be real.

I'(K-(vv), ,) '"
1(K-(vv), y

It will be shown below that indeed this is the case.

III. THEORETICAL FRAMEWORK

' =((2 ), ~H~K'),

A, e "=((2v),~H ~IP),

where 5~ is the pp phase shift in the isospin-I
state. CPT invariance implies A =A~. Since
~K0) and ~KO } states are defined to be the eigen-
states of the strong interaction, and the strong
interaction cannot transform ~IP) into IIP), the
relative phase of these states is left undetermined
by this definition. We use the popular phase con-
vention

~QCD ~EW & (14)

where ZQcD and Z~„are the quantum-chromody-
namics (QCD) Lagrangian and the Weinberg-Salam
electroweak Lagrangian, respectively. An effec-
tive Hamiltonian can be derived from the above
Lagrangian,

Recent progress' in understanding the nonlepton-
ic decays makes it possible to give an estimate for
e'/q. In particular, the authors of Ref. 8 demon-
strated that the AI= —,

' rule can be understood from
the Lagrangian

Im& =0.
With this convention

(v'v IHIK, )
(w'v IHIK, )

(vox'
I H IK, )"- (vovoIHIK, )

(10)

H,~f =Ho+H

G~Ho= ~Z„J

C

x (uy "X'u+ dy" X'd+ sy~X's+ ~ ~ ~ )

(15)

(16)

where

g Im&2
~ I

As we shall see below, computation using the KM
matrix and free-quark model leads' ' to a complex
Ao,

(A,)„.=[A, ]e .
In accordance with our phase convention, we make
an adjustment ~K')'-e "~IP) to make A real.
This leads to

where J„is the usual weak current and the second
term is an effective interaction term derived from
Fig. 1. The second term transforms like an octet
and because of its (V- A) V structure, it domin-
ates the K-(2v)I, amplitude. The Hamiltonian
H,«with its QCD correction gives amplitudes for
K -v'v'(b, I=~3 transition) and Ks-v'v in agree-
ment with experiment. The parameter &'/& will be
computed within this framework.

and

2 Re [(M„]„~'«]
Im(M») KM

2 Re(M, 2) xM
(12)

$

ImA~ ™(A~)xM $ Re(A2) xM

Ao Ao

Since we expect Im(A~)zM«( Re(A, )zM, we obtain

FIG. 1. The diagram which gives an imaginary part
to the X 2x amplitude if the KM matrix is complex. This
diagram also gives a dominating real part to the K 2g
amplitude.
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For a complex KM matrix, K, introduces a
phase in K-(2v}z, amplitude. This leads to a non-
trivial prediction for e /&. This has been investi-
gated in Ref. (7}. In this paper, we investigate
a class of theories which has an additional interac-
tion term in K,« from additional Higgs particles.

In scenario (a) discussed in the Introduction, the
spontaneous CP violation and natural flavor con-
servation greatly restrict the possible form of the
Higgs couplings to quarks. 4 For example, if the
Yukawa coupling constants I',.

&
are chosen to be

real, the Lagrangian

a, =P(y„I',q, d,„+q,,r', q, „) (17)

satisfies the above conditions. gt~=(ut, d~),
and P, are doublets of Higgs bosons and P, =to, &j&,*.
A set of discrete symmetries can be imposed to
guarantee the form of g~ given above. It is then
immediately obvious that any phase in the mass
matrix introduced by the vacuum expectation value
of P„

(18)

can be rotated away by redefining the quark phases.
In this way we see that the KM matrix for this
scheme is real and a complex phase appears only
in the charged-Higgs-boson couplings to quarks.
A class of models which falls into the above cate-
gory has a CP-violating charged-Higgs-boson
interaction represented by a general form

g
s ~ I ~2 I(+,Us M„KD~H2 M~)

+ p, U~ M„KD„H,.}, (1.9}

where K~ is a charged physical Higgs-boson field, '
D~ =(d, s, b )~ s, U~s=(u, c, t )~ s, M„and
M„are diagonal quark mass matrices, K is a
real KM matrix, and o, and p,. are complex num-
bers.

IVa COMPUTATION OF 6'~

The major contributions to 1m&K'lH IK'& and
Re&K' lH I K'& are given by the diagrams shown
in Figs. 2 and 3, respectively. While a general

x 2&K' Idy, y s I0)&0 Idy"y s IK &,

G 2

Re&K IH I2P& =, (singccosgc)'m, 'r
(20)

x &K' ldy, y-s lo&&oldy"y-s l~& (21)

Details of the computation are given in Appendix
A. Here we stress that the vacuum-saturation
approximation was used. The quark masses rn,
and M are current and constituent masses of
quark q, respectively. From (20) and (21), we
obtain

1m&K'
I H I P'& ~ 3 mr'M,

Re&K')Hi~&-™~*
4M, 'm (22)

The CP-violation parameter for K decay, a&, is
given by

ie'~
~(e +2&). (23)

While our evaluation of a agrees with a rough
estimate made in Ref. 2, the dominating contribu-
tion of eE comes from g and we cannot obtain an
upper limit for Mz. If we arbitrarily set 2$/&
=30, for example, we obtain M~ ~100 GeV for
m, =0.15 GeV, M„=0.3 GeV, and M, =2 GeV.

V. COMPUTATION OF $

The diagram shown in Fig. 4 gives a dominating
contribution to the imaginary part of the matrix
element for E-2g. We show in Appendix B that
the amplitude corresponding to the lowest-order
term in the perturbation expansion in powers of
g, (m, ') can be written in the form

computation including the effects of a virtual t
quark in the loop integral has been made, for the
purpose of illustration we shall present our results
ignoring the t-quark contribution (i.e. , setting
s2 s3 0; the effects of the t quark wi 1l be dis-
cussed below). From Figs. 2 and 3 we obtain

G 2 MIm(K IH IK') =Im(u~p) (singccosgc)' ',™

W

C, u

Ai H

I

I

H v
I
I
I
I

C,U

C,u

W

FIG. 2. Diagrams which give the dominating complex part to the X -K mixing amplitude.
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Im(v'z IH ~SP& = —Im(np*)sin8ccos8c ~" ' 'g"q ' ', , "- /+in ', F,(q') +,F,(q')
Q

x (v'v
I (Zy d sy d+ uy dsy u) IE'), (24)

where we have set M„=M~. F,(q') and F,(q') are defined by a general gluon-quark vertex function
P

g.(q')q y„F,(q')+~ ~ F.(q') Q.
~e Q

We estimate the right-hand side of (25) by setting
2

Fi(q') +6M .F2(q') =F,(q')
8

and noting that

Z.(q')F &(q')/q'»Z. (m.')/m»'.

(26)

(26)

(27)

While there is no way of justifying (26), it should not mislead us in giving an estimate of a lower bound
unless there is a miraculous cancellation between the two terms along with a sign change in the amplitude.
With the above simplification, we obtain a bound

bound(lm(m'g IH IE')) = —Im(a/*)sin&ccos8c ~ ', ,
I
~+In

4G» ns(m, ') mc'mdNg /3 M,' l
4v Mo'm» ( M~ j

x r8&.'» l(i7yAsy-d+ uy dsy u) IE').

Since the sign of Im(o, P~) is not specified we can-
not, at this stage, specify the direction of the
bound. The real part of the amplitude is given
by Fig. 1.

2

(v IusdI, I0) = —f
2 m„+mq

&0 Is,d„lE'& =i
S g

(31)

R (e'v»IH, IE ) = —
2 6

sin8 cos8c ln
4G, n.(m, ') .

6x C

x|er(»'g l(dy dsy, d+uy dsy, d) IE').

(29)

Since we expect IRe(v'v 1HIE') l»1 lm(m'v IH1E &I,
we write

(v lst, u„(E'&=[f,(m»'-m, ')+f m, ']/2(m, —m„),
2

(»'n d d 0)=
2(m +m) 1 —m»/

we obtain
3

(]) ( )
9 mc'meM„(a +lnMc'/My2)
2 M m ' lnM'/M'

$ =Im(s & IH IE &/Re(« IH IE'& ~ (30)

Using the vacuum-saturation approximation, and
following the analysis of Ref. 8 which uses

f»+f,f.(1 —m»'/m. ')
.-f»+f,f.(1 —m»'/m. ').

Comparing $ with e given in (10) we obtain

H

(32)

C, U

W W

C,U

FIG. 3. The diagram which gives the dominating real
part to the K -K mixing amplitude.

FIG. 4. The diagram which gives the dominant con-
tribution to the imaginary part of the K 2' amplitude.
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12 msms '(g +lnM, /Ms')

f»+f,f,(1 -m»'/m, ') '~

.f» -f,f,(1 —m» /m, ')

For m, =1.5 GeV, m, =0.15 GeV, m&=0. 5 GeV,
M„=0.3 GeV, m, =0.7 GeV, f» =f„and f.= 1, we
have

—z 30.2$

&m

Setting

Re(As „ss =0.05, cos(6, —6, —p)=l
0

we obtain the final result from (13),

0.050 o IRe(s'/s) I
o 0.048, (35)

The bound (35) is inconsistent with the experi-
mental measurement

IRe(s'/&) I
=0.003.0 015. (36)

VI. UNCERTAINTIES

There are two major sources of uncertainties.
One is the vacuum-saturation approximation which
seems to, at least qualitatively, give a correct
order of magnitude for the E~-E~ mass difference,
E-2z decay rates, etc. Hopefully, some of the
uncertainties cancel out for 2$/e» which is a ratio
of ratios. More serious uncertainties arise from
the nonlocal nature of the interaction represented
by Fig. 4. This forces us to an equality (26) and
an inequality (27). While we are comfortable with

(27) which should be a gross underestimate, there
is no argument to justify (26).

We note, however, that the lower bound on
c'/e is quite insensitive to any uncertainities in
2$/c „. The only way to invalidate the estimate
for IRe(s'/s) given in (35) is to have an almost
exact cancellation between (E,(q')) and
((q'/8M„')E, (q')), where the bracket implies
their values folding in the wave function and
integrating over q'.

In our actual computation, we have included
the effect of a top quark. We found that the bound
for 2g/e is not modified very much when m, is
varied in the range 15-50 GeV. This is because
both g an'd s have similar dependence on m, .
This is in sharp contrast with a case in which

e'/e is computed with a complex KM matrix. In
this case, ' the t-quark contributions behave as

-m, ', t - Inm, s/m, ',
and $/s is strongly dependent on the value of
mt'

We have also relaxed the inequality M~ «M~
used in our presentation. Since only the bound is
known for $/s, e» does not fix M„. The value
of e'/e presented for the case M„«M~ remains
unaltered.

Finally, we note that the generalization of our
computation to include. cases in which there are
more than one Higgs boson introduces further
parameters and thus more freedom. The pos-
sibility of having a cancellation between terms
arising from different Higgs bosons seems to be
a very unattractive way of avoiding the conflict
with the experimental measurement.

VII. SUMMARY

We have computed the CP-violation parameter
e'/s for &-2v decay for the class of models in
which CP is violated spontaneously and which have
natural flavor conservation for the Higgs-boson-
exchange interaction. Our result is considerably
larger than a previous estimate. " Barring some
unusual and unattractive cancellations, our result
(35) suggests that the class of models considered
here is ruled out.

As an alternative to the above scenario, it is
attractive to consider spontaneous CP violation
without natural flavor conservation for the Higgs-
boson-exchange interaction. This allows for the
KM matrix to be complex. The neutral Higgs
boson which mediates the flavor changing inter-
action in this new scenerio must be quite massive
in order to be consistent with the E~-E~ mass
difference. If the contribution from the Higgs-
boson-exchange diagrams to CP-violation param-
eters is negligible, then CP violation arises only
from the KM phases and the new scheme falls
into the category of scheme (b).

Experimental studies of CP violation in heavy-
quark systems" to detect a possible phase in the
KM matrix are extremely important in further
understanding of the origin of CP violation.

Note added. After this work was completed, the
author found that a similar investigation by N. G.
Deshpande and E. Takasugi was in progress.
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APPENDIX A

The amplitude for the diagram shown in Fig. 2 is given by

g (A ff )(H A ) 3 W m3 dgld23dg3~(1 +J g3 +3)
a 16m'zM ' m.'Z +m 3Z +M 3Z

W 3 y 2 y I.

x{m,'d(p, )y„[p,(I -&,) P,~-, ]r,s(p, )d(p, )y y~(p, )

+m, 'd(p. )y„y~(P,)d(P.)r"[p,(1 -&.) -P.~,]y,s(p.)],
where we have assumed m„nz&, M~ «M~. Using an identity

2d(p, )y"y s(p, )d(P3)y„p3y,s(p, ) =2M+(P3)y s(p, )d(P3)y,s(p~) +Mzd(P3)o'""ya(p, )d(P3)u„„y,s(P4)

+s"'""p.,d(p. )y,r~(P,)d(p, )v„„y.s (p, )
0

(Al)

and noting that

M„(A ld(p, )y~(p, ) l 0)&0 ld(p, )y.s(p. ) IA &» M.&A ld(p. )y"r ~(p, ) l0)(0 ld(p, )y„yz(p ) (Id')

together with the fact that the second and third terms on the right-hand side of (Al) are negligible in the
vacuum-saturation approximation, we obtain

2

8 = —(sin8c cos8c)'po, *Gz';. ', [d(p, )y"y s(p, )2(P3)y+3y s(p, )+ d(p, )y+3y,s(p )d(P3)r"y~(p, )],F

and with & =N,
G'm' ~—

H = —(sin8c cos8o)3Pn* —, ', 'dyady. s.
7T

Taking the matrix element (K IH IE') with the vacuum-saturation approximation and using (31) we obtain
(20)

APPENDIX B

The amplitude for the diagram shown in Fig. 4 is given by

(»)

Q = —~ ',', o.3'psin8ocos8c 3+Ines
'; d(p')o„g y,x's(p)4G~ g3(m, ')g3(q') m, 'm3 (m, ' '

q M~ (M

x g Q Fi(q')y" +i "F3(q') g'g,
2M'

where we have expanded the amplitude in powers of g,(m, ') and kept only the leading term. Since q may
be small, g, (q') can be large and we cannot write the gluon-quark vertex in a specific form The ve.rtex
function is given in the general form in terms of function F,(q') and F3(q3). In evaluating (Bl), it is useful
to note the identity

d(p')u„„r,s (p)q "Q(k')y "Q(k) = iMo2(p')v„„y,s (p)Q(k')(r""Q (k)

+-s'"""d(p')u„„y.s(p)(k'+k)„q(k')y, y@(k)

and to note that the second term on the right-hand side gives negligible contributions to E -2n decay in the
vacuum-saturation approximation. Then setting M„=Md, we obtain

8 = '. » n*P sin8ocos8cm, 'm, M„—3+in4G3 g3(m, ')g (q')
2 16 sM 'q' M~ )

F,(q')d(p')o„„y, ~'s(p)Qo""&'0 +i
2M

d(P') „~"r.&'s(p)Qo"q„&'0
Q= Ucd Q

Performing the Fierz transformation and keeping only the color-singlet term,
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6 = —~ ' 2. n~psin8, cos8, ', ', " ~+in ',
i E,(q')+, E,(q') dy, QQy,s.

A term of the form 2o„„y,QQv„„y,s was ignored since it does not contribute to K-2w decay in the vacuum-
saturation approximation.
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