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Scalar mesons and nonleptonic decays
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The role of scalar mesons in nonleptonic kaon decay is analyzed. Two kinds of scalar mesons are considered, S-
t

wave q'q' and P-wave qq composites. In particular, the e (700) q'q' composite cannot explain kaon decay.

I. INTRODUCTION

It has been recently suggested that an "exotic"'
quark configuration with the quantum numbers of
an isoscalar spinless meson can play a significant
role in the decay q- m'z m .' That is, one can use
PCAC (partial conservation of axial-vector cur-
rent) to relate the q- w'~ v' amplitude to the ma-
trix element (v'v ~mu+dd ~q). The q meson is then
assumed to undergo a transition to a relatively-
low-mass q'g' state [uudd(680 MeV)] which decays
into two pions. It is our primary purpose in the
following both to examine an analogous mechanism
for nonleptonic kaon decay, and also to present a
broader study of the role of scalar mesons in kaon
decays as well as comment on their possible signi-
ficance in other nonleptonic transitions.

There are several good reasons for this. What
could be more natural than for a neutral kaon to
undergo a parity-violating transition to a neutral
scalar meson which then falls apart into a pion
pair? If such a mechanism were to dominate other
possible contributions, the isoscalag nature of the
lightest available scalar mesons could lead natur-
ally to a &I=& rule for kaons. In hyperon decay,
scalar-meson poles contribute only to the parity-
violating amplitudes. Seven such amplitudes have
been measured experimentally, of which one (Z'
-nv') is nearly zero. Interestingly, the only hy-
peron transition for which the contribution of
scalar-meson poles is absent is also Z'-nm'.
Finally, the importance of final-state interactions
in nonleptonic decays of charmed mesons has re-
cently been emphasized. ' Such final-state effects
are naturally taken into account in the dynamical
framework considered here.

Given that there is ample motivation for our
study we are confronted with two immediate prob-
lems. These are our lack of knowledge of the
parity-violating transition amplitudes between 0
and 0' mesons, and also the rather uncertain ex-
perimental status of the 0' mesons themselves.
We address the first problem by performing bag-
model computations of the relevant amplitudes. '
The latter problem requires us to make certain

judgments regarding the current status of scalar
mesons. According to the most recent data com-
pilation, ' there exist four reasonably well-founded
types of scalar mesons. They are the isovector
5(980), the isoscalars S*(980) and e(1400), and the
strangeness-bearing y(1500). Taken together these
constitute a standard mesonic nonet. However,
Jaffe' has suggested that the spectrum of 0' states
is far richer than this. In the bag model, many
S-wave q'q' configurations are actually lighter
than the P-wave qq modes. These q'q~ states,
dubbed p~imztives in Ref. 6, are atypical hadronie
states in that, although confined in the bag model,
they are color-singlet entities which in Nature can
"fall apart" into any two-hadron system which- has
both appropriate quantum numbers and available
phase space. For example, the lightest primitive
C,(9) is an isoscalar system with mass around 680
MeV which can dissociate into a pair of pions. Can
primitives be detected experimentally? According
to Ref. 6, the answer is yes. However, methods
which transcend the usual S-matrix data analysis
must be employed. It is gratifying that the "P-ma-
trix" analysis of Ref. 6 yields results in reason-
able accord with the bag-model predictions, and
thus lends credence to the concept of light q q'
configurations.

In view of the preceding discussion, we proceed
as follows. We first consider the contributions of
the "nonexotic" P-wave qq states e(1400) and
g(1500). In addition, we assume that light q q'
states exist with the wave functions and masses
given in Ref. 5, and that such configurations can
contribute to our quantum-mechanical amplitudes
as intermediate states. It surely is of interest to
see whether, even in principle, the q~q' primitives
can play a significant role in nonleptonic process-
es.

In the matrix-element calculations we must be
sure to employ meson wave functions of the cor-
rect spin and charge-conjugation property. Be-
cause these wave functions are generally the co-
herent sum of a number of contributions, the rela-
tive phase between individual terms is a matter of
considerable importance. Therefore, a careful
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analysis of this subject is presented in Sec. II. In
Sec. III, we compute the relevant matrix elements
associated with the scalar mesons, and then fold
in appropriate propagation functions and coupling
constants to construct the full nonleptonic ampli-
tudes. Finally, we discuss our results and com-
ment on extensions of the model in Sec. IV. An
Appendix contains certain details associated with
the calculation.

cq(t)c '=zq(t),
cq'(~)c-' = -iq'(s),

cqz(1)c '=iq'(i),
and from the unitary nature of C,

(2a)

II. CONSTRUCTION OF MESON STATES

We wish to construct meson states of the correct
charge conjugation and spin properties. There-
fore, we must determine the transformation prop-
erties of the quark creation operators under the
charge-conjugation operation as well as write
down a spin-lowering operator. The phase con-
ventions we encounter throughout our analysis
ultimately rest upon our choice of bag wave func-
tions.

To start, we note that the effect of charge con-
jugation on a fermion field operator is given by
C+ '=iy'g*, where the symbol C refers to a uni-
tary operator acting in the Hilbert space of quark
creation and annihilation operators. Upon acting
on the bag-model field operator which destroys
quarks and creates antiquarks of flavor q in the
S-wave mode, we find

if X(A) z( ) z zg5 xg(X)

.-g& ~x(~). ~ fX(~)

f,z(y) && '&X,(~)
d(y) fX.(~) (l )

'. if X,(&) & ~.ego x}|,(X).

where we temporarily suppress color indices, X

is a spin-projection label, y and g are two-com-
ponent spinors for quarks and antiquarks, respec-
tively, and X, = io,}(, y-, = io,y -Also, . in Ezl. (1) we
employ f=j,(pr/R), g—= [((o -m R}/((o+mR}]'~'j,(pr/
R) for zluarks of mass m contained in a spherical
bag of radius R, p is the mode frequency, and v
= (p'+m'R')'~'. From Ezl. (1) we deduce the rela-
tions

cq(&)c-' = -@(t),

Cq'(I)c '= -iq'(k),

Cq'z(0)c '=iq'z(f),

Cq'z(t)c '- -zq'z(t)

(3a)

and

cq (~)c-'=-zq (~),

Cq'(zI)c '=iq'(zI),

Cq' (4)c '=-iq' (0),
cq'(&)c-'=iq '(~).

We now have the apparatus to begin the construc-
tion of meson states. Consider a positive p meson
with spin alignment +1 along some axis,

~ pQ = uz(4}d~(4)
~
0), (4)

where the subscripts on the creation operators are
color indices. Upon obtaining the negatively
charged p from charge conjugation, we find

/P, )—= C fP', )

d,'(&)u t(&) ~0)

from which we see that the negative intrinsic
charge-conjugation property of the p occurs na-
turally in our convention.

The next step is to apply an appropriate lowering
operator to the state of Ezl. (4) and then by ortho-
gonality to construct the spinless charged-pion
state. We employ the lowering operator

J =uzi(k)u, (0) -dz(k)d, (0)

+dzz(t)d, (4) —zz', (t)u, (4) .
The spin-lowered p state is thus

~

p', ) =
6

[u', (&)~d,(4) —uz(t)d', (0)] ~0)

from which the charged-pion state is

,The above phase relations, although perhaps un-
conventional to the reader, are nonetheless the
ones which hold in our bag-model analysis. Next
we consider P-wave quarks and antiquarks con-
fined within a bag. We use primes to distinguish
all P-wave quantities from their 9-wave counter-
parts. The relations for P waves corresponding
to Ezls. (2a) and (2b) are

cq (4)c-'=iq (~),

cq(~)c-' =iq(~),

cq(s)c-' = -iq(&),

Cq'(S)C-' = z~q(4),

cq'(~)c '=-~~(a).

(2b)

~m') =
6

[u', (4)d, (4)+uz(f)d", (0)] ~0) .

Again, the phases in Eqs. (7} and (8) are perhaps
unexpected. How can we test the validity of these
formulas p One answer is to.study an appropriate
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matrix element of the vector current V~ =qy" X.q/2,
where we employ the SU(3) notation q =u, d, s. In
particular, we find (0

~

V'
~

p', ) e 0 and (0
~

V'
~

m') = 0,
where V=—V', —iV,'. Moreover, the spin-lowering
operator annihilates the pion state. Our phase re-
lations are therefore correct, so we now turn to
the construction of scalar-meson states.

First we consider the P-wave qg states. By
now our methods should be clear so we proceed
immediately to the charge- conjugation-positive
x'(1500),

1
K == Q O' S' -0'

412

—u,' (a)st(-a)]
~
0),

where 0 is a spin-projection label summed over
its two possible values. We identify the e(1400) as

I

a P-wave qg state which, through mixing, has had
essentially all its strange-quark component re-
moved,

Qg O' Qg -0'1

u—,'t(a)ut(-a) + (u —d)] ( 0). (10)

We do not require the &(980), S*(980) states in our
analys is.

According to Ref. 4 the lightest qQ' configura-
tion, called C,(9), is an isoscalar state described
as follows. First, one constructs diquark and anti-
diquark systems which are symmetric in the spin
and color labels but antisymmetric in flavor. The
C,(9) wave function is then formed as a q q' singlet
in spin, color, and flavor. ' ' However, mixing is
assumed to remove the strange quarks and we find

~

C,(9)) =
2 Q (u~(a)d', (a)u', (—o)d, (—a) +u', (a)d', (o)u', (-a)d, (-a)

+ 2[ut(a)d,'(-o)ur(a)d,'(-a) +u,'(a)d,'(-a)u~(-a}d~(a}

+u', (a)dt(-o)u', (o)d~(-a)+u'. (o)d'„(—a)u', (—a)dt(&r)]] ~0) .

H~ = cose~ sin8~ c,.O&+ H.c. ,
G~

jul

where

(12)

0l = H~ —Hg ~ 02 =Hg +Hg + 2Hg + 2H»

03 =H~+H~+2H~ —3HD, 0~ =H~+H~ —Hq,

where the fc,}are numerical coefficients and (the
following operators are normal-ordered and color
indices are suppressed)

H =dr" r, H = r" dr „
H =dr sdr d, H =dr"s'Fr s,

with

O, =dr t~sqr f~q

O, =dr, sqr„q.

(14)

(15)

The reader may wish to check that the above state
is indeed charge-conjugation positive and also is
annihilated by the spin-lowering operator. The
next lightest q'q' state is the strange-particle
state Cr(9) which carries isospin —,'. Just as the
C'(9) state of Eq. (11) can be considered roughly
as "udud, " then so can the positively charged
Cr, (9) be considered as "udder. " Any of the Cr(9}
states can be constructed from Eq. (11) by em-
ploying appropriate flavor substitutions.

III; NONLEPTONIC KAON TRANSITIONS

The weak Hamiltonian which induces nonleptonic
transitions is currently believed to have the form'

In Eqs. (14) and (15), we employ I"=y" (1+y,),
I"g =y'(1 —y, ), Tr(t"t ) =25"s, and as before the
operator q in Eq. (15) is summed over quark fla-
vors u, d, s. The structure of the operator H~ is
heavily influenced by quantum-chromodynamics
(QCD) radiative corrections and by the existence
of heavy quarks. "

There are several aspects of the weak Hamilton-
ian which should be emphasized in view of the sub-
sequent analysis. Of the six operators 0„.. . , 0„
the first four are "left-left" (II ), and hence form
invariant under Fierz transformations, whereas

'

the final two are "left-right" (I'R). Also, the only
M = & operator is 0,. The others are M = 2. Of
particular importance are the operators 0, and 0,.
The former has an especially large coefficient (c,
=2.5) whereas the latter has been suggested as
having large matrix elements between hadron
states. " Thus it appears plausible that any suc-
cessful explanation of the M=2 rule will ultimately
be associated with either or both of these opera-
tors. Finally, for completeness we mention that
yet another nonleptonic operator, proportional to
color-gluon electric and magnetic fields, can be
induced by QCD radiative corrections. However,
the coefficient function associated with this opera-
tor has been estimated to be extremely small, "
and so we neglect it here.

The kaon-decay amplitudes associated with
scalar-meson intermediate states are depicted in
Figs. 1(a), 1(b), and 1(c). Observe that all three
processes are necessary in order to provide us
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FIG. 2. Nonleptonic transition of a neutral kaon to a
nonstrange scalar state. The interaction operator has
quark content g~12N3d4, and the scalar state has con-
figurations (a) S-wave q q and {b)P-wave qq.

(c)

pl

FIG. 1. Pole contributions to kaon and to hyperon
nonleptonic decays.

with a consistent crossing-symmetric model. The
only parts of these amplitudes which explicitly in-
volve quark dynamics are the matrix elements
&e I+w(0) ISAAC and &v' I+~(0)

I
~'). we use bag-model

wave functions to compute these. Because we are
interested in the dependence of these matrix ele-
ments upon the quark content of the scalar states,
we divide the following discussion into two parts by
considering separately the S-wave q~q' and P-wave
qq configurations. There is one technical aspect
of the calculation common to both cases worth
pointing out here. As shown in Ref. 12, the bag
states can be expressed as superpositions of plane-
wave states. From this we learn that the proper
meson normalization factor [given by (4E,E„)'~' in
the plane-wave case for a matrix element involving
the v, v mesons] for the transition between a heavy
meson v and a light meson m is approximately
(4E,M„)' '. Now we turn to the matrix-element
analysis.

A. S-wave q q states

We first analyze the transitions -a, where c is
the q q' state whose wave function appears in Eq.
(11). Recall that mixing has removed strange
quarks from this state, and that the diquarks q', q'
are separately symmetric in color and spin but
antisymmetric in flavor. This information is im-
portant. It allows us to make several exact state-
ments about the matrix elements, i.e., statements
independent of the spatial distributions of the quark
wave functions.

Consider the E'-to-E matrix element of H„. The
attendant quark transition is depicted in Fig. 2(a).
It can be seen that the effect of the interaction F1„'

is to convert the strange antiquark F, into quarks
u3 Q2 d4 There is al so a spectator d quark. In

the bag model this process is computed to be pro-
portional to the factor (f,g, +g,f,)(g,f, f,g4), —
where f, g are the quark wave functions defined in
the discussion following Eq. (11) and the indices
1, . . . , 4 pertain to Fig. 2(a). For equal u, d quark
mass, the matrix element vanishes. This result
is due both to the symmetry of the c wave function
and to the chiral structure of H„. The latter al-
lows us to display the u, d flavor symmetry of H„
by means of a Fierz transformation. Combined
with the flavor antisymmetry of the c wave func-
tion, it implies the stated result. A similar analy-
sis obtains for H~, whose R -to-& matrix element
is one third that of H„, as follows from. the color
structure of H„and H~.

Neither of the operators H~ and H~ contains u-
flavored field operators. Nor does the initial state
E . Because the final state a does require the
presence of u, u quarks, we deduce that
(K'IHc ~It) =0. Thus the K -to-c matrix ele-
ments of all the left-left parts of H~ vanish if E

is the primitive, C,(9), and m =m~.
A calculation of (K IO, , I

e) matrix elements
yields a surprise when compared to their more
familiar E-to-m and baryon-to-baryon counter-
parts. The latter two are known to obey the exact
relations (0,)/(0, ) = —,', , ——', respectively. ' For
these, the effect of 0, is substantially reduced
compared to that of 0,. However, we can derive
the analogous relation (K

I 0,
I
e) /(K'

I
0,

I
&) = 4

which shows that the K'-to-& matrix elements of
0, , are comparable. This follows entirely from
the relative color content of O„O„C,(9), and is
independent of wave functions. For the 0, matrix
element we find in our model

where the bag radius R, normalization factors
Z, P', and overlap integral I, are defined in tIIIe

Appendix. Primed quantities pertain to strange
kinematics.

Considering, for example, the decay E -m'm,
we can employ the above matrix elements to con-
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struct the e-pole amplitude as in Fig. 1(a),

iaaf(Z ...-) =g(...)&.Ia.l~/[m, -m,

il, (m,m„)'t'J .

(17)

In Eg. (17), I', = 0.5 GeV is the total e width, m,
= 0.68 GeV is the mass of the primitive C, (9), and
the coupling constant g(ew'w ) is given by

g'(aw'w )/4w =81",m, '/3(m, '-4m, ')'t'. (18)

To get a feeling for the magnitude of the E-pole
contribution, we ean compare the expression in
Eq. (17) with the Z - w'w amplitude derived in
Ref. 3 from current-algebra methods. Each of
these two amplitudes can be expressed as a prod-
uct of a matrix element of the weak Hamiltonian
times a factor (with units of inverse energy) in-
volving off-shell dynamics of the final state. - For
Eg. (17) this latter factor is given by g(ew'w )/[m, '
—m„'- iI', (m,mw)'t'J = 9.8 GeV ' whereas in Ref.
3, the analogous off-shell dynamics takes the form
v2/E = 15.0 GeV '. At this level there is not much
difference between the two amplitudes. However,
such is not the case for the respective matrix ele-
ments where we find (w lo'IE'&/&& IO'I~ =4 '
This large ratio is produced primarily by the size
of the bag-model overlap integral of (w' Io', IK'&

which, as mentioned earlier, is especially large.
It was concluded in Ref. 3 that despite the large
(w' Io, IK') matrix element, the coefficient c, is too
small to give the experimental decay ampli. tude.
The same is therefore a fortiori true of the q~q'
&-pole amplitude.

There remain the w'-pole amplitudes of Figs.
1(b) and 1(c). It follows from charge conjugation
that (w I+~ I

~& = &w' I+w I
e& so that only the latter

process need be analyzed. Using arguments ana-
logous to those employed above, it is easy to show
that &w'IIf'„s,

I
~'& =0 and &w'I O',

I
~'&/& w'lo',

Explicit calculation yields the additional results

(w'IB~I v'& = R N'N'(4m„E, )' 'E2,
8i

(19a)

&w lo', le&=- '
R 'N'N (4m„E.)'t'(I, -+21,/3),

where I,' is given in the Appendix. Numerically,
these matrix elements are expressible in terms of
the A -to-& transition as (w' ~a~o I~'& =0.09(& Io', ISO&

Ol
I

&'& =0.94&~
I l l~ Thus the w-to-w ma-

trix elements are not large. Moreover, the prop-
agators corresponding to the ~' primitives are sup-
pressed relative to that of the c due to the larger
a' mass (m„=0.96 GeV vs m, 0.68 GeV). We

conclude that the rc'-pole contributions are even
less significant than the E-pole amplitude.

(~IO, IZ'&= —"iR 'N'NN(4m m )' 'I„ (20)

where a tilde signifies the P-wave bag mode and
the integral I, is given in the Appendix. This am-
plitude is the largest one encountered thus far in
our analysis. Indeed, it compares favorably with
'"a' « "«3 ("IOllA"&/&w'IOll~') =o 5»w-
ever, the large mass and relatively modest width
of c(1400) suppress the propagator and coupling-
constant contributions to such an extent that the
total c-pole term is a factor 4.9 smaller than the
current-algebra amplitude of Ref. 3.

The final step in our enumeration of scalar-pole
contributions to kaon decay is to consider the ef-
feet of I'-wave qq ~(1500) mesons. Some aspects
of this case are repetitious of those analyzed pre-

B. I'-wave qq states

The I'-wave qq configurations certainly appear
as physical states, and as such contribute pole
terms to the kaon-decay amplitudes. However,
the scale masses occurring in the propagator func-
tions are well in excess of 1 GeV. Given this, and
in view of the preceding analysis, it perhaps ap-
pears unlikely that such amplitudes can contribute
significantly to kaon decay. Yet, before reaching
this conclusion we should be sure that the relevant
matrix elements contain no substantial enhance-
ments. We now turn to these.

The state e is given by the qq state of Eq. (10).
Since the sF component is assumed to have been
removed from e by mixing, we immediately con-
clude (e ~HD IE ) = 0 for the same reason as in Sec.
IIIA. Moreover, it follows from color and flavor
considerations that (e IRo l~ =4(t le„l~ and
(e IH~ I =(e IH"„ ISA/3. Both relations are inde-
pendent of spatial wave functions. Thus the prob-
lem of enumerating the E -to-& matrix element of
the left-left parts of H~ reduces to that of deter-
mining (e IH„ IK'&, and explicit calculation yields
the value zero. This is the same result as that
occurring for the respective q q' matrix element.
The underlying reason is similar, involving the
cancellation of wave- function overlap integrals.
However, now it is an antisymmetry regarding
whether the quark or antiquark in the qq model of
the & occupies aP-wave bag mode which is partial-
ly responsible for the zero amplitude. The chiral
structure of H„ is the other significant factor.

Because & is of the "usual" qq type, the relation-
ship between matrix elements of 0, and 0, is com-
puted to obey the standard mesonie relation
(e IO, I =3(t Iol IIV)/16. We obtain for the lat-
ter matrix element
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viously. For example, we find (v' ~IIo D ~

v'& = 0 be-
cause the operators IIc ~ contain too many d-quark
and s-quark fields, respectively, to allow the v'

transition to occur. The main new feature as-
sociated with the ~'-pole terms is that the
(v'~II„a

~

v'& matrix elements are nonzero. Recall
that H„,H~ are especially important operators be-
cause they appear with the large coefficient c,. In
particular, we find (v'~8a ~e'& =(v'~Il„~v'&/3 inde-
pendent of quark wave functions and

&'I%I'& = '
It 'N'(4m„~. )'&'(NN'I —N'NI, ).

(2l)
A quick inspection of the integrals I„I, (given in
the Appendix) shows that the above matrix element
vanishes in the SU(3) limit. The mechanism is the
same as that encountered previously for the K -to-
e (the latter is a P-wave qq composite here) ma-
trix element of H„. Hence it is not surprising that
this contribution to kaon decay is suppressed by
about an order of magnitude relative to the ampli-
tude of Ref. 3. The only remaining independent
matrix element is (v' ~Ot

~

v'& for which we find
I

(v ~Ot ~~ &
= It '(4m„s-.)'~'N'(NN I,+N NI,).

(22)

Like the other contributions studied here, its mag-
nitude is rather modest in that although the matrix
element is comparable to (v'~Op v'& the large v'

mass reduces the propagator contribution and the
full pole contribution is down by a factor of 5 rela-
tive to our bench mark, the corresponding current-
algebra analysis of Ref. 3.

IV. SUMMARY AND C',ONCLUSIONS

It is worthwhile to see whether novel configura-
tions of quarks and gluons can explain seemingly
anomalous phenomena. "" In this context the
possibility raised in Ref. 1 that a scalar, isoscal-
ar q'q' C,(9) provides an explanation of q decay
deserves serious consideration. Perhaps this
configuration also figures importantly in kaon de-
cay.

Such is our motivation for studying the role C,(9)
and its partners in kaon decay. The conclusion
consequently reached is negative —the mechanism
simply does not work. Although for definiteness
we worked within the framework of the bag model,
this result is much less model dependent than it
might appear. Our explanation for the failure of
the lowest-mass q'q' states to explain kaon decay
lies with the color, flavor, and spin structure of
these states. They are seen to clash with the
available weak Hamil. tonian transition operators

and as a result, the computed decay amplitudes
are either zero or too small to account for the ob-
served decay rates.

A somewhat troubling aspect of the suggested
dynamical importance of the q'q' primitives is
their multiplicity. According to Ref. 6, there ex-
ist seven families of primitives with mass under
i.6 GeV'. Although those singularities with the
lowest mass are assumed to be dominant in dis-
persion-theoretic calculations, the presence here
of a number of possible additional contributing
primitives of slightly higher mass is a matter of
concern which might undo the success of the @-
decay calculation. This issue deserves further
study. However, the calculations are likely to be
a good deal more tedious than those performed
thus far because the wave functions of the higher-
mass primitives have a more complicated color,
flavor, and spin structure.

Vis a vis the subject of kaon decay itself, our
negative conclusion regarding the role of primi-
tives still leaves one with the problem of provid-
ing an appropriate mechanism. Our present feeling
is that the current-algebra estimate of Ref. 3 in-
volving the operator 0, gives a reasonable, al-
though. somewhat small, gI =-,' amplitude. The
numerical effects of the various operators in the
weak Hamiltonian are neatly displayed in Ref. 15.
Given the amount of off-shell extrapolation in-
volved in a current-algebra analysis of kaon de-
cay, it is perhaps the case that any computation
of this type contains uncertainties as large as a
factor of 2. This could explain the discrepancy
between theory and experiment.

Despite the failure of the specific scalar-meson
configurations studied here to explain kaon decay,
the scalar channel still has some appealing fea-
tures as regards nonleptonic transitions. Thus,
we conclude with some comments on the nature
of scalar contributions to hyperon and Charmed-
particle decays. For hyperon decays, the appro-
priate scalar-pole diagram is the one depicted in
Fig. 1(d). A hyperon is seen to emit a g meson
which then undergoes a parity-violating transition
to a pion. As mentioned in the Introduction this
mechanism gives rise to a vanishing Z'nx' am
plitude (in agreement with experiment) because
there exists nopositively charged meson with
negative strangeness. Moreover, if the z-to-pion
matrix element is predominantly ~I = —,', and the
neutral and charged z particles couple to the bary-
ons in an isospin invariant manner, the remaining
Z, A, and = decay amplitudes have the correct
~I = —,

' property. To determine the relative size of
the Z, A, = amplitudes we must consider the z-
baryon-baryon coupling constants in greater de-
tail. Unfortunately not much is known experi-
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mentally about these quantities. Instead one must
construct a theoretical model based on one's in-
sights, e.g. , an SU(3) g model which has the vir-
tue of chiral invariance, or some analogous ap-
proach. We have found it instructive to employ
the phenomenological analysis of Carruthers who

considers the relation between scalar mesons and

the trace of the hadronic energy-momentum ten-
sor." In coupling an octet of scalar mesons to the
baryon octet, he determines the F/D ratio to be
o, = —0.25. A subsequent evaluation in Ref. 17
yields z= -0.44. Now if we fit the z-pole model
to the hyperon-decay amplitudes, an optimal value
is found to be ~ -——0.7. This is interestingly near
the scalar-dominance value, especially upon
realizing that in principle the range of the F/D
ratio is —~ & 0. & ~. There is at least a hint here
of universality in the low-mass scalar-meson
channel. Unfortunately we cannot say much more
than this at present.

Reliable data on nonleptonic decays of charmed
D mesons into two-body states has finally become
available. Both pseodo scalar -pseudoscalar and
vector-pseudoscalar final states have been ob-
served. The data is clearly inconsistent with the
"first-generation" of theoretical predictions,
which tended to lean heavily upon quark diagrams
evaluated in the vacuum-insertion approximation.
Instead it appears that final-state interactions
play a decisive role in these decays. If we analyze
D decays with a scalar-pole model, diagrams
analogous to those in Figs. 1(a)-1(c) appear. For
definiteness, suppose it is the g-wave qq scalar
mesons whose pole contributions we consider.
This is sensible because the masses of these
mesons are in the right neighborhood to have a
large effect in charm decays. Two attractive
features of this model are immediately apparent.
There is no scalar meson to which the D' meson
can make a parity-violating transition. It follows
that the D' nonleptonic amplitude is thereby sup-
pressed. This is consistent with the data. Also,
if the D'-&' parity-violating term dominates the
D' decays, it follows from isospin considerations
that the D'- g ~', g'7r' amplitudes differ in mag-
nitude by ~. This too is in accordance with the
data. Before we can proceed further with this
promising line of thought, it is important to know
something about the charm-bearing scalar mes-
ons. These contribute to the pole amplitudes in
crossed channels. This would unfortunately take
us far beyond the context of the present work.
However, research is continuing in this direction.
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APPENDIX

The purpose of this appendix is to define some
notation employed in the main body of the paper.
We remind the reader that primed quantities refer
to strange quarks and that a tilde signifies a quark
in a I'-wave bag mode. Otherwise a quark is non-
strange and occupies an S-wave bag mode.

The reduced normalization factors which appear
repeatedly in our matrix element formulas are
given by

N ' = p'/(2+' —2+ + mR) sin'p,

N '= p'/(2&v'+ Ku+ mR )sin'p.
(A1)

The wave-function overlap integrals I, (i
= 1, . . . , 7) are defined as

1I, =4 u'du(f'+g')(ff' gg') =0.0-049,
0

1

I,= u'—du 2fg'(f g'- f'g) = 0.00044,
0

I, = — u'du(f f '+ gg')(ff + gg) = 0.0040,1

0

1
u'du (f 'f '+g'g'' —3ff 'g' —3f'gg')

= 0.0032, (A2)

1
I, = —

Ji u du(f f'f+g 'g'g —2ff'gg

—2fjgg'-f'fg'-f g'g)

= 0.0019,

j 1

I, = — u'du(f'+g ')(ff'+gg') = 0.0050,
0

1I, =
4

u'du(f'+g ')(ff'+gg') = 0.0038.
O

Almost all of the numerical statements made in
the text involved ratios. These turn out to be very
weakly dependent upon quantities such as quark
masses or the bag radius. However, in order to
provide specific results we employed the values
m„=m„=O, m, = 0.3 GeV, and to optimize compar-
ison of our analysis with that of Ref. 1, we chose
the bag radius used there, R = 4.7 GeV '.
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