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Parton-model predictions for lepton-pair production from polarized spin-1/2 particles are considered within the

context of a formalism explained in a companion paper. The polarization effects in the quantum-chromodynamic

2—+2 subprocesses which contribute to lepton-pair production are found to be quite simple. Following the work of
Ralston and Soper, polarized distribution functions are defined for gluons as well as quarks. Finally, a detailed

discusson of polarization and the hard-scattering formalism is presented for the two cases of intrinsic parton
transverse momentum allowed or forbidden.

I. INTRODUCTION

This paper is concerned with the spin dependence
of lepton-pair production in hadronic collisions.
There should soon be the possibility of measuring
such effects at Fermilab where a polarized proton
beam will be built. ' lt may also be possible to
do experiments at ISABELLE with polarized beams. '

A companion paper' contains a systematic treat-
ment of lepton-pair production by spin- —', hadrons
based on rotational covariance and the Jacob-Wick
helicity formalism. Recently, Ralston and Soper'
treated this process emphasizing Lorentz covari-
ance.

Our approach uses the helicity formalism, and
although similar to that of Ralston and Soper,
differs in some details. Here we are concerned
with parton-model predictions for the process,
and how the observable quantities for the polarized
inclusive reaction can be expressed in terms of
convolutions of subprocess cross sections with,
polarized distribution functions. We make the
assumption that constituents are on the mass
shell, with zero mass both for quarks and gluons.

There have been two explanations for the sur-
prisingly high average transverse momentum of
the lepton pair which has been observed experi-
mentally. We explain how each of these may be
generalized to the polarized case. Perhaps the
additional information afforded by spin will be
of value in deciding the relative importance of
the two suggested mechanisms.

The first explanation has been based upon the
inclusion of the 2- 2 processes, which are allowed
in quantum chromodynamics (QCD}, but which
are higher order in the strong coupling constant
than simple qq annihilation. In these processes,
the transverse momentum of the virtual photon

is balanced by that of a quark or a gluon. We show
that the spin dependence of the 2-2 processes
is quite simple when expressed in the proper way.

The second explanation of the lepton-pair trans-
verse momentum has been on the basis of the
intrinsic transverse momentum of the partons
within the parent hadron. ' ' We develop the form-
alism for the inclusion of the effects of intrinsic
transverse momentum when both parton and hadron
are polarized.

This paper is organized as follows.
Section II deals with polarization effects in the

QCD corrections to the naive Drell-Yan mecha-
nism. In the annihilation process, a quark and
antiquark annihilate to produce a gluon in addition
to the virtual photon, whereas in the gluon Comp-
ton process, an initial-state quark and gluon scat-
ter to produce the virtual photon (see Fig. 1}. A

Annihilation

q&~G qM

Gluon Compton

FIG. 1. The Feynman diagrams which contribute to
the 2 2 processes, quark-antiquark annihilation and
gluon Gompton scattering.
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very simple picture of the spin effects in these
processes is outlined. Of special interest is the
fact that the brompton process has spin effects
if the gluon alone has transverse polarization.
How one might search for polarized gluons via
this effect is discussed.

Section III explains how polarized distribution
functions are to be defined. Ralston and Soper
had defined distribution functions for quarks in
a spin- —,

' particle. We use their four distribution
functions @as, her h~r, and h~ in a way which
differs slightly from their approach, the modifi-
cations being imposed by our use of the helieity
formalism with massless constituents. Next,
polarized distribution functions for gluons within
spin- —,

' hadrons are defined. The relation between
the longitudinal gluon polarization and parent pol-
arization is quite analogous to that between longi-
tudinal quark polarization and parent polarization.
However, the transverse gluon polarization and
parent polarization cannot be linearly related
because they transform oppositely under P7,'. How-
ever, this does not rule out a transverse polari-
zation which is independent of the spin- —, parent
polar ization.

It may be possible to find evidence for trans-
verse gluon polarization when the parent is spin
1 and has tensorial polarization.

The QCD spin predictions for the basic sub-
processes are very simple; however, the actual
observables are convolutions of distribution func-
tions with subprocess cross sections. It is neces-
sary to relate the quantization axes for the sub-
process, which are unobservable, to axes related
to the hadrons themselves. This is accomplished
in Sees. IV A and IV B. Section IV A is restricted
to the case of no parton intrinsic transverse mo-
mentum. In this case, there are great simplifi-
cations. For the annihilation process, the only
nonvanishing structure functions are g~'0', g~',„
and Rg~»'. (The ~""r&g2 are defined in Ref. 3.)
Because of the way in which the &~~P~2 enter the
expressions for do t~, the normalized moments
are independent of the longitudinal polarization.
In contrast, transverse polarization of both quark
and antiquark leads to a @-dependent cross sec-
tion and affects the normalized f~.

For the gluon Compton process, only p~o«' and
g~'„contribute, but the longitudinal-polarization
effects do affect the normalized t~. Since there
are no transverse-polarization effects, there is
no @ dependence.

Section IVB contains a detailed treatment of
the effects of intrinsic parton transverse momen-
tum. In this case, all &~~&+2 are al.lowed. The

1 2
numerical importance of these terms is dependent
on the details of the distribution functions, so

that no definite prediction can be made without
reliable knowledge of them. At this point, the
best that one may do is to try simple models.

Section V contains a summary and our conclud-
ing remarks.

In the Appendix we present a comparison of our
results for the standard Drell-Yan process at
q~= 0 with those of Ralston and Soper. The two
approaches agree to lowest order in (k~'), but
differ in higher orders. In particular our approach
allows for nonzero effects with one hadron trans-
versely polarized, and the other longitudinally
polar ized.

II. POLARIZATION EFFECTS IN HARD
SUBPROCESSES

The usual parton model relates the inclusive
reaction to an incoherent sum of "hard" subpro-
cesses, each weighted by the probability of finding
the constituents having the desired momenta in
the initial. hadrons. Ralston and Soper have indi-
cated how to generalize this idea to polarized
cross sections by introducing new distribution
functions which relate the polarization state of
the (quark) constituent to that of the parent ha-
dron. They considered the usual Drell-Yan an-
nihilation of a quark from one hadron with an anti-
quark from the other, and proposed four new
distribution functions k~P„, g~~r„, gP~„, and Pyre„
which relate the longitudinal or transverse polari-
zation of quark a to the longitudinal or transverse
polarization of spin- —, hadron A. These new dis-
tribution functions depend on g and k~' of the con-
stituent, and k~ appears explicitly in conjunction
with h~f„and @P„in order to maintain azimuthal
covariance. Ralston and Soper have considered
the process

c
p' p'

opa: 0 0

p+- p-+

0

In terms of even-L, statistical tensors,

(rto= (& -P,'P; )(r„

for which the polarization effects are rather sim-
ple. Neglecting quark masses, one finds that
annihilation ean only occur from states of oppo-
site helicity, producing massive photons with

Ay =2k, ,

where ~& is the spin projection along the quark
direction. The spin-1 density matrix is related
to the spin- —, density matrices of the initial-state
particles, p' and p~, by
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where 4w&ppp is just the unpolarized cross section.
These results have been obtained by Ralston

and Soper for the case of production at Q~ = 0, or
integrated over Q~. If one wishes to obtain re-
sults for modest but nonvanishing Q~, it would
be necessary to suppose that the constituents have
nonzero transverse momenta relative to their
parent hadrons. Since this involves a two-dimen-
sional (or three-dimensional, if one integrates
over the azimuthal angle C ) integration, the sim-
ple polarization predictions given above will be
"smeared" because the parton and hadron axes
do not coincide. Collins and Soper' have suggested
that smearing effects will be smallest if their
choice of g axis is made, at least in the unpolar-
ized case. In Ref. 8 it was shown that the inte-
gration domain could be considered to be the sur-
face of a sphere, with the Euler angles of the ro-
tation from parton to hadron axes as variables.
The fact that the R~~1~2 transform irreducibly
under this rotation simplifies their calculation.
However, in the absence of reliable estimates
of the k~ dependence of the four distribution func-
tions, it seems impossible to make quantitative
estimates of the smearing effects.

For large values of Q„ i.e. ~1 GeV/c, sugges-
tions have been made to include the subprocesses
which can yield large Q, photons. They are

annihilation: q+ q —"y"'+ C,
gluon Compton: 6+ q-"y"+ q .

(2b)

(2c)

where o0 is the cross section for unpolarized
quarks, and where P' and P' denote the usual
polarization vectors. The normalized t', has the
value 1/$10, corresponding to the usual 1+cos'8
distribution, whereas the g'2 term corresponds
to a decay distribution containing

sin'8 cos(2p —e, + o., ),
and occurs only if both quark and antiquark have
some transverse polarization. In terms of the
R~~1N~2 formalism, ' the only ones different from

000 000 000 000 2-11are R R200 R011 R211 and R 211 and
these are related among themselves by

000 1 000
R200 y1p ROOOy

2(s -Q')
AA ~ (6)

If the initial gluon has helicity -1, the massive
photon has u-channel helicity -1 (i.e. , 4,= 1 along
initial quark direction) with amplitude

2(Q' -u)
&-su

where s=(Q+q&)', u=(Q —q, )', q„qz, and Q being
momenta of initial quark, final quark, and mass-
sive photon, respectively. Once again, if quark
helieity is reversed, the same amplitudes apply
provided gluon helicity and massive-photon spin
projection are reversed.

These results show a very tight relation among
gluon, massive-photon, and quark spin projec-
tions, which would give rise to very precise tests

'These processes have been calculated in the tree
(or zero-loop) approximation, and results are
available in the literature. ' ' The s-channel
helicity amplitudes for these reactions may be
computed using standard formulas. In doing so
we found that for both processes extremely
simple results emerged, provided the spin-quan-
tization axis for the massive photon was chosen
appropriately. Since we neglect quark masses,
the annihilation process can occur only when quark
and antiquark have opposite helicity, whereas in
the gluon Compton process (henceforth called
simply Compton process) the final and initial quark
helicities are equal. 'Zhere then follows a re-
markable correlation among gluon helicity and
massive -photon spin.

For the annihilation process, with initial quark
helicity —,: If the final gluon has helicity 1, the
massive photon has J,=1 along the incident quark
direction, with amplitude

A', = -4q Q/~ut. (4)

If the final gluon has helicity -1, then the massive
photon has J,= -1 along antiqua. rk direction, with
amplitude

A', =4q Q/vut, (6)

where u= (Q -q)', t =(Q -q)', with q, q, Q de-
noting quark, antiquark, and massive-photonfour-
momenta, respectively. If the initial quark helicity
is -2, then the same results hold with signs of
gluon helicity and massive-photon spin projection
reversed, as mell as an overall change of sign
for the amplitudes.

For the brompton process, mith initial quark
helicity 2 .. If the initial gluon has helicity 1, the
massive photon has s-channel helicity +1 (J,= -1
along final-quark direction), with amplitude
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of the model provided one could prepare and de-
tect the polarized constituents. Realistica, lly, it
seems necessary to sum over unobserved final-
state polarizations, obtaining thereby somewhat

weaker tests of the model. Using standard meth-
ods, one can derive the even-I, part of the mas-
sive-photon density matrix multiplied by the dif-
ferential cross section, namely, for annihilation

dM2dtde, 3r 9 s2utM2 I'~ P- P~ P-

x (t-M')' +(" -M')'ll'&(1'I+ l-l')(-1'I - l1')(1~i+ I-1')(—1'
I)2 2

+2(t —M')(u —M') [p~+ p'+e" ()I')(I'~ +
(
—1')(- I'()

+p' pP, -~ "'((1'&(1'I + I- 1'&(- 1' l))I, (8)

I

where p', p' are the quark and antiquark helicity
density matrices, 4 is the azimuthal angle of the
dilepton momentum, s = (q +q)', t = (Q -q)',
u=(Q-q)', M'=Q' is the dilepton mass, and u,
is the strong-interaction coupling. The notation
~~) indicates a dilepton having spin projection
~ along the direction of the quark momentum in
the dilepton rest frame. The relation between
~m') and ~m') is then

1

~m~) = g d„",.(~))m")
e =

with X& 0, and,

1 -cosy s M'
2 (M' -u)(M' - t)

' (10)

The d'. are the usual rotation functions. From
these formulas one can obtain the density matrix
referred to either the q axis or q axis rather
simply. If constituent transverse momenta and
ha, dron masses are negligible compared to the

hadron center-of-mass energy, the q and q di-
rections in the dilepton frame coincide with those
of their hadron parents.

If there is no beam or target polarization, our
results reduce to those found by Kajantie, Lind-
fors, and Baitio." If only longitudinal quark
polarization is involved, the sole effect is to
multiply the cross section by [1-(p,', -p' )
(p,', -p' )] leaving the normalized density matrix
unchanged. In contrast, transverse quark polari-
zation. yields new observable effects, mainly a 4
dependence in the differential cross Section as
well as a modification of the normalized density
matrix. Note that (der/d t dM'd4) p„ is inde-
pendent of transverse polarization when measured
along either quark or antiquark directions. Fi-
nally, we note that the nonvanishing R~ &&&2 of Eq.
(10) are of the form Rgo, oo) R g",„Rf,,".

For G +q -"y" +q, the differential cross section
multiplied by the even-L part of the density matrix
may be written as

( * = —
i

' — ( —I')* )(1+(p -p )(p -p ))
(),dM'dt (fC 3m (-sauM 6 - 2

+(M'-u)' [I -(p' -p', )(p.'. -p' )]
I 1")(1"

I
+

I
- 1~)(-1~1

+(s -M')(M' -u)[p, ,e" ( /I')(-I" /+ /I")(- I'
/)

+pP„e "@(f-I")(I' + J-1')(I"()] .

In this expression, s =(G+q, )', t=(G -Q)', u
=(Q -q, )', where G is the gluon momentum, q,
is the initial-state quark momentum, 4 is the
azimuthal angle of the dilepton (measured with
respect to transverse axes used to define py
the off-diagonal gluon density-matrix element),
and p~ and p' are gluon and quark helicity density

matrices, respectively. The states ~m') refer
to axes in the dilepton rest frame such that the
final-quark three-momentum is along -2, while
the states ~m") refer to axes such that the initial-
quark three-momentum is along -R. (The y axis
is along (4 x(I& in either case. ) If the gluons are
unpolarized, we again recover the results of
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g d' .(x) Im'"&,
m =-l

where X~0 and

(12)

1 —cosX —tM'
2 (s -M )(M'-u) '

Once again, if one neglects hadron masses and
quark transverse momentum, the directions of
the initial quark and its parent hadron coincide.
In contrast, the axes used to define ~m') do not
correspond to any definite hadron direction, and
it would be judicious to replace the ~m') of Eq.
(11) via Eq. (12) in carrying out practical cal-
culations.

An interesting aspect of the Compton subprocess
compared to annihilation is that the longitudinal-
polarization effects do not factor out, but rather
change the normalized density matrix. This pro-
perty might be useful in isolating effects associa-
ted with the gluon-induced reaction. Finally we
note that the transversely-polarized-gluon effects
do not require any target-quark polarization,
and could thereby yield observable polarization
effects for dilepton pair production using only a
polarized target or a polarized beam (but not
both). As we shall see in Sec. III, it is impos-
sible for a spin-2 polarized hadron to transmit
transverse polarization to a gluon constituent.
The same need not be true of a polarized deuteron
(provided it has some tensorial polarization),
hence one might imagine isolating polarized gluon
effects in a reaction such as m+D- p'p. +X with
a polarized deuterium target. The nonzero

Kajantie, Lindfors, and Baitio. However, in
contrast to the annihilation reaction, transverse
polarization of the quarks yields no observable
effects, and longitudinal quark polarization is
unobservable unless there is also longitudinal
gluon polarization, i.e. , p„cp, , In contrast,
transverse gl'uon polarization can yield observa-
ble effects, independent of the initial-quark polari-
zation. The quantity p, „after a suitable choice
of transverse axes, can be chosen real and is
proportional to the difference between intensities
of linear polarization along the two principal
directions,

C ~ Q Cpa-i p„y —p~g ~

where p~„denotes the probability that a gluon has
linear polarization along the principal direction
y. The fact that p~, e "o occurs is required by
invariance under arbitrary choice of transverse
axes.

The relation between the states ~m') and ~m")

is given by

spin-& parents R~'„' is not allowed, and does not
contribute to any polarization effects.

III. RELATIONS AMONG CONSTITUENT
AND HADRON POLARIZATIONS

(14a)

In terms of the hadron helicity density matrix p~,

yA -pA pA

—,
' [(8„)„+f(S„)X]=p",. (15b)

If k„ is zero, then there are only two relevant
functions, h,&„and h,&„, whereas for nonzero

k„, longitudinally polarized quarks can be found

in transversely polarized hadrons (provided h ~&„

4 0). Although the theoretical status of quark
transverse momentum is far from clear, the
presence (or absence) of distribution functions
like h && and h &z is subject to very simple ex-
perimental tests (at least in the context of the
Drell-Yan mechanism). If one hadron has only
transverse polarization, while the other has only
longitudinal polarization, the observation of any
effect implies either h~~ or &~~F0.

Although the approach of Ralston and Soper

The calculations of the previous section show
that substantial polarization effects are to be
expected at the level of the hard subprocesses.
However, the extension of these calculations to
the hadron inclusive process requires knowledge
of the distribution functions for polarized con-
stituents in polarized hadrons. Ralston and
Soper' have discussed the relation between quark
polarization and spin--, parent polarization. . They
introduced four kinds of polarized distribution
functions, called h,„, h,„, h, „, and h,„, wher e
L and T denote longitudinal and transverse, re-
spectively, a and A representing quark and ha-
dron. These are functions of x„, the fractional
(light-cone) momentum of the quark, and

kyar',

its squared transverse momentum. The method
proposed by Ralston and Soper is to use a po-
larized-quark propagator which is written as

4„(1 r, &' -r, S,'-y),
where K„ is a lightlike vector, K„' =Q', K„
= ~Kr ) =0, X' and S r are, resPectively, twice
the average quark helicity and the transverse
(to K„) polarization. Using infinite-momentum-
frame arguments, Ralston and Soper relate X'

and S, to the parent-hadron polarization via

X —h~l~(~x~k~ )X +&~la(x~~k~ )k S
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leads to definite predictions for the standard q
+q-y process, it requires some modification
in order to be used with our helicity formalism,
which assumed massless constituents. Let us
recall first some general properties of polariza-
tion for massless particles, as discussed, for
example, by Michel and Wightman. " From the
work of Wigner'4 it is known that for massless
particles, a basis for a one.-dimensional irreduci-
ble unitary representation of the proper Lorentz
group is formed by one-particle states with de-
finite helicity s or -s, s being the spin. Con-
sequently, the only effect of a Lorentz transfor-
mation on such a state, apart from changing the
four-momentum, is to multiply the state vector
by a helicity-dependent phase, e"'". Therefore,
the normalized helicity density matrix is charac-
terized by two Lorentz-invariant quantities, (p„
-p y, ) and ~p, , ~. An arbitrary Lorentz trans-
formation can modify only the phase of the off-
diagonal matrix element p, , This offers the
enormous advantage that the helicity density ma-

trixx,

once specified in any given frame, is then
determined in all frames, up to the phase of p, ,
In particular, if in the hadron c.m. frame the
helicity density matrices for massless con-
stituents are specified, then in the parton c.m.
frame the same helicity density matrices apply,
except for the phase of p, , Of course, the phase
of p, , depends on the choice of transverse axes
in the parton c.m. frame, which can be made
arbitrarily. In order to remove this arbitrariness,
one may consider expressions such as py e' or
p~, e "o, where 4 denotes the azimuthal angle
of the produced dilepton in the parton c.m. frame.
It is expressions like these which occur naturally
in the cross sections for the subprocesses (as can
be seen from the previous section).

Our task is thus to propose expressions relating
the helicity-density-matrix elements (p„-p, ,)
and p, ,e"'oin the parton c.m. frame to the
parent-hadron polarization. Noting that these
quantities are invariant under longitudinal boosts
and rotations about the longitudinal axis in the
parton c.m. frame, we propose they be related to
quantities which display the same invariance in the
hadron c.m. frame (longitudinal boosts which
reverse the direction of either hadron are not
permitted). Following the P- and T-invariance
arguments of Ralston and Hoper, we are led to
suggest, for the quark helicity density matrix,

(16a)

hI L) A +P L TI T(PA sloe l (y)- 4 )+PA B"(ye- l (y)- o )),
A A

pa g io-pa ]y~ i &o- +g)
(16b)

(I)TTpA el@el (y) 4) + )
I)TLAT yA)el (o- yA)

where we have dropped subscripts a/A and argu-
ments (xA, k T ) of the distribution functions. The
angles 4, y, refer to the azimuths of the produced
dilepton and the quark in the hadron c.m. frame,
whereas y„ is the azimuthal angle of the parent
hadron as seen in the parton c.m. frame. We use
k„as for (k T k„)' '. The off-diagonal hadron
density matrix appears in combinations like
p", e'o, while the angle y, appears only in the
combination y, -4. Since y, is an integration
variable, there is no real 4 dependence associa-
ted with such expressions. Similarly only (4-pA),
which is determined kinematically by k» z» and

4, enters in these expressions. Our proposal
is thus manifestly invariant under z boosts and
rotations about the z axis in both hadron and
parton c.m. frames.

For a quark in hadron 8, we write

)(y P LL)(B+ PL TyT(g B(Ci l(y2- + p e-l e-l(y 2- )

(lva)

JI1 h~~
P' e' = h p e' 8'"~ '+ k )( ~e"y 'B'. (1Vb)+ + 2 ~ )

Here p, and p~ represent the azimuthal angles of
k~~ in the hadron c.m. frame and of the parent-had-
ron momentum in the parton c.m. frame, respec-
tively. The choice of phases is dictated by our use
of the Jacob-Wick "particle-2" convention.

At this point we compare our approach with that
of Ralston and Soper. First we remark that our
use of the helicity formalism with massless con-
stituents is only an approximation, since off-shell
constituents are to be expected as well. However,
given our assumptions, the requirements that our
parton-model cross sections, when convoluted
with our polarized structure functions, yield re-
sults consistent with the general formalism for
polarized hadroproduction of leptons, forces us
to use Eqs. (16). This will become apparent in
the next section, where we show that our approach
indeed yields results consistent with the general
formalism, once all smearing effects (including
final-state rotations from parton-based axes to
hadron-based axes) are included. This kinemati-
cal complexity is compensated, to some extent,
by the simplicity of helicity amplitudes for the
subprocesses.

Although our expressions involve h, h, h~~,
and h, we use these distribution functions in a
way which differs from that of Ralston and Soper.
One may then ask whether our functions are to be
identified with theirs. The answer is that if we
examine our helicity density matrix in a frame
where hadron'. has very large momentum, then
our effective polarized-quark propagator differs
from that of Ralston and Soper by terms of order
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lk„l, provided the four distribution functions are
identified. Therefore, we will differ in our pre-
dictions for various observable quantities by terms
typically of order ((li Tl)~M), where &Ik'I) is some
measure of the intrinsic transverse momentum.
In the Appendix we show how our results differ
from theirs in the special case of production at

Q, =O.
The problem of gluon polarization was not dis-

cussed by Ralston and Soper, but it is not diffi-
cult to adapt their results to the helicity polariza-
tion of the gluons. The difference between inten-
sities for positive- and negative-helicity gluons,

p» —p, „ is similar to p,', —p' for quarks, and

we may write

po po hLL PA + hL T k T(pA eieei(i &-4)

pAe (equi(CI ) e))

(18)

and similarly for B, with Q, - (())„p,"-p, . We
have introduced polarized-gluon distribution func-
tions hoL~&A and hLo~~A, which depend on x and (k T)'.

An estimate of h~&„can be made using the results
of C1ose and Sivers, "whereas h~ &„ contributes
only after integration over k~, and may be ex-
pected to yield a smaller contribution.

The problem of transverse-gluon polarization
is .rather different. For a photon beam, it is well
known that four real numbers specify the unnorm-
alized density matrix. These may be chosen as
the intensities of linear polarization along the
(orthogonal) principal directions, the azimuthal
angle of a principal direction, and the difference
of circularly polarized intensities. The quantity

p, , is related to the linear intensities, and is even
under the operation PT, whereas the polarization
vector for a spin-& hadron is odd under PT. Thus
there is no analog to E(l. (16b) relating the trans-
verse polarization of the gluon to the polarization
of a spin-& hadron. However, this does not imply
that p, , is zero. The relation

p~ e2iO=hTO (kT2)e2i(o i'A) (19)G/A A

is allowed, where ho&A(x, kT') represents the prob-
ability of finding linearly polarized gluons in an

unpolarized spin-& hadron. Although it may appear
paradoxical that transverse gluons can be found in
an unpolarized hadron, this is what occurs in the
model of Altarelli and Parisi, "where the gluon
radiated by a quark tends to have the electric vec-
tor mainly in the plane of its parent hadron. Since
all azimuthal angles are equally likely there is no

net transverse-gluon polarization, but there should
be measurable effects due to the presence of hG&„.

Although the transverse gluon polarization cannot
depend on the spin-& hadron polarization, PT does

+g~'g~ Repo e&(~1 o&e&@'
10

+hT (k0)2T(3pD ] )]e2((e-PA) (20)

In this expression p, denotes the deuteron heli-
city density matrix. If suitable polarized deuter-
ium targets were avai. lable, a measurement of di-
lepton production with a pion beam could indicate
unambiguously t'he presence of spin-1 constituents.

It should be noted, however, that there is a good
reason to expect these effects to be small for deu-
terium. Intuitively, the hard scattering involves
the constituents of the deuteron. Since the proton
and neutron will not contain transversely polarized
gluons, any such gluons should come from, the
binding of the nucleons to form a deuteron. %e ex-
pect such effects to be small.

Another difficult experiment which might find
evidence for transversely polarized gluons in-
volves a polarized hyperon beam. An ~ beam
with tensor polarization could be a good source of
gluons with transverse polarization.

IV. CONTRIBUTIONS TO HADRON-POLARIZATION
EFFECTS

A. k =0

If the constituents of a hadron are assumed to
have no transverse momentum in the hadron c.m.
frame, it is relatively simple to extend the formu-
las for the elementary processes to the inclusive
reaction. The neglect of 0, effects greatly simpli-
fies the relations among polarization effects in the
elementary and inclusive reactions. The basic
technical difficulty is to relate quantization axes
relevant for the subprocess to axes based on the .

hadron process. Standard parton-model formulas

allow a linear relation between transverse-gluon
polarization and tensor polarization for a spin-1
parent hadron. By tensor polarization we mean
that the quadrupole polarization moments of the
hadron are different from zero. A simple but
striking test of the presence of gluons in a deuter-
on would be dilepton production in

v+D(4)-l'l +X,

with some tensorial deuteron polarization. The
standard picture of the mD reaction would allow
for no polarization effects, since the pion is spin-
less, and the basic quark subprocesses require
both beam and target polarization. The gluon po-
larization in the deuteron might be related to the
tensorial deuteron polarization by a relation of
the form

G 2 j@ G 2itt)Ae2j(c)-if) g)
Pl -1 ' Pl -1

—rA) ~2M e2&(~] C')e2&@
&1-1
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I
jm) =g D~„, (R) Ijm') . (21)

express inclusive cross sections as convolutions
of cross sections for subprocesses with distribu-
tion functions. In order to describe the polarized
inclusive cross sections, the usual formulas must
be generalized to include rotations from parton-
based axes to hadron-based axes. Such a general-
ization is readily obtained if one considers quan-
tities which transform irreducibly under such ro-
tations, namely (do jdOQ)tf.

Let us suppose that in the massive-photon rest
frame, two sets of axes are defined, with corre-
sponding states Ijm) and Ijm), related by

(2s)

t"=Q C„'~„'„,&m
I
p'Im')

for the Euler angles (a, P, y) of the rotation. In
what follows, we shall use the Ijm) to refer to
parton-based axes, and Ijm) to hadron-based
axes.

In Sec. III we used a Dirac bracket notation to
define the density matrix for the massive photon.
The particular matrix, which we denote by p',

p'=-'(l»&l I+ I-»&-I I»
in terms of Ijm) states, occurred frequently. In
terms of the t~~, referred to the Ijm) basis,

= —'[3s~,s„,—c,'„'D„,*(R)I, (26)
The moments tL and tL will then be related by

~f =g Du u(R)4'

with the inverse relation

DL*. R t

(22)

(23)

where R is the rotation defined by Eq. (21).
The results of Kajantie et al. ' show that the re-

lation between the cross sections for the hadronic
inclusive reaction and the hard subprocesses q+q

p" +Gq 6+/ p +g ls

a = D„'„R a„, (24a)

b =Q D„', (R)b„ (24b)

In order to determine the rotation R, a simple pro-
cedure is to choose two vectors (typically mo-
menta of some particles) and to find their spheri-
cal components a„b„a„,b„ in the two different
systems. (Our convention is pO=P„p, =-(p,
+iP )/v2. ) Knowing these quantities one can then
solve the relations

xf(g„(x,)fj ((t(x2) dM2dt

(27)

where f(~„(x,), ft&(t(x,) are the constituent distri-
bution functions. (The kinematic va, riables will be
defined below. ) We may generalize this formula
to the polarized subprocesses noting that in the
absence of k„only the distribution functions hLL

and h are allowed, since h and h do not
contribute in the absence of k, . For annihilation,
we find

dM'dydee, 'd4 + ' J, ( ' (x, ——'7 e") 3w &9) s'uQP

x,.&„&&~ 1 —h&&~h&&~X X + &&„&&~ 1 —h&~~h&&~& X

'(E M')'
jLQ (u -M')'

&L& L*[3SJ0S((0 COOOD((0 9 Q)l +
2 [ SLOS((0 COOOD((0 (R(()]

Im

+4(f(/~f(/(th(g~h((~+f(g~f(y((h((~h(]~)
I

x (t-M')(((-M') p"p's"'g C'~' D' (R )D'I (R )
le

mm'

(23)

In this expression the distribution functions f, ,„,
h(t~ (f«s, h ~ )(dsepend on xz (xo), the integration
variable which is the fractional light-cone momen-
tum of the quark in hadron A (8). The fractional

charge of the quark is e„and the sum is over
flavors. The distribution functions for antiquarks
are denoted by f and h. In terms of the dilepton
four-momentum and x„ the kinematic quantities
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are defined by

r ~M'/s,

x,' = 4(q, '+M')/~,

x, "=(xre' —2r)/(2 —xre '),
x, = (xr e "x,- 27)/(2x, xr-e'),
S =XgX2S y

f=s(7 ——,'xre "x,),
B =s (T —g x r e'x, ),
t~u = Q~'s .

(29a)

(29b)

(29c)

(29d)

(29e)

(29f)

(29g)

(29h)

Rather than specifying a definite choice of axes in
the dilepton frame, we have defined the t~ in terms
of two rotations, R„and R~, which relate axes
systems corresponding to the tilde systems of Eq.
(21) for which the z axis is along the momentum of

hadrons A and B, respectively. (The y axis is al-
ways parallel to p~ &&p„.) Once a definite choice
is made, the Euler angles of the rotations may be
determined and predictions may be made. The ro-
tations are independent of the integration variable
x, and may be taken outside the integral. If the
choice of axes is such that the y axis is normal to
the production plane, then the Euler angles + and

y for rotations R„and A~ are zero.
If Eq. (28) is compared with Eq. (10) of Ref. 3,

it is seen that the only nonvanishing R~~'~' are

way as the ft "Ooo, i.e., the normalized t ~ (dvt"z/dvtoo)

are independent of longitudinal polarization. In
contrast, the A~», ' term corresponds to a 4 de-
pendence in the cross section, and it affects the
normalized t~ as well. Note that transverse-po-
larization effects require that both beam and target
be transversely polarized.

For the Compton process me find

2 2

+ (1 Ag /gk(/sX )[. )[88g,040 COOODfgo (Rg)1
2

+A/~fc/a ((j ~ )s/R2(1+I I' ILL y&gs)[8|) P C»ID'~(R )]+ g/x o/3 JO QO 000 &0

+ () -M')'/2 (1 - h~/ h~~(~~X"X~)[8I!~ll„—C'„~',D~,', (8))))}.

I

In this expression the kinematic quantities are
those defined in Eq. (29), and the distribution func-
tions for hadrons A. and J3 depend on x, and x„re-
spectively. There are three rotations R;, R"„and
8„-, defined as follows: For all axes y along (Pe
xP„),

R;:
R„-:

g along -(xgi„+x2|is),

z along -pa,
z along p„.

Thus R„- and R", do not depend on the integration
variable, whereas R; does. Since only D~, appear,
the Euler angle y is irrelevant. Once again, if the
axes are chosen with y normal to P„and p~, the
three Euler angles n;, n;, a„- are all zero as well.

The Compton process contributes terms of the
form Rg po and Rgyy only. In contrast to the annihi-
lation process, the longitudinal-polarization ef-
fects do not factor out of the normalized density
matrix. There are no transverse polarization ef-
fects, hence no 4 dependence.

B. Intrinsic k~ and smearing

If there were no intrinsic k„(primordial or
intrinsic parton transverse momentum), a
number of simple observable consequences
-for hadron-polarization effects in dilepton pro-
duction would follow. For example, with one
initial hadron transversely polarized and the
other longitudinally polarized no effects should
be observed. When such an experiment is pre-
formed it is likely that some (possibly small)
effects will be observed. The simple predic-
tions of the Drell-Yan process and its lowest-
order QCD corrections are likely to be modi-
fied by some smearing in 0,. It is therefore
of interest to set up a formalism in which k,
effects may be estimated, if not rigorously
computed. These effects may be grouped into
several classes, namely: (1) The directions
of initial-parton momenta do not coincide ex-
actly with those of parent hadrons, and the
parton reaction plane is not the same as that
for the hadronic reaction. (2) The kinematic
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variables depend on k, as well as on x, and
x,. (3) The distribution functions k~&rA and
h~&~„as well as the gluon distribution function
h~~z will, in general, contribute to polariza-
tion effects.

In writing explicit parton-model formulas,
our aim is to respect the general formalism
presented in Ref. 3. In Sec. III we have shown
how the distribution functions of Ralston and
Soper should be interpreted in terms of our
helicity formalism, in order to obtain the cor-
rect y dependence. Since the order of magni-
tude of A, is comparable to hadron masses,
we shall include the initial and final hadron
masses in our formulas.

In the hadron c.m. using light-cone momenta
(p' = (pQ+p, )/0 2 ) the four-momenta of the beam,
target, dilepton, beam constituent, and target
constituents may be written as (order is p', p,
p. p,}

will have azimuthal angles jb„and its, respec-
tively, while the dilepton will have C. The dif-
ferences 4k —

GAPA, 4 —ys may then be expressed
in terms of 4 —iP„C —$2, defined in the hadron
c.m. frame. For example,

sin(C —ip„) &"O'Aq "pp»
COS( —QA} (PA 'Pikq 'P»+PA 'P»q '

Pik 2SPA ' q)

where the scalar products and invariant pseudo-
scalar may be evaluated in the hadron c.m. A

A

similar formula holds for 4 —$s, provided p„
is replaced by pB on the right-hand side.

In order to describe the dilepton polarization,
we choose the y axis along jets xljA, but leave the
choice of the s axis free. To be precise, we
suppose that in the dilepton rest frame unit vec-
tors u„and us in the directions of jfA and ps may
be written

p„=~A(e', e-', 0, 0), (3ia)
gg„= cosC e,+ sin+ 0„,

us= cos(+ —y)e, + sin(+ X)B, —

(34a}

(34b)

Ps =~s(e ",e", 0, 0),

(Mke2 Mke 2

Q=~ ', ~ Q, sos@, Q, sink)v2

m„e' a„2e-&
k, = x, ~2 ~ k„sink),

xl A

where

cosh) = (s+M„' -M s')/(2MAWs,

cosh'= (s+Ms'-MA )/(2Msv s},

M, = (M'+ q, ')"',
2e- «+& )

s=x,x+„Mse'"+ "
X1X2 A B

-2k„k2„cos(kp, —$2),
k 'Me""k„M~e

x,~g

-2kkkq~ cos(c' —Qk) s

(3lb)

(3lc)

(3ld)

(3le)

(32b)

(32c)

(32d)

(32e)

where X(0 ~ y ~ v) is the angle between j5A and jets,
defined by

-(p'p. -p. qp. q/M')
(j(pA q/M)' MA'][(p -q/M)' M 2]]- "

(35)

and where the parameter + fixes the choice of the
z axis relative to the hadron momenta. Let the
spherical polar angles of the parton momenta
k„k, in the dilepton rest frame be (8„$,) and

(8„$»), respectively. Once more, a judicious
choice of scalar products and pseudo scalars
enables one to relate these angles to the kine-
matic quantities defined in the hadron c.m.
frame.

As a first example of k, smearing, we consider
the standard Drell-Yan process q+q- "y", which
was also discussed by Ralston and Soper, for
q, =0. The relation between hadron and parton
cross sections may be written, in the unpolarized
case, as

da 2 2,dx,d k„d k„
g, y

2M e @")-=M2 x2M~ e"' ~2™
@2M B

&«'(q -kx- k2}f;iDyi s&(&

(36}

-2k~ q, cos(@—iP2). (32f}

If these momenta are transformed into the par-
ton c.m. frame, tha hadron momenta jiA and Ps

where the dsstrzbutxon functions are now under-
stood to depend on both x and k,2. The integration
may be performed in the dilepton rest frame to
yield
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gC z=, d f dcosd, dd,

4&0."(fiAfiiB+f iAfiiB} 3M2

(37)

where (8„(I(),) are the angles of parton a. In this
case the momentum of parton b is opposite in
direction to that of parton a, and the kinematic
variables x„x„k,, k, , 4- p„and 4 —pa may
be expressed in terms of the quantities s, M2,

y, QL, +, 8„@,. The arguments of the distribu-
tion functions may thus be determined, and the
integral evaluated numerically. It is then rela-
tively simple to extend the discussion to include
polarization effects. The essential point is that
the massive-photon density matrix is given by
Eq. (1) relative to the tilde axes such that parton (2.

is along thee axis. Inthis tilde system let it)A, (t)B

denote the azimuthal angles of hadrons A. and 8,
respectively. Then we may rewrite Eq. (2c), for
example, as

parton density matrices in terms of hadron den-
sity matrices, to obtain

gt 2 2(8 )1/2~ kTTpAe-ia)e-i((b1-at)+ k XA
i

TL

I Tr
Pg

TT e-i@e-c(42-4)+
Q gB & ~A++B

+ 2 2J

(39)

tL~ DLNN' 8 y tL (40)

In this expression, the 4 dependence is explicit,
the physical angles (t), - 4 and (t)2 -4 are related
to the integration variables, and only (QA+ (t)B )
is convention dependent. However, it is necessary
to "rotate" the tL to the hadron-based axes, and

this rotation will restore convention independence.
Inthe tilde system theg axis is along the direction

of the quark (which we take to be a constituent
of hadron A), hence the rotation must have Euler
angles ($„8„y),where y is to be determined.
'The relation between the tL" and tL may be written

Qf2= 2(—) o [pa e-iaApa e-iaBei (aA+eB )]

Then via Eqs. (16b) and (17b), we express the

(36)
If we use the fact that the azimuthal angles of
hadrons A and B are QA and QB., we may form
(PA)1(PB),/iPAi ~PB

~

= go', (O. , d. , )d', (o) Qo'. ,(O. , o. , r)d' ,(a-x)), .
m m'

from which it follows that

' (a.. ., o)d' ( ) g '.., (O.. ., o) d'. (o - )),
aA aB ts m'

where 8,„ is the angle (0 ~ 8,A
~ v) between the direction of quark a and hadron A in the dilepton frame.

Expressions for ~,A and 8,B in terms of rotation matrices are

(42)

cos8 =g D (i', 8, 0) d (4'), (43a)

cos8, =g D'„($„8„0)d'„,(@-X) . (43b)

It is thus seen that the phase ei(8A'oB'~) can be expressed in terms of the angles 8„()))„@,and X, and is
thus well defined. Proceeding in this manner, one obtains the explicit formula (for L even)

tM 4m~2

dM2d d 2d
= 8 Q e, dQax, x, 3M2 (f,j A f,&B 1(1 —X & )2 [36Lo 5dio CooLoD„o (pa, 8a, 0)]

+2(-) [po p D *(p 8„0)e"aA+8B+

+ (p a p ei((bAo aB+22)) aDLa (y 8 0)] +(f

(44)

where we have introduced the quantities X&, X',
p', p' in order to simplify the expression. These
are defined by

Xa —kLL XA+kLTk (pAei@eio'1+ps ic' eiele) (45)

Xb —k LL XB + k LT g, (pB e i Be i 8i + pB e i@e io) 2)i/B if' 2l -+ +~

pa
—k T? pA e -i(be - i (b1 + k T L k X A/2

pb —I1TT pBe-i@e-ia2+kTLk XB/2

(46)

(47)

(46)
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where (t),' = (t), C, (t)', = (t),-C, and all distribution
functions are understood to depend on x and k, .
Under the substitution (t) ——(t),, x„x„k„,and
k„are invariant, but (1);, Q;, and ((t)„+(t)e+2y) all
change sign, from which it follows that all R~~"q 2

are real, as is required on general grounds. Al-
though we have not specified the integration do-
main, the usual parton-model requirement that a
parton should not have longitudinal moment oppo-
site to its parent hadron provides a cutoff in the
8 p integration. We note also that the inclusion
of k, smearing has produced all the terms R~, ",
permitted by general considerations, in particu-
lar, effects with one hadron polarized longitudin-
ally and the other transversely are now present.
-Detailed numerical investigation of this expres-

sion (assuming simple forms for the distribution
functions) will enable one to estimate the impor-
tance of such effects.

The effects of 0, smearing may also be included
in the q+q-"y" +G and Compton processes. All
that is needed is a method of determining the ro-
tation parameters needed to pass from constituent-
based axes to hadron-based axes. In contrast to
the preceding example, it appears to be simpler
to work in the hadron c.m. frame, using as inte-
gration variables x„x„k,„, k„(subject to one
constraint) and to find the necessary rotation para
meters as functions of these. Let us first note
that the usual relation between cross sections for
"hard" subprocesses and 'he inclusive reaction is

2 A A 8828 2 dO g j— ~ J dx&dx~Pk»d k02f)fuff ff&s6(s+t+u —M
dt dM~g4M y

(49)

where the kinematic variables s, t, u have been defined in E(l. (32). We then use our explicit formula for
the parton cross sections to obtain the even-I t~ multiplied by the differential cross section.

For annihilation, we have

N A 1 4 @2',
Sg 9 StM2

t M'' M'2
x( f fgeeeI(e1-5'2') 2 [ 25, 5„, -C,'„' 0„,' 05)] 8 [ 258 58 C'„'D„,"(R )]8,

+4(t-M')(u-M') - p e-«&-a"-+&g C'" D' (R )D'*(R )
m m

(
82 b e-&(I-0&eO-()5&&&)2' Q Q&&& D& (Z )D&+ (R )

m m'

+(t -yk-k)i
i

(50)

The quantities X', X', p'„p,', havebeen intro-
duced in E[ls. (49)-(52), Q', =Q, —4, (t),'=(t), —C,
and the rotations R, and R„are defined as follows:
Using the axes in the dilepton frame defined im-
plicitly by Eqs. (34a) and (341), the spherical
polar angles of pa, rtons a and b, namely (8„(t),)
and (8„$0,), may be determined by evaluating

scalar products and invariant pseudoscalars. The
rotations R, and Rb are then described by Euler
angles ($„8„y,) and ($„8„y„),respectively.
From the form of Eq. (50), we see that only the
combination y, —y~ enters, for which the following
relation holds:

8 ""-"J= 2 g D (8 , 8 , 0)D (8'„, 8 , 0)
( Q'"D', „,(8„8„0)D' (8„8, 0)) ele'8, ,

V T

where

sin'8, [,
= 4lut M'/((M' —u) (M' —t ))'. (52)

We have thus shown that all factors in E(l. (50) are well-defined functions of the kinematic variables which
characterize the final state and the integration variables.

Proceeding in the same manner, one derives the following expression for the contribution of the Comp-
ton scattering process:
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det p p

8 —M' '
c~+ ~~ ~ +~+ ~

2
- 3~LO~+0

"—M''

I+8 /grP Q PR u(@ 4A)QQ&&& D~ (R„)D&f (R )

+ fg~foys (&+&s X') - [85u,588p CpppDup (R")]—,-, (s-M ) 1L1 L+
2t

f —M''

M'—

where we have used the substitutions ~', g~ and
the rotations p„p~ defined previously. The ad-
ditional substitutions are

A,„=k A. +Q$ & (p e e+i+p" e" 8 e')

Rsa = a,'/sZ'+I(, ,'g, u„(ps~ e"e'~'p+ p' e~'e" e')
8

(54)

(55)

x g D„',(y„8„0)D„',*(y.-, 8.-, 0) ~, (58)

D„', ;,8;, OD„* „8„o

where

x(QD (8 8„0)B' (8',., 8„,, 0)),

sin'8; = 4st uM'/[(s —M')(M'- u)]',

sin'8;, = 4sfuM'/[(s —M') (M' —f )]'.
(58)

(59)

The explicit forms of Eqs. (50) and (58) are
fully consistent with the formalism developed in
Ref. 3. In particular, the fact that the kinematic
variables are invariant under reflection of parton
three-momenta in the production plane defined

where the distribution functions again depend on g
and k~'. The Euler angles of the rotation+; are
defined as follows: Let (8;, (Qt);) be the spherical
polar angles of the recoil. quark momentum Tc, +kp,
as seen in the dilepton rest frame with respect to
the conventionally chosen axes. Then the Euler
angles are (P;, 8;,y;), where y," remains to be
defined. Noting that only the combinations y;+y,
and y;+yp are needed in Eq. (58), it is sufficient
to find an expression for these in terms of P,", 8;,

80 4'p

x 8"+w =, Q D (8 8., 0)B„„(8., ,8&, 0))sin28 vl

by the momenta of the initial-state hadrons and
the massive photon means that all&™~ooand gL~x 'x '
are real, as they should be. As one might expect,
k~ smearing has produced expressions for which
all &L",&", & are potentially different from zero.
The question of which effects are likely to be most
important requires detailed numerical study, but

in the absence of reliable estimates for distribu-
tion functions (especially the k~' dependence) all
one can do is try various simple models.

V. CONCLUSIONS

Following the work of Ralston and Soper, ' we
have made some generalizations motivated by the
observed relatively high transverse momentum
of the lepton pair produced in hadronic collisions.
We investigated the effects of intrinsic parton
transverse momentum and the QCD 2-2 sub-
processes. The 2-2 processes exhibit substantial
spin correlations. Of special note is the fact
that gluon transverse polarization by itself may
be observed with a polarized deuteron or hyperon
beam.

The QCD 2-2 subprocesses dominate the QCD
contributions in the limit s —~, Q,'/s fixed; how-
ever, there is not very much data in this region
even in the unpolarized case. Considerations of
intrinsic parton transverse momentum hold in the
region s -~, Q,'/s -0." Again, there is not much
data in this region. Most of the data lies between
the two regions so we have included both effects
in our treatment. Since the effects of intrinsic
parton transverse momentum are dependent upon
the actual k, dependence of the distribution func-
tions, one needs to have a model of the distribu-
tion functions. It would be valuable to do some
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numerical work as it would be especially interest-
ing to see if spin may shed additional light onto the
issue of the relative importance of jp1 vs the 2-2
subprocesses.

It should be possible within the next few year s
to study muon-pair production with polarized
beams and targets, and to measure in detail the
multiply differential cross sections discussed
here. There have also been some discussions of
the longitudinal spin assymmetry (which should be
easier to measure), notably by Hidaka, " and by
Mani and Noman. " It will be quite interesting
to study all these spin effects.
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APPENDIX

The production of lepton pairs at Q~ = 0 has
been studied in detail by Ralston and Soper, ' who

have given explicit formulas for the observable
quantities which can be determined with polarized
beam and target. We asserted in Sec. III that our
approach employing massless constituents and
the helicity formalism produces results which,
while similar to those of Ralston and Soper, con-
tain extra terms proportional to higher powers
of some average intrinsic momentum. In order
to show this, we evaluate the contribution of the
standard Drell-Yan process, q+ q-y in the con-
figuration Q, =O, using Eq. (44). In this special
case, the kinematics simplifies somewhat, and
the axes in the lepton-pair rest frame may be
chosen parallel to those in the hadron c.m. frame,
since only a z boost is involved. It then follows
that k~=2M sin8a& %1 +2+~ fI()ay +=Oy y=gy
and (P„+]ps+2y) = w. The kinematic variables
are then independent of y„and the y, integration
in Eq. (44) may be explicitly performed, provided
one uses the q, dependence of X', g~, p'+, and p~+

shown in Eqs. (45)-(48). [Since the azimuthal
variable of the massive lepton pair is undefined
at Q = 0, one may simply set 4 = 0 in eqs. (45)-
(48).] If we express the results of the ]p, integra-
tion in the form

do t~ 2m 4m 2
e, ' d(cos8. )x,x, 3 . [f~„f~,I~+(f-f, h-h)],

then the 1~ may be written as follows:

(Al)

i' =[g--~/t~ Et~A~'+y *~p~pt( A p' +pA pB )]I
1 31.

(0, 8„0)/&10 D (0, 8, 0)

(A2)

where the upper term in braces is for I.= 0, the lower for I = 2,

12 [ 2($ )1/2h TTh QTD2 (0 8 0) + hLTh I Tk 2D2 (0 8 0)] pA pB (AS)

I,=k~(hf/„'hqj~ X"p+ hfdf X p~-)D', o(0, 8„0)/&10 —(—,)'~k, (hp~hpsrA+ps+ -hf(~rh r~hsp~~)D,',(0, 8„0).
(A4)

Following the conventions established in Ref. 3,
we see that all nine nonvanishing (at Q~ = 0) ~/Nrem~~
are PreSent namely Rooo, R200~ R011y R211t R011y

000 000 000 000 011

Jacob-Wick convention for particle 2, p~ p~
+p~ p~ =-,S„"'fs in the notation of Ralston and
Soper. } If we compare our results to Eq. (2.10}
of Ralston and Soper, we find the same terms
as they do, except that the sign of the S~ ~ S~~,
terms must be changed to read + f~r fsrVr~ and
+ 8~ Spy &20 Furthermore, Ralston and Soper
propose five linear relations [Eqs. (3.19)] among

R —$10 R =0011 211

Ro11 ~y0 Ro11 0

B101-0
211

R 1-10 0211

(A6)

(AV)

(As)

(A9)

If we examine Eqs. (A2), (A3), and (A4) we find

I

the nine coefficients appearing in Eq. (2.10). Ex-
pressed in terms of our notation, these five rela-
tions have the form

(A5)
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that these relations can be obtained if one replaces
the rotations functions D„'„.'(0, 8„0) by D„'„i(0,0, 0)
However, our approach implies that the right-
hand sides of (A5)-(A9), instead of being zero,
are 0({(k~'()) compared to the left-hand side.
[The quantities on the left-band of (AV) are al-
ready 0(k~'), hence the right-hand side is 0(k~ ).]
Furthermore, our apporach allows for small ef-
fects when one hadron is longitudinally polarized,

the other having transverse polarization. Such

effects are absent in the Ralston-Soper approach.
It should of course be realized that Ralston and

Soper deliberately omitted effects which do not

appear in the limit of heavy dilepton mass (M'
hence {k~')/~'-0). However, at modest masses
(- 4 GeV) it may be possible to use polarization
effects in order to extract information on k~ dis-
tributions of partons.
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